首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. This paper reports the conclusions of studies into the phylogeny of tachyporine group subfamilies and the ‘basal’ lineages of the subfamily Aleocharinae (Coleoptera: Staphylinidae) based on both larval and adult morphological data (133 adult characters, twenty-seven larval characters). Representatives of forty species of the tachyporine group were used in the analysis, including representatives of the Aleocharinae, Trichophyinae, Habrocerinae, Phloeocharinae, Olisthaerinae, and Tachyporinae. The Aleocharinae included representatives of the tribes Gymnusini, Deinopsini, Mesoporini, the ‘subfamily’ Trichopseniinae, and representatives of nine major tribes in the ‘higher’ Aleocharinae (Athetini, Hoplandriini, Falagriini, Lomechisini, Oxypodini, Aleocharini, Myllaenini, Homalotini, and Hypocyphtini). Analyses were performed first with adult characters alone and then with both larval and adult characters in a simultaneous analysis. The analysis based on adult characters produced eighty-five equally parsimonious trees (length = 499, consistency index = 42; retention index = 69). In the consensus tree, the Tachyporinae are not monophyletic, and the sister-group relationship between the Trichophyinae + Habrocerinae and the Aleocharinae is not resolved. The Aleocharinae are monophyletic, but, among the ‘basal’ Aleocharinae, the relationships of Gymnusini + Deinopsini, the Mesoporini, and the Trichopseniinae are unresolved. The combined adult and larval data, using Tachinus as the outgroup, produced six equally parsimonious trees (tree length = 588; consistency index = 43; retention index = 69). The strict consensus tree of the combined larval and adult data supports the following conclusions: (1) larval characters substantially stabilize the tree; (2) the subfamily Tachyporinae is not supported to be monophyletic; (3) the subfamilies Trichophyinae and Habrocerinae are sister groups, and together they are sister to the Aleocharinae; (4) the ‘basal’ Aleocharinae are not a monophyletic group, but the ‘higher’ Aleocharinae are monophyletic; (5) the sister group of the remaining Aleocharinae is a lineage made up of genera currently in the tribes Gymnusini and Deinopsini; (6) within the Gymnusini–Deinopsini lineage, the monophyly of the Gymnusini is weakly supported, but the monophyly of the Deinopsini is strongly supported; (7) the subfamily Trichopseniinae is strongly supported to be a member of the ‘basal’ Aleocharinae; (8) the Myllaenini are resolved well within the ‘higher’ Aleocharinae; (9) strong support for the monophyly of some tribes of ‘higher’ Aleocharinae suggests that morphological characters provide substantial phylogenetic signal for analysis of higher-level phylogeny of the Aleocharinae in spite of the preliminary nature of the analysis at this taxonomic level.  相似文献   

2.
Abstract We develop a morphological dataset for the rove beetle subfamily Euaesthetinae comprising 167 morphological characters (135 adult and 32 larval) scored from 30 terminal taxa including 25 ingroup terminals (from subfamilies Euaesthetinae and Steninae) and five outgroups. Four maximum parsimony analyses using different sets of terminals and character sets were run to test the monophyly of (1) Euaesthetinae, (2) Steninae, (3) Euaesthetinae + Steninae, (4) euaesthetine tribes Austroesthetini, Alzadaesthetini, Euaesthetini, Fenderiini and Stenaesthetini, and (5) the ten currently known austral endemic genera together. Analyses of adult and larval character sets separately and in combination recovered the monophyly of Euaesthetinae, Steninae, and both subfamilies together, with strong support. Analysis of 13 ingroup terminals for which complete data were available suggests that monophyly of Euaesthetinae is supported by 19 synapomorphies (13 adult, six larval), of Steninae by 23 synapomorphies (14 adult, nine larval), and of both subfamilies together by 24 synapomorphies (21 adult, three larval). Within Euaesthetinae, only the tribe Stenaesthetini was recovered as monophyletic based on adult characters, and in no analyses were the ten austral endemic genera recovered as a monophyletic group. Phylogenetic relationships among euaesthetine genera were weakly supported, although analyses including adult characters supported monophyly of Octavius and Protopristus separately, and of Octavius + Protopristus, Austroesthetus + Chilioesthetus and Edaphus + Euaesthetus. Steninae may include a third genus comprising two undescribed species probably possessing a ‘stick–capture’ method of prey capture, similar to that in Stenus. These two species formed a strongly supported clade recovered as the sister group of Stenus based on adult characters. Diagnoses and a key to adults are provided for the 15 euaesthetine genera currently known from the austral region (Australia, New Zealand, South Africa and southern South America). Euaesthetine larvae previously were known only for Euaesthetus, and we describe the larvae of nine more genera and provide the first larval identification key for genera of Euaesthetinae.  相似文献   

3.
Abstract. Sixty-nine characters of larval structure of twenty-eight genera of the supertribe Trechitae (Coleoptera: Carabidae) were analysed phylogenetically. The monophyly of Trechitae is strongly supported with five unique synapomorphies. The monophyly of Zolini + Bembidiini + Pogonini is supported with two synapomorphies. We propose that the tribe Trechini is a sister group to them and its monophyly is supported with two unique synapomorphies. The inferred branching pattern of Trechini genera is (Perileptus + Thalassophilus) + (Amblystogenium + (Trechimorphus + (Trechus + Epaphius + Aepopsis + Trechisibus))); Perileptus is a member of Trechodina rather than Trechina. The monophyly of Zolini is not supported. The monophyly of Pogonini is supported with two unique synapomorphies; its sister group relationships remain obscure; the branching pattern of pogonine genera is (((Pogonus + Pogonistes) + Cardiaderus) + Thalassotrechus). No evidence for monophyly of the tribe Bembidiini (s. lato; including subtribes Bembidiina, Tachyina, Xystosomina, and Anillina) was found. The relationships of Phrypeus are obscure; no evidence could be found linking it with Bembidiina. Without Phrypeus, Bembidiina might be a monophylum with a single synapomorphy. Sinechostictus branches basal of (Bembidion + Asaphidion) and therefore should be treated as a separate genus. Tachyina and Xystosomina form a monophylum based on two unique synapomorphies; a close relationship with a monophyletic Anillina is suggested. Reduction of the number of claws from two to one in Trechitae has taken place twice: within Trechina (Trechus, Epaphius, Aepopsis and Trechisibus) and in (Zolini + Bembidiini + Pogonini). The previously unknown larvae of the isolated genus Phrypeus are described and illustrated. A key to all twenty-eight analysed Trechitae genera based on characters of larvae and a list of larval autapomorphies for each genus are provided.  相似文献   

4.
Ariid monophyly and intrafamilial relationships are investigated based on cladistic analysis of 230 morphological characters. Terminal taxa examined include whenever possible type‐species, or the most morphologically similar species to the type‐species of the nominal genera, and the largest possible number of species, including cleared and stained specimens, available in zoological collections. Previous hypotheses about monophyly of the Ariidae are strongly corroborated by new synapomorphies discovered in the present study. The subfamily Galeichthyinae and the remaining ariids are strongly supported by new morphological characters. The monotypic subfamily Bagreinae is recognized as the sister group to all nongaleichthyin ariids, supported by a large series of exclusive synapomorphies. A new concept of Ariinae is presented: the subfamily is found to be unequivocally monophyletic and includes all ariid genera, except Galeichthys and Bagre. New data supporting the monophyly of the genera included in the Ariinae are introduced and previous hypotheses of monophyly, species composition, morphological definition, and relationships are reviewed and discussed.  相似文献   

5.
In insects, anatomical features of the head have been found to provide important information for phylogenetic and comparative evolutionary studies. We analyzed the internal head morphology of three (omaliine, tachyporine, oxyteline group) out of the four subfamily groups of the beetle family Staphylinidae plus two non‐staphylinid outgroups (i.e., Agyrtidae and Leiodidae). Synchrotron X‐ray micro‐tomography was used to obtain comparative head anatomical datasets of eight species to describe (i) the presence/absence of muscles inside the head capsule and (ii) the variability in their points of origin. Nineteen of these muscles were phylogenetically informative (nine with respect to presence/absence and eleven with respect to the origin; one muscle had an influence on both analyses) and were used in character mapping analyses to reconstruct groundplan patterns of the head musculature in Staphylinidae and their subgroups. Three muscles (Mm. 7, 9, 50) were identified as possibly autapomorphic for Staphyliniformia. The taxon (Agyrtidae + Leiodidae) is supported by the absence of M. 9. The monophyly of the tachyporine group is supported by a common origin of M. 4. Aleocharinae, a subfamily within the tachyporine group, is supported by the absence of M. 42 and possibly by numerous points of origin of various muscles (Mm. 1, 17, 28, 29, 30). Our analysis of the general organization of the hypopharynx‐prementum‐complex has revealed that this complex is organized in a similar way in the investigated staphylinoids, i.e., with the prementum lying anteriorly to and being in line with the hypopharynx and the mentum. We have found deviating conditions in the investigated species of the Aleocharinae, in which the prementum can be largely retracted posteriorly. Consequently, it is sandwiched between the ventral mentum and the dorsal hypopharyngeal region. The hypopharyngeal region is thus lifted dorsad to a large extent, approaching the cibarial roof. This situation is paralleled by a loss of the hypopharyngeal retractor (M. 42) and a shift of origin of premental retractors (Mm. 28–30) posteriorly toward the gula. J. Morphol. 270:1503–1523, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Abstract. One hundred and twenty-one morphological characters of larvae and adults of the series Staphyliniformia were scored (multistate coding) and analysed to determine the family group relationships of the polyphagan groups Scarabaeoidea, Histeroidea, Hydrophiloidea and Staphylinoidea. Cladograms were rooted with exemplars of Adephaga, Archostemata, Myxophaga and the polyphagan families Dascillidae, Derodontidae, Eucinetidae and Scirtidae. Analyses of the same dataset with multistate characters re-coded as presence/absence (144 characters) produced cladograms that were similar to those produced from analyses of the original characters. Cladograms produced from partitioned larval and adult characters differed strongly, with adult-only trees more similar to those produced by combined data. The results confirm the monophyly of Hydrophiloidea + Histeroidea and of Staphylinoidea (including Hydraenidae). The Epimetopidae + Georissidae are the only strongly supported clade within Hydrophiloidea. A clade comprising Hydrochidae, Spercheidae and Hydrophilidae, and a sister-group relationship between the latter two families were confirmed in analyses of the data with presence/absence coding. Helophoridae, Epimetopidae and Georissidae are probably not a monophyletic unit, and additional evidence is needed for a reliable placement of Helophoridae. Scarabaeoidea are placed as a sister taxon of Hydrophiloidea + Histeroidea, but support for this relationship is weak. The branching pattern ((Hydraenidae + Ptiliidae) + (Leiodidae + Agyrtidae)), and a clade comprising Scydmaenidae, Silphidae and Staphylinidae (= ‘staphylinid group’) are well founded. The branching pattern (Orchymontiinae + (Prosthetopinae + (Ochthebiinae + Hydraeninae))) within Hydraenidae is confirmed. Poor resolution at the base of the trees and the placement of some nonstaphyliniform taxa (Dascillidae, Derodontidae, Scirtidae and Eucinetidae) as a sister group to a clade comprising Scarabaeoidea, Hydrophiloidea and Histeroidea suggests that Staphyliniformia may be paraphyletic. It is recommended that series names are eliminated from the classification of Polyphaga, at least for the more ‘primitive’ groups.  相似文献   

7.
The first comprehensive phylogenetic analyses of the most diverse subfamily of plant bugs, Mirinae, is presented in this study, for 110 representative taxa based on total evidence analysis. A total of 85 morphological characters and 3898 bp of mitochondrial (16S, COI) and nuclear (18S, 28S) sequences were analysed for each partitioned and combined dataset based on parsimony, maximum likelihood and Bayesian inference. Major results obtained in this study include monophyly of the tribe Mecistoscelini. The largest tribe, Mirini, was recovered as polyphyletic, and Stenodemini was recovered as paraphyletic. The clade of Stenodemini + Mecistoscelini is the sister group of the remaining Mirinae. The monophyly of two complexes composed of superficially similar genera were tested; the Lygus complex was recovered as nonmonophyletic, and the Adelphocoris–Creontiades–Megacoelum complex was confirmed to be monophyletic. The generic relationships of the main clades within each tribe based on the phylogeny, as well as their supported morphological characters, are discussed.  相似文献   

8.
Structure, particularly of the mouthparts, of the unusual aleocharine staphylinid Stylogymnusa subantarctica Hammond was reevaluated. The mouthparts are described in detail, and drawings of their structure are provided. Several features were found to be misinterpreted in previous accounts of the structure of this aleocharine. In particular, the stylate structures found on the prementum are not a highly modified, hollow, stylate glossa, as had been previously suggested. Instead, these structures represent highly modified labial palpi; the segments are completely fused, all signs of typical setae of the labial palpi are missing, and the palpi are very long and slender. In addition, there is no sign that they are hollow. Small, slender, membranous lobes at the base of, and between, the palpi are interpreted as the true glossae (=ligula). Reinterpretation of these characters, and greatly improved phylogenetic techniques in the 20 years since previous phylogenies had been proposed, allowed testing of previous hypotheses of the phylogenetic position of Stylogymnusa and the relationships of the tribes Gymnusini and Deinopsini within the Aleocharinae. Phylogenetic analysis of 7 out‐group and 12 in‐group taxa, based on 84 characters and 231 character states, produced 3 equally most‐parsimonious trees (tree length = 253, C.I. = 0.557, R.I. =0.674, rescaled C.I. = 0.376). These trees provide strong support for a monophyletic lineage consbting of Stylogymnusa, Gymnusa and the Deinopsini but only weak support for a monophyletic Gymnusini (Gymnusa + Stylogymnusa). Bootstrap analysis based on 1000 resampling repetitions showed the following monophyletic clades to be well supported by the dataset: Aleocharinae (79%), Stylogymnusa+Gymnusa+ Deinopsini (99%), Deinopsis+Adinopsis (100%), and representatives of Myllaenini + Athetini + Aleocharini + Homalotini + Oxypodini (the “higher Aleocharinae”) (88%). Weakly supported clades in the bootstrap analysis were: Paraconosoma+ Gymnusini + Deinopsini (56%), Anacyptus+‘higher Aleocharinae’ (54%), and Athetini + Oxypodini + Homalotini + Aleocharini (52%).  相似文献   

9.
《Systematic Entomology》2018,43(1):183-199
The rove beetle subfamily Aleocharinae is the largest subfamily of animals known in terms of species richness. Two small aleocharine tribes, Gymnusini and Deinopsini, are believed to be a monophyletic clade, sister to the rest of the Aleocharinae. Although the phylogenetic relationships of the extant lineages have been well investigated, the monophyly of Gymnusini has been questioned due to a series of previous studies and the recent discovery of the aleocharine †Cretodeinopsis Cai & Huang (Deinopsini) from mid‐Cretaceous Burmese amber. Using an additional specimen of †Cretodeinopsis and well‐preserved specimens of †Electrogymnusa Wolf‐Schwenninger from Eocene Baltic amber, we present here two types of morphology‐based phylogenetic analyses, employing all extant/extinct genera of Gymnusini and Deinopsini for the first time. The maximum parsimony and Bayesian analyses recovered a monophyletic clade of the two tribes combined, but each analysis suggested nonmonophyly of Gymnusini. In agreement with the results of the present study, we synonymize Deinopsini syn.n. under Gymnusini sensu n. , by priority. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:F09EB444‐C6CA‐4525‐A986‐3CFC826F5877 .  相似文献   

10.
We use sequences from the nuclear ribosomal genes, 18S and 28S to analyze the phylogeny of the Rhizocephala Akentrogonida including two species, Clistosaccus paguri and Chthamalophilus delagei, that are critical for understanding rhizocephalan evolution but have not previously been part of a molecularly based study. In addition we use light and scanning electron microscopy to compare the cypris larvae of C. paguri, Sylon hippolytes and two species of the family Thompsoniidae, since this larval stage offers a suite of characters for analyzing the evolution of these otherwise highly reduced parasites. The Rhizocephala Akentrogonida form a monophyletic group nested within a paraphyletic “Kentrogonida”. C. paguri and S. hippolytes are sistergroups confirming the monophyly of the Clistosaccidae that was originally based on similarities in the cypris larvae. We find numerous LM and SEM level similarities between the two species, many of which appear to be correlated with their specialized sexual system, where male cyprids use an antennule to implant cells into the virgin female parasite. Some of these traits are also found in cyprids of the thompsoniid species. We conclude that the special cypris morphology and the implantation of males by antennular penetration was present in the stem species to the Thompsoniidae and the Clistosaccidae and emphasize the power of larval characters in rhizocephalan systematics. C. delagei is a sister group to Boschmaella balani and the two are nested deep within the Akentrogonida. This confirms the monophyly of the Chthamalophilidae and falsifies the theory that C. delagei should represent the most primitive extant rhizocephalan. Instead, chthamalophilid rhizocephalans represent some of the most highly advanced members of the parasitic barnacles.  相似文献   

11.
The Asteraceae are commonly divided into two large subfamilies, the Cichorioideae (syn. Lactucoideae; Mutisieae, Cardueae, Lactuceae, Vernonieae, Liabeae, Arctoteae) and the Asteroideae (Inuleae, Astereae, Anthemideae, Senecioneae, Calenduleae, Heliantheae, Eupatorieae). Recent phylogenetic analyses based on morphological and chloroplast DNA data conclusively show that the Mutisieae-Barnadesiinae are the sister group to the rest of the family and that the Asteroideae tribes form a monophyletic group. The Vernonieae and Liabeae are sister tribes and the Eupatorieae are nested within a paraphyletic Heliantheae; otherwise tribal interrelationships are still largely uncertain. The Mutisieae-Barnadesiinae are excluded from the Mutisieae and elevated to the new subfamily Barnadesioideae. The two subfamilies Barnadesioideae and Asteroideae are monophyletic, whereas the status of the Cichorioideae remains uncertain. Analyses of chloroplast DNA data support the monophyly of the Cichorioideae; however, morphological data indicate that the subfamily is paraphyletic. Further studies are needed to test the monophyly of the Cichorioideae, as well as to further resolve tribal interrelationships in the two larger subfamilies.  相似文献   

12.
With over 80 000 described species, Brachycera represent one of the most diverse clades of organisms with a Mesozoic origin. Larvae of the majority of early lineages are detritivores or carnivores. However, Brachycera are ecologically innovative and they now employ a diverse range of feeding strategies. Brachyceran relationships have been the subject of numerous qualitative analyses using morphological characters. These analyses are often based on characters from one or a few character systems and general agreement on relationships has been elusive. In order to understand the evolution of basal brachyceran lineages, 101 discrete morphological characters were scored and compiled into a single data set. Terminals were scored at the family level, and the data set includes characters from larvae, pupae and adults, internal and external morphology, and male and female terminalia. The results show that all infraorders of Brachycera are monophyletic, but there is little evidence for relationships between the infraorders. Stratiomyomorpha, Tabanomorpha, and Xylophagomorpha together form the sister group to Muscomorpha. Xylophagomorpha and Tabanomorpha are sister groups. Within Muscomorpha, the paraphyletic Nemestrinoidea form the two most basal lineages. There is weak evidence for the monophyly of Asiloidea, and Hilarimorphidae appear to be more closely related to Eremoneura than other muscomorphs. Apsilocephalidae, Scenopinidae and Therevidae form a clade of Asiloidea. This phylogenetic evidence is consistent with the contemporaneous differentiation of the main brachyceran lineages in the early Jurassic. The first major radiation of Muscomorpha were asiloids and they may have diversified in response to the radiation of angiosperms in the early Cretaceous.  相似文献   

13.
Phylogenetic analysis of the Malacostraca (Crustacea)   总被引:13,自引:0,他引:13  
The Malacostraca comprises about 28 000 species with a broad disparity in morphology, anatomy, embryology, behaviour and ecology. The phylogenetic relationships of the major taxa are still under debate. Is the Leptostraca the sister group of the remaining Malacostraca, or is this taxon more closely related to other Crustacea? Does the Stomatopoda or the Bathynellacea represent the most basal taxon within the remaining taxa? Is the Peracarida monophyletic or are some peracarid taxa more closely related to other ‘caridoid’ taxa? Is the Thermosbaenacea part of the Peracarida or its sister group, and how much support is there for a taxon Amphipoda + Isopoda? To answer these questions a phylogenetic analysis of the Malacostraca combining different phylogenetic approaches was undertaken. In a first step, the monophyly of the Malacostraca including the Leptostraca is shown using the ‘Hennigian approach’. A computer cladistic analysis of the Malacostraca was carried out with NONA and PEE ‐WEE , based on 93 characters from morphology, anatomy and embryology. Nineteen higher malacostracan taxa are included in our analysis. Taxa whose representatives are exclusively fossils were not included. The Leptostraca was used as an operational out‐group. The present analysis supports the basal position of the Stomatopoda. Syncarida and Peracarida (including Thermosbaenacea) are supported as monophyletic, the Eucarida is not. Instead a sister‐group relationship is suggested between Euphausiacea and Peracarida (including Thermosbaenacea), with the Syncarida as the sister group to both taxa. Certain embryonic characters are interpreted as support for the monophyly of the Peracarida (without Thermosbaenacea) because convergences or reversals of these characters seem implausible. Within the Peracarida, the Mysidacea (Lophogastrida + Mysida) represents the sister group to the remaining taxa. A sister‐group relationship between Amphipoda and Isopoda is not supported.  相似文献   

14.
Selection pressure by natural enemies on phytophagous insect larvae is intense and has frequently triggered the evolution of chemical defence as an effective counterstrategy. In the chrysomelid subfamily Galerucinae, glandular structures and defensive fluids have been described for the tribe Sermylini Wilcox, 1965. Previous morphological and ultrastructural studies raised doubts that these defensive devices in Sermylini can be traced back to a common origin. The taxonomy of the Galerucinae cannot clear these doubts because the phylogeny of this taxon is a matter of current debate. We therefore investigated the phylogeny of the Galerucinae based on approximately 1740 bp of the mitochondrial 12S and 16S rRNA and the nuclear elongation factor 1 alpha genes. Our data support the hypothesized close relationship between the subfamilies Galerucinae and Alticinae, yet, by contrast to other recent analyses, the two groups are mostly resolved as monophyletic sister groups or, in some analyses, with the Galerucinae nested paraphyletically within the Alticinae. Within the subfamily Galerucinae, only the tribe Galerucini formed a monophyletic taxon, except for one species, Cerochroa brachialis Stal, 1858. In none of our analyses were the Sermylini recovered as a monophyletic tribe. However, our data support monophyly of each of the three groups within the Sermylini that have morphologically distinguishable larval defensive openings. We conclude that the defensive structures in larvae of Sermylini have no common origin, but evolved independently. Our data suggest that the tremendous selection pressure by natural enemies led to the recurrent evolution of similar chemical defensive devices in Sermylini larvae.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 165–175.  相似文献   

15.
Abstract. This study compares the results of Rozen's cladistic analysis of the larvae of fifteen genera of cleptoparasitic bees in the subfamily Nomadinae with an independent data set of adult characters for the same genera. Adult characters exhibited considerably higher levels of homoplasy and poorer resolution of cladistic relationships, with multiple equally parsimonious cladograms. However, comparison of a Nelson consensus tree based on adult characters with the cladogram based on larval characters reveals three components consistently supported in both analyses (the tribes Epeolini and Ammobatini, and Neopasites + Neolarra) , one component supported only by adult characters (Isepeolus + Protepeolus) , and one terminal component supported only by larval characters (Nomada + Ammobatini), as well as several more inclusive groupings based on larval characters that are difficult to compare with the adult consensus tree because it shows so much less resolution. When adult and larval characters are combined in a single data matrix, the resulting cladogram closely resembles the cladogram based on larval characters alone, although levels of homoplasy are considerably higher than in the larval analysis.
A preliminary analysis of adult characters for thirty-four genera in the Nomadinae also exhibited high levels of homoplasy and very large numbers of equally parsimonious cladograms. Nevertheless, certain consistent monophyletic groupings, most notably the Epeolini and Ammobatini, were also supported in this analysis. The one currently recognized tribe whose monophyly has received no support from any analysis is the Nomadini.
The relevance of these phylogenetic hypotheses to our understanding of host associations and variable features of egg morphology and oviposition behaviour in nomadine bees is briefly discussed.  相似文献   

16.
This is the first study to comprehensively address the phylogeny of the tribe Oxypodini Thomson and its phylogenetic relationships to other tribes within the staphylinid subfamily Aleocharinae. Using the hitherto largest molecular dataset of Aleocharinae comprising of 4599 bp for representatives of 22 tribes, the Oxypodini are recovered as non‐monophyletic. Members of the tribe belong to three distantly related lineages within the Aleocharinae: (i) the Amarochara group as sister clade to the tribe Aleocharini, (ii) the subtribe Tachyusina within a clade that also includes the tribes Athetini and Hygronomini, (iii) all other Oxypodini in a clade that also includes the tribes Placusini, Hoplandriini and Liparocephalini. Based on the inferred phylogeny, five subtribes of the Oxypodini are recognized: Dinardina Mulsant & Rey, Meoticina Seevers, Microglottina Fenyes, Oxypodina Thomson and Phloeoporina Thomson. The following changes in the classification of the Aleocharinae are proposed: (i) Amarochara Thomson is removed from the Oxypodini and placed in the tribe Aleocharini; (ii) the subtribe Taxicerina Lohse of the Athetini is reinstated as tribe Taxicerini to include Discerota Mulsant & Rey, Halobrecta Thomson (both removed from the Oxypodini) and Taxicera Mulsant & Rey; (iii) the subtribe Tachyusina Thomson is excluded from the Oxypodini and provisionally treated as tribe Tachyusini; (iv) the oxypodine subtribe name Blepharhymenina Klimaszewski & Peck is placed in synonymy with the subtribe name Dinardina Mulsant & Rey.  相似文献   

17.
试图根据成虫形态学证据探讨长足虻科各亚科之间的系统关系,同时检验各个亚科的单系性.在比较形态学研究基础上,同时参考前人有关长足虻科高阶元分类的研究结果,筛选出42个来自头部、胸部(包括足和翅)、腹部、雌性和雄性外生殖器在亚科水平的分类特征,为了考察亚科的单系性,也包括亚科的自有衍征;运用支序分类的方法,首次分析并讨论了世界长足虻科17个亚科之间的系统发育关系.结果表明,长足虻科是一个严格的单系群,其支持的共同衍征为体色金绿,亚前缘脉端部与第1径脉中部愈合,前缘脉接近肩横脉处有1个缺刻,第2基室与盘室愈合,臀室短小、终止于径脉分叉点之前,雄性外生殖器明显向下或向前弯折,生殖背板具生殖孔,下生殖板与第9背板愈合.金长足虻亚科Sciapodinae腋瓣发达,中脉分叉,为最基部的支系,是最原始的亚科;而长足虻科的其他亚科构成一单系群,其共同衍征为腋瓣不明显,中脉不分叉.斜脉长足虻亚科Plagioneurinae也比较原始,是靠基部的支系,支持其单系性的特征为腹部第7~8节膜质化,生殖孔基位.异长足虻亚科Diaphorinae和锥长足虻亚科Rhaphiinae以及斯长足虻亚科Stolidosomatinae和合长足虻亚科Sympycninae分别构成姊妹群关系,斯长足虻亚科Stolidosomatinae的两个属Pseudosympycnus和Stolidosoma系统地位还有待进一步研究.此外,巴长足虻亚科Babindellinae、聚脉长足虻亚科Medeterinae和寇长足虻亚科Kowmunginae构成单系群,其共同衍征为臀脉短或不明显,无后顶鬃.研究所用标本大部分保存在中国农业大学昆虫标本馆,包括与美国史密森研究院和澳大利亚博物馆交换而来的标本,部分标本保存在比利时皇家科学院.  相似文献   

18.
The morphology of the acrophallus, the distal portion of the male phallus carrying the phallotreme, was studied in 72 exemplar species representing 56 genera and subgenera of the flesh fly subfamily Sarcophaginae. For 42 of those species, scanning electron microscopy was used to clarify the phallic morphology. Terms used to describe the male genitalia were updated based on new interpretations of homology. Male genitalic characters, combined with other morphological characters of adult males and females and of larvae, were used to construct a phylogeny. The monophyly of the subfamily was supported, and some generic‐level sister‐group relationships proposed in the literature, but without previous cladistic analyses, were also supported. The genus Blaesoxipha Loew, as currently recognized, was not monophyletic in our analysis. The genus Helicobia Coquillett is synonymized with Sarcophaga Meigen syn. nov. and treated as a subgenus of the latter. The Sarcophaga subgenera Neobellieria Blanchard and Mehria Enderlein were not monophyletic. Many of the clades in the analysis were supported primarily or exclusively by male genitalic character states, highlighting the importance of the male genitalia as a source of morphological characters for sarcophagine phylogeny. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 158 , 740–778.  相似文献   

19.
20.
A new species of conifer was recently discovered in northern Vietnam. In a preliminary phylogenetic analysis of morphological data a possible sister species, Chamaecyparis nootkatensis (D. Don) Spach, was identified; however, because of the presumed phylogenetic remoteness of these two species to the remainder of the Cupressaceae, a new genus-Xanthocyparis-was described to accommodate both species. Here an analysis of ITS (nrDNA), matK, and rbcL sequence data in combination with 58 informative morphological characters was aimed at testing the monophyly of the remainder of Chamaecyparis and evaluating the placement and monophyly of Xanthocyparis. Chamaecyparis, minus C. nootkatensis, was resolved as a monophyletic group, remote from Cupressus and Xanthocyparis. Cupressus, Juniperus, and Xanthocyparis formed a very highly supported monophyletic group. However, Cupressus was not monophyletic. Instead the Old World species sampled were resolved sister to a clade containing a monophyletic Juniperus, a monophyletic Xanthocyparis, and a clade of New World Cupressus species. If both species of Xanthocyparis are to be treated as members of the same genus, then due to the principal of priority they will have to be recognized in the genus Callitropsis. Research is continuing to resolve the status of New World and Old World Cupressus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号