首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 325 毫秒
1.
1. Protooncogene c-fos mRNA levels were determined in the rat cerebral cortex, hippocampus, and cerebellum after exposure to a combined forced swimming and confinement stress. The stress resulted in an increase in c-fos mRNA levels in all three brain areas.2. In an effort to elucidate the neurotransmitter systems involved in this stress-induced increase, animals were injected, prior to exposure to the stress, with either diazepam, MK-801, or propranolol.3. In both the cerebral cortex and the hippocampus the stress-induced increase in c-fos mRNA was inhibited by MK-801, suggesting that it is mediated via NMDA receptors. In the hippocampus, propranolol had a similar effect, indicating that -adrenergic receptors are also involved in the stress-induced increase in c-fos mRNA.4. On the other hand, the increase in c-fos mRNA produced by the stress of the injection was inhibited in the cerebral cortex by diazepam or propranolol and in the hippocampus only by diazepam. Furthermore, administration of MK-801 resulted in an increase in c-fos mRNA in the hippocampus of the nonstressed animals. In the cerebellum no one of the three drugs employed affected c-fos mRNA levels in either stressed or nonstressed animals.5. Our results thus show that various forms of stress activate, in different brain areas, neurons with either NMDA, -adrenergic, and/or GABA-A receptors.  相似文献   

2.
Summary 1. Amphetamine-induced c-fos andegr-1 expression in the striatum was used as a model in which to study the effects of antisense oligodeoxynucleotides (ODNs) directed at c-fos. Using direct infusions of ODNs into the striata of animals we have demonstrated that c-fos antisense ODNs retain most of their biological activity with 2- or 3-base substitutions. The c-fos antisense and mismatch ODNs attenuated Fos immunoreactivity but had little effect on Egr-1 immunoreactivity.2. In another group of studies examining the role of c-fos in amygdala kindling, we have demonstrated that ODNs cause neurotoxic damage following repeated daily infusions into the amygdala. The damage observed was greatly diminished when the time interval between infusions was extended.  相似文献   

3.
4.
Summary 1. The aim of this study was to investigate the neurochemical effects and measure the anatomical spread of infusion of c-fos antisense (AS) DNA into the striatum.2. Rats were anesthetized and infused in opposing striata with c-fos AS and c-fos sense (S) DNA. Ten hours later they were injected with apomorphine (2 mg/kg, i.p.) and 20 min later they were overdosed with sodium pentobarbital and their brains either perfused or frozen. Vibratome-cut sections were immunostained for the detection of c-fos, JunB, Krox 24, somatostatin, substance P, dynorphin, tyrosine hydroxylase, and enkephalin. Cryostat-cut sections from the caudate were immunostained for the detection of c-fos, JunB, and Krox 24, as well asin situ hybridization for proenkephalin mRNA. Sections from the globus pallidus were used for the autoradiographic localization of D2 dopamine and A2a adenosine receptors. Sections from the substantia nigra were used for the autoradiographic localization of D1 dopamine and cannabinoid receptors. A second group of rats was injected in opposing striata with biotin-labeled c-fos AS DNA and c-fos S DNA. Ten hours later they were challenged with apomorphine (2 mg/kg, i.p.) and 20 min later brains were either perfused or frozen. Sections from these brains were cut throughout the rostral-caudal extent of the forebrain and the biotin labeled AS DNA was localized.3. Krox 24 was expressed at high levels on the sense side of the brain in the striatum and overlying neocortex. However, on the AS-injected side there was a reduction in Krox 24 expression in striatum and overlying cortex. The biotin-labeled AS studies confirmed that the striatal infusion spread throughout the dorsal striatum as well as the overlying neocortex. We did not detect any changes in neurotransmitter receptors, neuropeptides, or tyrosine hydroxylase in AS/S-injected rat brains.4. These results demonstrate that c-fos AS reduces Krox 24 expression in striatal and neocortical neurons but does not change the expression of a number of other proteins involved in basal ganglia function. Whether this effect is due to nonspecific actions of c-fos AS or to its effects on a component of the transduction pathway responsible for basal Krox 24 expression (NMDA receptors?) is unknown.  相似文献   

5.
6.
7.
Summary 1. The amygdaloid complex is a key structure in mechanisms of fear and anxiety. Expression of the immediate-early gene c-fos has been reported in the central nucleus of the amygdala following various stressors, but the functional role of this phenomenon has remained unknown.2. c-fos expression was observed in the central nucleus when rats were subjected to a pharmacologically validated animal model of anxiety, the Vogel conflict test, but not after mere exposure to the test apparatus. Bilateral amygdala injection of a 15-mer phosphorothioate c-fos antisense oligodeoxynucleotide prior to testing blocked conflict-induced c-fos expression and had behavioral effects similar to those of established antianxiety drugs.3. Separate experiments determined that antisense treatment did not affect conflict behavior by acting on shock thresholds or drinking motivation.4. These findings provide evidence that neuronal activation and c-fos induction in the amygdala may be of importance for mechanisms of fear and anxiety.  相似文献   

8.
9.
Summary 1. The effects of restraint stress on c-fos mRNA expression in the dentate gyrus were investigated byin situ hybridization.2. Confirming previous findings, c-fos mRNA expression increased after 30 min of forced restraint.3. This effect was attenuated by a previous i.c.v. injection of the anxiolytic benzodiazepine midazolam (20 nmol/2 µl) or theN-methyl-d-aspartate (NMDA) receptor antagonist 2-amino-7-phosphonoheptanoic acid (AP-7; 5 nmol/2 µl).4. These results suggest that the dentate gyrus is activated during restraint stress and that this activation may be modulated by benzodiazepine -aminobutyric acidA (GABAA) or NMDA receptors.  相似文献   

10.

Background

The regulation of the immediate-early gene c-fos serves as a paradigm for signal-activated gene induction. Lysophosphatidic acid is a potent serum-borne mitogen able to induce c-fos.

Results

Analysing the signalling events following stimulation of mouse embryonic stem cells with serum and lysophosphatidic acid, we show that the extracellular signal-regulated kinase (ERK) pathway is involved in mediating c-fos induction. We demonstrate that the ERK-activated kinase MSK1 is required for full c-fos promoter activation, as well as for the phosphorylation of cAMP-responsive element (CRE) binding proteins. We propose that MSK1 contributes to ERK-mediated c-fos promoter activation by targeting CRE binding proteins.

Conclusion

These results show that MSK1 is an important ERK-activated mediator of mitogen-stimulated c-fos induction. In addition, they indicate that MSK1 could act through CRE binding proteins to achieve c-fos promoter activation. Thus, they further our understanding of the complex regulation of the model immediate-early gene c-fos.
  相似文献   

11.
12.
13.
14.
The number of c-fos protein-like immunoreactive (Fos-LI) cells in the gracile nucleus was determined after electrical stimulation at Aα/Aβ-fiber strength of the normal and of the previously injured sciatic nerve in adult rats. No Fos-LI cells were seen after electrical stimulation of the noninjured sciatic nerve, or after sciatic nerve injury without electrical stimulation. However, stimulation 21 days after sciatic nerve transection resulted in numerous Fos-LI cells in the ipsilateral gracile nucleus. Combined Fos immunocytochemistry and retrograde labeling from the thalamus showed that the majority (76%; range = 70–80%) of the cells in the gracile nucleus that expressed Fos-LI after nerve injury projected to the thalamus. The results indicate that morphological, biochemical, and physiological alterations in primary sensory central endings and second-order neurons, which have earlier been demonstrated in the dorsal column nuclei after peripheral nerve injury, are accompanied by changes in the c-fos gene activation pattern after stimulation of the injured sciatic nerve. A substantial number of the c-fos-expressing neurons project to the thalamus.  相似文献   

15.
Amphetamine-, cocaine-, and morphine-induced c-fos expression patterns were examined following an injection protocol that has previously been shown to produce behavioral sensitization and enhanced dopamine release in the striatal complex. Drug-specific c-fos patterns were observed in both acute and sensitization injection paradigms. A sensitization pretreatment schedule did, however, alter the c-fos expression patterns induced by all the drugs in the caudate putamen, nucleus accumbens, and the cerebral cortex. In some striatal and cortical regions, there was an increase or recruitment of cells expressing c-fos whereas in others there was an apparent decrease or inhibition. The somatosensory cortex was one area where pretreatment with all three drugs increased c-fos expression. The results suggest that the neuronal networks that are modulated by systemic drug injections in the sensitized animal differ from those affected by the initial drug exposure; areas of overlap may indicate common ‘sensitization’ circuits. Special issue dedicated to Dr. Eric J. Simon.  相似文献   

16.
17.
18.
Kang DK  Kim KO  Lee SH  Lee YS  Son H 《Molecules and cells》2000,10(5):546-551
While dopamine is likely to modulate hippocampal synaptic plasticity, there has been little information about how dopamine affects synaptic transmission in the hippocampus. The expression of IEGs including c-fos has been associated with late phase LTP in the CA1 region of the hippocampus. The induction of c-fos by dopaminergic receptor activation in the rat hippocampus was investigated by using semiquantitative RT-PCR and immuno-cytochemistry. The hippocampal slices which were not treated with dopamine showed little expression of c-fos mRNA. However, the induction of c-fos mRNA was detected as early as 5 min after dopamine treatment, peaked at 60 min, and remained elevated 5 h after treatment. Temporal profiles of increases in c-fos mRNA by R(+)-SKF-38393 (50 M) and forskolin (50 M) were similar to that of dopamine. An increase in [cAMP] was observed in dopamine-, SKF-, or forskolin-treated hippocampal slices. By immunocytochemical studies, control hippocampal cells showed little expression of c-Fos immunoreactivity. However, when cells were treated with dopamine, an increase in the expression of c-Fos immunoreactivity was observed after treatment for 2 h. The treatment of hippocampal neurons with R(+)-SKF38393 (50 M) or forskolin (50 M) also induced a significant increase in c-Fos expression. These results indicate that the dopamine D1 receptor-mediated cAMP dependant pathway is associated with the expression of c-Fos in the hippocampal neurons. These data are consistent with the possible role of endogenous dopamine on synaptic plasticity via the regulation of gene expression. Furthermore, these results imply that dopamine might control the process of memory storage in the hippocampus through gene expression.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号