首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clinical therapies for cancer have evolved from toxic, nontargeted agents to manageable, highly targeted therapies. Protein tyrosine kinases are a family of signaling molecules implicated in nearly every cancer type and are the foundation for the development of modern targeted agents. Recent genomic analyses have identified activating mutations, translocations, and amplifications of tyrosine kinases. Selective targeting of these genetically altered tyrosine kinases has resulted in significant clinical advances, including increased patient survival. This indicates that altered protein tyrosine kinases are the main drivers of many different cancers. However, lost during analyses of genetic lesions are the contributions of activated, wild-type kinases on tumor-dependent pathways. New approaches in phosphoproteomic technologies have identified several wild-type tyrosine kinase activation states, suggesting that non-genetically altered kinases can be essential “nodes” for signal transduction. Here, we summarize the evidence supporting the common mechanisms of protein tyrosine kinase activation in cancer and provide a personal perspective on the kinases BCR-ABL and BTK, as well as nonmutated kinase targets in prostate cancer, through our work. We outline the mechanisms of tyrosine kinase activation in the absence of direct mutation and discuss whether non-genetically altered tyrosine kinases or their associated downstream signaling pathways can be effectively targeted.  相似文献   

2.
KinMutBase (http://www.uta.fi/imt/bioinfo/KinMutBase/) is a registry of mutations in human protein kinases related to disorders. Kinases are essential cellular signaling molecules, in which mutations can lead to diseases, including immunodeficiencies, cancers and endocrine disorders. The first release of KinMutBase contained information for protein tyrosine kinases. The current release includes also serine/threonine protein kinases, as well as an update of the tyrosine kinases. There are 251 entries altogether, representing 337 families and 621 patients. Mutations appear both in conserved hallmark residues of the kinases as well as in non-homologous sites. The KinMutBase WWW pages provide plenty of information, namely mutation statistics and display, clickable sequences with mutations and changes to restriction enzyme patterns.  相似文献   

3.
This study aimed to determine whether the multi-kinase inhibitor dasatinib would provide an effective therapy for myeloproliferative diseases (MPDs) involving c-Cbl mutations. These mutations, which occur in the RING finger and linker domains, abolish the ability of c-Cbl to function as an E3 ubiquitin ligase and downregulate activated protein tyrosine kinases. Here we analyzed the effects of dasatinib in a c-Cbl RING finger mutant mouse that develops an MPD with a phenotype similar to the human MPDs. The mice are characterized by enhanced tyrosine kinase signaling resulting in an expansion of hematopoietic stem cells, multipotent progenitors and cells within the myeloid lineage. Since c-Cbl is a negative regulator of c-Kit and Src signaling we reasoned that dasatinib, which targets these kinases, would be an effective therapy. Furthermore, two recent studies showed dasatinib to be effective in inhibiting the in vitro growth of cells from leukemia patients with c-Cbl RING finger and linker domain mutations. Surprisingly we found that dasatinib did not provide an effective therapy for c-Cbl RING finger mutant mice since it did not suppress any of the hematopoietic lineages that promote MPD development. Thus we conclude that dasatinib may not be an appropriate therapy for leukemia patients with c-Cbl mutations. We did however find that dasatinib caused a marked reduction of pre-B cells and immature B cells which correlated with a loss of Src activity. This study is therefore the first to provide a detailed characterization of in vivo effects of dasatinib in a hematopoietic disorder that is driven by protein tyrosine kinases other than BCR-ABL.  相似文献   

4.
5.
Receptor tyrosine kinases couple a wide variety of extracellular cues to cellular responses. The class III subfamily comprises the platelet-derived growth factor receptor, c-Kit, Flt3 and c-Fms, all of which relay cell proliferation signals upon ligand binding. Accordingly, mutations in these proteins that confer ligand-independent activation are found in a subset of cancers. These mutations cluster in the juxtamembrane (JM) and catalytic tyrosine kinase domain (TKD) regions. In the case of acute myeloid leukemia (AML), the juxtamembrane (named ITD for internal tandem duplication) and TKD Flt3 mutants differ in their spectra of clinical outcomes. Although the mechanism of aberrant activation has been largely elucidated by biochemical and structural analyses of mutant kinases, the differences in disease presentation cannot be attributed to a change in substrate specificity or signaling strength of the catalytic domain. This review discusses the latest literature and presents a working model of differential Flt3 signaling based on mis-localized juxtamembrane autophosphorylation, to account for the disease variation. This will have bearing on therapeutic approaches in a complex disease such as AML, for which no efficacious drug yet exists.  相似文献   

6.
Herbst R  Zhang X  Qin J  Simon MA 《The EMBO journal》1999,18(24):6950-6961
The pleckstrin homology (PH) domain-containing protein Daughter of Sevenless (DOS) is an essential component of the Sevenless receptor tyrosine kinase (SEV) signaling cascade, which specifies R7 photoreceptor development in the Drosophila eye. Previous results have suggested that DOS becomes tyrosine phosphorylated during SEV signaling and collaborates with the protein tyrosine phosphatase CSW. We have investigated this possibility by identifying tyrosine residues 801 and 854 of DOS as the phosphorylated binding sites for the CSW SH2 domains. We show that these sites become phosphorylated in response to SEV activation and that phosphorylation of both sites is required to allow CSW to bind DOS. Mutant DOS proteins in which either Y801 or Y854 of DOS has been changed to phenylalanine are unable to function during signaling by SEV and other receptor tyrosine kinases. In contrast, we find that a mutant DOS protein in which all tyrosine phosphorylation sites except Y801 and Y854 have been removed is able effectively to provide DOS function during SEV signaling and to rescue the lethality associated with dos loss-of-function mutations. These results indicate that a primary role for DOS during signaling by SEV and other receptor tyrosine kinases is to become phosphorylated at Y801 and Y854 and then recruit CSW.  相似文献   

7.
Cytoplasmic protein-tyrosine kinases (PTKs) are enzymes involved in transducing a vast number of signals in metazoans. The importance of the Tec family of kinases was immediately recognized when, in 1993, mutations in the gene encoding Bruton's tyrosine kinase (Btk) were reported to cause the human disease X-linked agammaglobulinemia (XLA). Since then, additional kinases belonging to this family have been isolated, and the availability of full genome sequences allows identification of all members in selected species enabling phylogenetic considerations. Tec kinases are endowed with Pleckstrin homology (PH) and Tec homology (TH) domains and are involved in diverse biological processes related to the control of survival and differentiation fate. Membrane translocation resulting in the activation of Tec kinases with subsequent Ca2+ release seems to be a general feature. However, nuclear translocation may also be of importance. The purpose of this essay is to characterize members of the Tec family and discuss their involvement in signaling. The three-dimensional structure, expression pattern and evolutionary aspects will also be considered.  相似文献   

8.
Kinases, representing almost 500 proteins in the human genome, are responsible for catalyzing the phosphorylation reaction of amino acid residues at their targets. As the largest family of kinases, the protein tyrosine kinases (PTKs) have roles in controlling the essential cellular activities, and their deregulation is generally related to pathologic conditions. The recent efforts on identifying their signal transducer or mediator role in cellular signaling revealed the interaction of PTKs with numerous enzymes of different classes, such as Ser/Thr kinases (STKs), glutathione transferases (GSTs), and receptor tyrosine kinases (RTKs). In either regulation or enhancing the signaling, PTKs are determined in close interaction with these enzymes, under specific cellular conditions, such as oxidative stress and inflammation. In this concept, intensive research on thiol metabolizing enzymes recently showed their involvement in the physiologic functions in cellular signaling besides their well known traditional role in antioxidant defense. The shared signaling components between PTK and GST family enzymes will be discussed in depth in this research review to evaluate the results of recent studies important in drug targeting for therapeutic intervention, such as cell viability, migration, differentiation and proliferation.  相似文献   

9.
The TEC family is ancient and constitutes the second largest family of cytoplasmic tyrosine kinases. In 1993, loss-of-function mutations in the BTK gene were reported as the cause of X-linked agammaglobulinemia. Of all the existing 90 tyrosine kinases in humans, Bruton's tyrosine kinase (BTK) is the kinase for which most mutations have been identified. These experiments of nature collectively provide a form of mutation scanning with direct implications for the several hundred endogenous signaling proteins carrying domains also found in BTK. In 2009, an inactivating mutation in the ITK gene was shown to cause susceptibility to lethal Epstein-Barr virus infection. Both kinases represent interesting targets for inhibition: in the case of BTK, as an immunosuppressant, whereas there is evidence that the inhibition of inducible T-cell kinase (ITK) could influence the infectivity of HIV and also have anti-inflammatory activity. Since 2006, several patients carrying a fusion protein, originating from a translocation joining genes encoding the kinases ITK and spleen tyrosine kinase (SYK), have been shown to develop T-cell lymphoma. We review these disease processes and also describe the role of the N-terminal pleckstrin homology-Tec homology (PH-TH) domain doublet of BTK and ITK in the downstream intracellular signaling of such fusion proteins.  相似文献   

10.
Signaling by the Epidermal Growth Factor Receptor (EGFR) and related ErbB family receptor tyrosine kinases can be deregulated in human malignancies as the result of mutations in the genes that encode these receptors. The recent identification of EGFR mutations that correlate with sensitivity and resistance to EGFR tyrosine kinase inhibitors in lung and colon tumors has renewed interest in such activating mutations. Here we review current models for ligand stimulation of receptor dimerization and for activation of receptor signaling by receptor dimerization. In the context of these models, we discuss ErbB receptor mutations that affect ligand binding and those that cause constitutive receptor phosphorylation and signaling as a result of constitutive receptor dimerization. We discuss mutations in the cytoplasmic regions that affect enzymatic activity, substrate specificity and coupling to effectors and downstream signaling pathways. Finally, we discuss how emergent mechanisms of ErbB receptor mutational activation could impact the search for clinically relevant ErbB receptor mutations.  相似文献   

11.
Tyrosyl phosphorylation participates in various pathological and physiological processes, which are regulated by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). The Src homology- 2 domain containing phosphatase SHP2 (encoded by PTPN11) is an important phosphatase, which was found to be implicated in the regulation of genetic disease, development, metabolic, neurological, muscle, skeletal disease and cancer. Germline mutations in PTPN11 cause the Noonan Syndrome, LEOPARD syndrome and metachondromatosis. Somatic PTPN11 mutations occur in hematologic malignancies and in solid tumors. SHP2 is also an important component in oncogenic signaling pathways. It may play different roles in different stages and positions of human cancers. Whether SHP2 is an oncogene or cancer suppressor gene remains to be elucidated. Elucidation of the regulatory mechanisms of SHP2 in human disease will provide new insights into disease and new targets for therapy. Here, we summarized the structural basis and recent research progression on SHP2 in various human disease, including genetic and cancer diseases.  相似文献   

12.
Epidermal growth factor receptor (EGFR) and its family members, ErbB2, ErbB3 and ErbB4, are receptor tyrosine kinases which send signals into the cell to regulate many critical processes including development, tissue homeostasis, and tumorigenesis. Central to the signaling of these receptors is their intracellular kinase domain, which is activated by ligand-induced dimerization of the receptor and phosphorylates several tyrosine residues in the C-terminal tail. The phosphorylated tail then recruits other signaling molecules and relays the signal to downstream pathways. A model of the autoinhibition, activation and feedback inhibition mechanisms for the ErbB kinase domain has emerged from a number of recent structural studies. Meanwhile, recent clinical studies have revealed the relationship between specific ErbB kinase mutations and the responsiveness to kinase inhibitor drugs. We will review these regulation mechanisms of the ErbB kinase domain, and discuss the binding specificity of kinase inhibitors and the effects of kinase domain mutations found in cancer patients from a structural perspective.  相似文献   

13.
The ErbB family of receptor tyrosine kinases (RTKs) is a family of receptors that allow cells to interact with the extracellular environment and transduce signals to the nucleus that promote differentiation, migration and proliferation necessary for proper heart morphogenesis and function. This review focuses on the role of the ErbB family of receptor tyrosine kinases, and their importance in proper heart morphogenesis, as well as their role in maintenance and function of the adult heart. Studies from transgenic mouse models have shown the importance of ErbB receptors in heart development, and provide insight into potential future therapeutic targets to help reduce congenital heart defect (CHD) mortality rates and prevent disease in adults. Cancer therapeutics have also shed light to the ErbB receptors and signaling network, as undesired side effects have demonstrated their importance in adult cardiomyocytes and prevention of cardiomyopathies. This review will discuss ErbB receptor tyrosine kinases (RTK) in heart development and disease including valve formation and partitioning of a four-chambered heart as well as cardiotoxicity when ErbB signaling is attenuated in adults.  相似文献   

14.
Protein kinases orchestrate the activation of signaling cascades in response to extracellular and intracellular stimuli to control cell growth, proliferation, and survival. The complexity of numerous intracellular signaling pathways is highlighted by the number of kinases encoded by the human genome (539) and the plethora of phosphorylation sites identified in phosphoproteomic studies. Perturbation of these signaling networks by mutations or abnormal protein expression underlies the cause of many diseases including cancer. Recent RNAi screens and cancer genomic sequencing studies have revealed that many more kinases than anticipated contribute to tumorigenesis and are potential targets for inhibitor drug development intervention. This review will highlight recent insights into known pathways essential for tumorigenesis and discuss exciting new pathways for therapeutic intervention.  相似文献   

15.
The mitochondrial oxidative phosphorylation (OxPhos) system plays a key role in energy production, the generation of free radicals, and apoptosis. A lack of cellular energy, excessive radical production, and dysregulated apoptosis are found alone or in combination in most human diseases, including neurodegenerative diseases, stroke, cardiovascular disorders, ischemia/reperfusion, and cancer. In the context of its relevance to human disease, this article reviews current knowledge about the regulation of OxPhos with a focus on cell signaling and discusses identified phosphorylation sites with the aid of crystal structures of OxPhos complexes. Several recent studies have shown that all OxPhos components can be phosphorylated; even the small electron carrier cytochrome c is tyrosine phosphorylated in vivo. We propose that in higher organisms, in contrast to bacteria, cell signaling pathways are the main regulator of energy production, triggered for example by hormones. Pathways that have been identified to act on OxPhos include protein kinases A and C and growth factor activated receptor tyrosine kinase signaling. Present knowledge about kinases and phosphatases that execute signals at the level of the mitochondrial OxPhos system, and newly emerging concepts, such as the translocation of kinases to the mitochondria upon stimulation of a signaling pathway, are discussed.  相似文献   

16.
17.
Precision oncology is premised on identifying and drugging proteins and pathways that drive tumorigenesis or are required for survival of tumor cells. Across diverse cancer types, the signaling pathway emanating from receptor tyrosine kinases on the cell surface to RAS and the MAP kinase pathway is the most frequent target of oncogenic mutations, and key proteins in this signaling axis including EGFR, SHP2, RAS, BRAF, and MEK have long been a focus in cancer drug discovery. In this review, we provide an overview of historical and recent efforts to develop inhibitors targeting these nodes with an emphasis on the role that an understanding of protein structure and regulation has played in inhibitor discovery and characterization. Beyond its well‐established role in structure‐based drug design, structural biology has revealed mechanisms of allosteric regulation, distinct effects of activating oncogenic mutations, and other vulnerabilities that have opened new avenues in precision cancer drug discovery.  相似文献   

18.
19.
Tyrosine kinases are one of the most important regulators for intracellular signal transduction related to inflammatory responses. However, there are no reports describing the effects of tyrosine kinases on neutrophil apoptosis induced by Entamoeba histolytica. In this study, isolated human neutrophils from peripheral blood were incubated with live trophozoites in the presence or absence of tyrosine kinase inhibitors. Entamoeba-induced receptor shedding of CD16 and PS externalization in neutrophils were inhibited by pre-incubation of neutrophils with the broad-spectrum tyrosine kinase inhibitor genistein or the Src family kinase inhibitor PP2. Entamoeba-induced ROS production was also inhibited by genistein or PP2. Moreover, genistein and PP2 blocked the phosphorylation of ERK and p38 MAPK in neutrophils induced by E. histolytica. These results suggest that Src tyrosine kinases may participate in the signaling event for ROS-dependent activation of MAPKs during neutrophil apoptosis induced by E. histolytica.  相似文献   

20.
Members of the ErbB family of receptor tyrosine kinases are capable of both homointeractions and heterointeractions. Because each receptor has a unique set of binding sites for downstream signaling partners and differential catalytic activity, subtle shifts in their combinatorial interplay may have a large effect on signaling outcomes. The overexpression and mutation of ErbB family members are common in numerous human cancers and shift the balance of activation within the signaling network. Here we report the development of a spatial stochastic model that addresses the dynamics of ErbB3 homodimerization and heterodimerization with ErbB2. The model is based on experimental measures for diffusion, dimer off-rates, kinase activity, and dephosphorylation. We also report computational analysis of ErbB3 mutations, generating the prediction that activating mutations in the intracellular and extracellular domains may be subdivided into classes with distinct underlying mechanisms. We show experimental evidence for an ErbB3 gain-of-function point mutation located in the C-lobe asymmetric dimerization interface, which shows enhanced phosphorylation at low ligand dose associated with increased kinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号