首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma growth hormone (GH) measured by immunoassay [immunoassayable GH (IGH)] and by tibial bioassay [bioassayable GH (BGH)] increases in humans in response to exercise. In rats, however, IGH does not change in response to exercise. The objective of this study was to determine the BGH response to an acute exercise bout in rats. The rats ran on a treadmill at a rate of 27 m/min for 15 min, after which plasma and pituitary hormones, including IGH and BGH, and plasma metabolites were measured. Plasma and pituitary IGH were unchanged from control groups after the acute exercise bout, whereas plasma BGH was increased by 300% and pituitary BGH was decreased by 50%. Plasma thyroxine and corticosterone levels were significantly increased after a single exercise bout, but plasma testosterone, 3,5, 3'-triiodothyronine, glucose, lactate, and triglyceride concentrations were unchanged. Given previous results from in situ nerve stimulation studies (Gosselink KL, Grindeland RE, Roy RR, Zhong H, Bigbee AJ, Grossman EJ, and Edgerton VR. J Appl Physiol 84: 1425-1430, 1998), these in vivo results are consistent with the rapid BGH response during exercise being induced by the activation of muscle afferents.  相似文献   

2.
We have reported that bed rest suppressed the release of bioassayable growth hormone (BGH) that normally occurs after an acute bout of unilateral plantar flexor exercise (G. E. McCall, C. Goulet, R. E. Grindeland, J. A. Hodgson, A. J. Bigbee, and V. R. Edgerton. J. Appl. Physiol. 83: 2086-2090, 1997). In the present study, the effects of spaceflight on the hormonal responses to this exercise protocol were examined. Four male astronauts on the National Aeronautics and Space Administration Shuttle Transport System (STS-78) mission completed the exercise protocol before, during, and after a 17-day spaceflight. The maximal voluntary contraction torque output at the onset of exercise was similar on all test days. Before spaceflight, plasma BGH increased 114-168% from pre- to postexercise. During spaceflight and after 2 days recovery at normal gravity (1 G), the BGH response to exercise was absent. After 4 days of recovery, this response was restored. Plasma concentrations of immunoassayable growth hormone were similar at all time points. The preexercise plasma immunoassayable insulin-like growth factor I (IGF-I) levels were elevated after 12 or 13 days of microgravity, and a approximately 7% postexercise IGF-I increase was independent of this spaceflight effect. The suppression of the BGH response to exercise during spaceflight indicates that some minimum level of chronic neuromuscular activity and/or loading is necessary to maintain a normal exercise-induced BGH release. Moreover, these results suggest that there is a muscle afferent-pituitary axis that can modulate BGH release.  相似文献   

3.
Grossman, Elena J., Richard E. Grindeland, Roland R. Roy,Robert J. Talmadge, Juliann Evans, and V. Reggie Edgerton. Growth hormone, IGF-I, and exercise effects on non-weight-bearing fast musclesof hypophysectomized rats. J. Appl.Physiol. 83(5): 1522-1530, 1997.The effects ofgrowth hormone (GH) or insulin-like growth factor I (IGF-I) with orwithout exercise (ladder climbing) in countering the effects ofunweighting on fast muscles of hypophysectomized rats during 10 days ofhindlimb suspension were determined. Compared with untreated suspendedrats, muscle weights were 16-29% larger in GH-treated and5-15% larger in IGF-I-treated suspended rats. Exercise alone hadno effect on muscle weights. Compared with ambulatory control, themedial gastrocnemius weight in suspended, exercised rats was largerafter GH treatment and maintained with IGF-I treatment. The combinationof GH or IGF-I plus exercise in suspended rats resulted in an increasein the size of each predominant fiber type, i.e., types I, I+IIa andIIa+IIx, in the medial gastrocnemius compared with untreated suspendedrats. Normal ambulation or exercise during suspension increased theproportion of fibers expressing embryonic myosin heavy chain inhypophysectomized rats. The phenotype of the medial gastrocnemius wasminimally affected by GH, IGF-I, and/or exercise. These resultsshow that there is an IGF-I, as well as a GH, and exercise interactiveeffect in maintaining medial gastrocnemius fiber size in suspendedhypophysectomized rats.

  相似文献   

4.
During human running, short latency stretch reflexes (SLRs) are elicited in the triceps surae muscles, but the function of these responses is still a matter of controversy. As the SLR is primarily mediated by Ia afferent nerve fibres, various methods have been used to examine SLR function by selectively blocking the Ia pathway in seated, standing and walking paradigms, but stretch reflex function has not been examined in detail during running. The purpose of this study was to examine triceps surae SLR function at different running speeds using Achilles tendon vibration to modify SLR size. Ten healthy participants ran on an instrumented treadmill at speeds between 7 and 15 km/h under 2 Achilles tendon vibration conditions: no vibration and 90 Hz vibration. Surface EMG from the triceps surae and tibialis anterior muscles, and 3D lower limb kinematics and ground reaction forces were simultaneously collected. In response to vibration, the SLR was depressed in the triceps surae muscles at all speeds. This coincided with short-lasting yielding at the ankle joint at speeds between 7 and 12 km/h, suggesting that the SLR contributes to muscle stiffness regulation by minimising ankle yielding during the early contact phase of running. Furthermore, at the fastest speed of 15 km/h, the SLR was still depressed by vibration in all muscles but yielding was no longer evident. This finding suggests that the SLR has greater functional importance at slow to intermediate running speeds than at faster speeds.  相似文献   

5.
Allen, David L., Jon K. Linderman, Roland R. Roy, Richard E. Grindeland, Venkat Mukku, and V. Reggie Edgerton. Growth hormone/IGF-I and/or resistive exercise maintains myonuclearnumber in hindlimb unweighted muscles. J. Appl.Physiol. 83(5): 1857-1861, 1997.In the presentstudy of rats, we examined the role, during 2 wk ofhindlimb suspension, of growth hormone/insulin-like growth factor I(GH/IGF-I) administration and/or brief bouts of resistance exercise in ameliorating the loss of myonuclei in fibers of the soleusmuscle that express type I myosin heavy chain. Hindlimb suspensionresulted in a significant decrease in mean soleus wet weight that wasattenuated either by exercise alone or by exercise plus GH/IGF-Itreatment but was not attenuated by hormonal treatment alone. Both meanmyonuclear number and mean fiber cross-sectional area (CSA) of fibersexpressing type I myosin heavy chain decreased after 2 wk of suspensioncompared with control (134 vs. 162 myonuclei/mm and 917 vs. 2,076 µm2, respectively). NeitherGH/IGF-I treatment nor exercise alone affected myonuclear number orfiber CSA, but the combination of exercise and growth-factor treatmentattenuated the decrease in both variables. A significant correlationwas found between mean myonuclear number and mean CSA across allgroups. Thus GH/IGF-I administration and brief bouts of muscle loadinghad an interactive effect in attenuating the loss of myonuclei inducedby chronic unloading.

  相似文献   

6.
The release of a bioassayable form of growth hormone (BGH), distinct from growth hormone as measured by immunoassay (IGH), from the rat pituitary into the blood is differentially regulated by afferent input from fast and slow skeletal muscles. Specifically, activation of low-threshold fast muscle afferents for 15 min increased plasma BGH by 217 and 295% and decreased pituitary BGH by 68 and 45% in male and female rats, respectively. In contrast, activation of slow muscle afferents inhibited BGH release, decreasing plasma BGH by approximately 60% and increasing pituitary BGH by 30-50% in male rats. Female rats from which food had been withheld for approximately 12 h had elevated basal plasma BGH levels, which then were decreased by 81% after slow muscle nerve stimulation. Plasma IGH concentrations were unchanged after any nerve stimulation condition. These results demonstrate that regulation of BGH release can be differentially mediated through low-threshold afferent inputs from fast or slow skeletal muscle. Furthermore, the results indicate that BGH responses are independent of gender or feeding status.  相似文献   

7.
Immunoassayable and bioassayable growth hormone responses to vibration-induced activation of muscle spindle afferents of the soleus (Sol) or tibialis anterior (TA) muscles were studied in 10 men. Subjects were supine while a 10-min vibration stimulus (100 Hz; 1.5-mm amplitude) was applied to the muscle, with each of the muscles tested on separate days. Blood samples were collected before, during, immediately after, and after 5 and 10 min of vibration. Plasma growth hormone concentrations were determined by radioimmunoassay (IGH) for all sampling periods and by bioassay (BGH; measurement of tibial epiphysial cartilage growth in hypophysectomized rats) for samples obtained before and immediately after vibration. Plasma IGH concentrations were similar at all time points during the Sol or TA experiments. After 10 min of muscle vibration, mean plasma BGH was elevated 94% [1,216 +/- 148 (SD) to 2, 362 +/- 487 microg/l; P = 0.0001] for TA and decreased 22% (1,358 +/- 155 to 1,058 +/- 311 microg/l; P = 0.09) for Sol. These data demonstrate that activation of TA muscle spindle afferents increases circulating BGH but not IGH. The absence of a similar vibration-induced BGH response for the Sol indicates a differential regulation of BGH release by these two predominantly slow muscles, perhaps related to their respective flexor and extensor functions. These data indicate that a muscle afferent-pituitary axis modulates the release of BGH, but not IGH, from the pituitary in humans and that this axis is muscle specific, similar to that observed in rats.  相似文献   

8.
Optimal vibration stimulation to the neck extensor muscles using hydraulic vibrators to shorten the saccadic reaction time was examined. Subjects were 14 healthy young adults. Visual targets (LEDs) were located 10 degrees left and right of a central point. The targets were alternately lit for random durations of 2-4 seconds in a resting neck condition and various vibration conditions, and saccadic reaction times were measured. Vibration amplitude was 0.5 mm in every condition. The upper trapezius muscles were vibrated at 40, 60, 80, and 100 Hz in a sub-maximum stretch condition in which the muscles were stretched at 70% of maximum stretch. In addition, the muscles were vibrated at 60 Hz with the muscles maximally stretched, with 70% vertical pressure without stretching, and with vibration applied to the skin in the same area as the muscle vibration. At 60, 80, and 100 Hz at 70% maximum stretch, saccadic reaction time shortened significantly compared with the resting neck condition. However, no significant difference in the reaction time was observed among the frequencies. The saccadic reaction times in the maximum stretch condition, muscle pressure condition, and skin contact condition did not differ significantly from that in the resting neck condition. Vibration stimulation to the trapezius with 60-100 Hz frequencies at 0.5 mm amplitude in the sub-maximum stretch condition was effective for shortening saccadic reaction time. The main mechanism appears to be Ia information originating from the muscle spindle.  相似文献   

9.
Whole body vibration (WBV) has been extensively studied as an anabolic stimulus for bone and muscle. Therapeutic WBV delivers low magnitude, high frequency vibrations to tissues, eliciting biological and structural responses. This study investigated the effect of 0.3G (Peak-to-Peak), 30Hz sinusoidal vibration on intact flexor carpi ulnaris tendons in rats. Experimental rats were subjected to twenty minutes of WBV daily for five days a week for a total of five weeks. The tendon cross-sectional area and the structural properties of the muscle-tendon-bone unit under tensile loading to failure were evaluated. Initial body weights were similar between the groups and the mean change in body weight of the animals of each group did not differ. The cross-sectional area of the tendons of the vibrated animals was found to be 32% greater (P<0.05) than the controls and the structural stiffness of the vibrated tendons was found to be 41% greater (P<0.05) than the controls. For specimens that failed in the midsubstance of the tendon, a trend (P=0.087) for increased ultimate load was observed in the vibrated tendons compared to the controls. No differences in material properties were observed except for the strain to ultimate load, which was reduced 22% in the vibrated group. These initial findings suggest that vibration may serve as an anabolic stimulus to tendon similar to its effects on bone and muscle. These findings are important as they open the potential that low magnitude, high frequency vibration might serve as a means to accelerate tendon healing.  相似文献   

10.
McCall, G. E., C. Goulet, R. E. Grindeland, J. A. Hodgson,A. J. Bigbee, and V. R. Edgerton. Bed rest suppresses bioassayable growth hormone release in response to muscle activity.J. Appl. Physiol. 83(6):2086-2090, 1997.Hormonal responses to muscle activity werestudied in eight men before (13 or 12 and 8 or 7 days), during (2 or 3, 8 or 9, and 13 or 14 days) and after (+2 or +3 and +10 or +11 days) 17 days of bed rest. Muscle activity consisted of a series of unilateral isometric plantar flexions, including 4 maximal voluntary contractions (MVCs), 48 contractions at30% MVC, and 12 contractions at 80% MVC, all performed at a 4:1-swork-to-rest ratio. Blood was collected before and immediately aftermuscle activity to measure plasma growth hormone by radioimmunoassay (IGH) and by bioassay (BGH) of tibia epiphyseal cartilage growth inhypophysectomized rats. Plasma IGH was unchanged by muscle activitybefore, during, or after bed rest. Before bed rest, muscle activityincreased (P < 0.05) BGH by 66% at13 or 12 days (2,146 ± 192 to 3,565 ± 197 µg/l)and by 92% at 8 or 7 days (2,162 ± 159 to 4,161 ± 204 µg/l). After 2 or 3 days of bed rest, there was no responseof BGH to the muscle activity, a pattern that persisted through 8 or 9 days of bed rest. However, after 13 or 14 days of bed rest, plasmaconcentration of BGH was significantly lower after than before muscleactivity (2,594 ± 211 to 2,085 ± 109 µg/l). After completionof bed rest, muscle activity increased BGH by 31% at 2 or 3 days(1,807 ± 117 to 2,379 ± 473 µg/l;P < 0.05), and by 10 or 11 days theBGH response was similar to that before bed rest (1,881 ± 75 to4,160 ± 315 µg/l; P < 0.05). These data demonstrate that the ambulatory state of an individual canhave a major impact on the release of BGH, but not IGH, in response toa single bout of muscle activity.

  相似文献   

11.
PurposeMany potential countermeasures for muscle and bone loss caused by exposure to microgravity require an uncompromised stretch reflex system. This is especially true for whole body vibration (WBV), as the main source of the neuromuscular activity during WBV has been attributed to stretch reflexes. A priori, it cannot be assumed that reflexes and Ia afferent transmission in particular have the same characteristics in microgravity as in normal gravity (NG). Therefore, the purpose of the study was to compare Ia afferent transmission in microgravity and NG and to assess how microgravity affects muscle activity during WBV.MethodsIn 14 participants, electromyographic activity of four leg muscles as well as Hoffmann-reflexes were recorded during NG and microgravity induced by parabolic flights.ResultsThe size of the Hoffmann-reflex was reduced during WBV, but did not differ during acute exposure to microgravity compared to NG. The influence of the gravity conditions on the electromyographic activity did not change depending on the vibration condition.ConclusionsAs far as the electromyographic activity of the recorded leg muscles is concerned, the effect of WBV is the same in microgravity as in NG. Moreover, Ia afferent transmission does not seem to be affected by acute exposure to microgravity when subjects are loaded with body weight and postural sway is minimized.  相似文献   

12.
It has been suggested that a suppression of maximal voluntary contraction (MVC) induced by prolonged vibration is due to an attenuation of Ia afferent activity. The purpose of the present study was to test the hypothesis that aftereffects following prolonged vibration on muscle activity during MVC differ among plantar flexor synergists owing to a supposed difference in muscle fiber composition. The plantar flexion MVC torque and surface electromyogram (EMG) of the medial head of gastrocnemius (MG), the lateral head of gastrocnemius (LG), and the soleus (Sol) were recorded in 13 subjects before and after prolonged vibration applied to the Achilles tendon at 100 Hz for 30 min. The maximal H reflexes and M waves were also determined from the three muscles, and the ratio between H reflexes and M waves (H/Mmax) was calculated before and after the vibration. The MVC torque was decreased by 16.6 +/- 3.7% after the vibration (P < 0.05; ANOVA). The H/Mmax also decreased for all three muscles, indicating that Ia afferent activity was successfully attenuated by the vibration in all plantar flexors. However, a reduction of EMG during MVC was observed only in MG (12.7 +/- 4.0%) and LG (11.4 +/- 3.9%) (P < 0.05; ANOVA), not in Sol (3.4 +/- 3.0%). These results demonstrated that prolonged vibration-induced MVC suppression was attributable mainly to the reduction of muscle activity in MG and LG, both of which have a larger proportion of fast-twitch muscle fibers than Sol. This finding suggests that Ia-afferent activity that reinforces the recruitment of high-threshold motor units is necessary to enhance force exertion during MVC.  相似文献   

13.
The discharge rate of muscle spindle afferents normally provides a precise signal of muscle length. Vibration of a muscle or its tendon induces an increase in afferent discharge which then no longer represents true muscle length; however, this increased proprioceptive input is interpreted in the central nervous system as a lengthening of the muscle. The incremented signal gives rise to illusions of displacement, or movement, of a fixed, vibrated limb. A visual target attached to such a vibrated limb also appears to move. We now report that vibration of the neck muscles influences visual localisation by inducing illusory movement of targets in visual space. Subjects were seated in a totally dark room and viewed a light-emitting diode (LED). The LED was placed at eye level approximately in the body midline at a distance of 70 cm. They held a physiotherapy vibrator in the left hand with its tip against the left side of the neck. When vibration was initiated the LED appeared to move rightward. The position of the tip of the vibrator was adjusted to produce the maximum apparent displacement to the right. In some subjects the illusion had a vertical component. Subjects maintained the vibrator in position and described the illusion when vibration began, during vibration and at its end. They reported that, initially, the target moved to the right but this displacement ceased after a second or two. The target then appeared to continue in motion without changing its position. When vibration ended the target returned to its initial position.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Locomotion of mammals, including humans, is based on the rhythmic activity of spinal cord circuitries. The functioning of these circuitries depends on multimodal afferent information and on supraspinal influences from the motor cortex. Using the method of transcranial magnetic stimulation (TMS) of arm muscle areas in the motor cortex, we studied the motor evoked potentials (MEP) in the upper arm muscles in stationary conditions and during voluntary and vibration-evoked arm movements. The study included 13 healthy subjects under arm and leg unloading conditions. In the first series of experiments, with motionless limbs, the effect of vibration of left upper arm muscles on motor responses in these muscles was evaluated. In the second series of experiments, MEP were compared in the same muscles during voluntary and rhythmic movements generated by left arm m. triceps brachii vibration (the right arm was stationary). Motionless left arm vibration led to an increase in MEP values in both vibrated muscle and in most of the non-vibrated muscles. For most target muscles, MEP was greater with voluntary arm movements than with vibration-evoked movements. At the same time, a similar MEP modulation in the cycle of arm movements was observed in the same upper arm muscles during both types of arm movements. TMS of the motor cortex significantly potentiated arm movements generated by vibration, but its effect on voluntary movements was weaker. These results indicate significant differences in the degree of motor cortex involvement in voluntary and evoked arm movements. We suppose that evoked arm movements are largely due to spinal rather than central mechanisms of generation of rhythmic movements.  相似文献   

15.
Neural controlling mechanisms between the digastric (jaw-opening) and masseter (jaw-closing) muscles were studied in the cat. High threshold afferent impulses from the anterior belly of the digastric muscle to masseteric montoneurons in the trigeminal motor nucleus induced an EPSP-IPSP sequence of potentials with long latency, and high threshold afferent impulses from the masseter muscle also exerted a similar effect on digastric motoneurons in the same nucleus innervating the anterior belly of the digastric muscle. These results suggest that reciprocal inhibition via Ia interneurons as observed between the flexor and extensor muscles in the spinal cord does not exist between the digastric and masseter muscles in the cat. However, the respective motoneurons innervating the masseter and digastric muscles receive inputs of early excitation-late inhibition via high threshold afferent nerve fibers from each antagonistic muscle. As such, since EPSPs preceding IPSPs are recognized, these high threshold afferent impulses may exert not only a reciprocal inhibitory effect, but also a synchronous excitatory or inhibitory effect on the antagonistic motoneurons.  相似文献   

16.
Reflex cardiovascular responses to muscle contraction are mediated by mechanical and metabolic stimulation of thin muscle afferent fibers. Metabolic stimulants and receptors involved in responses are uncertain. Capsaicin depolarizes thin sensory afferent nerves that have vanilloid type 1 receptors (VR1). Among potential endogenous ligands of thin fibers, H+ has been suggested as a metabolite mediating the reflex muscle response as well as a potential stimulant of VR1. It has also been suggested that acid-sensing ion channels (ASIC) mediate H+, evoking afferent nerve excitation. We have examined the roles of VR1 and ASIC in mediating cardiovascular reflex responses to acid stimulation of muscle afferents in a rat model. In anesthetized rats, injections of capsaicin into the arterial blood supply of triceps surae muscles evoked a biphasic response (n = 6). An initial fall in mean arterial pressure (from baseline of 95.8 +/- 9.5 to 70.4 +/- 4.5 mmHg, P < 0.05 vs. baseline) was followed by an increase (to 131.6 +/- 11.3 mmHg, P < 0.05 vs. baseline). Anandamide (an endogenous substance that activates VR1) induced the same change in blood pressure as did capsaicin. The pressor (but not depressor) component of the response was blocked by capsazepine (a VR1 antagonist) and section of afferent nerves. In decerebrate rats (n = 8), H+ evoked a pressor response that was not blocked by capsazepine but was attenuated by amiloride (an ASIC blocker). In rats (n = 12) pretreated with resiniferatoxin to destroy muscle afferents containing VR1, capsaicin and H+ responses were blunted. We conclude that H+ stimulates ASIC, evoking the reflex response, and that ASIC are likely to be frequently found on afferents containing VR1. The data also suggest that VR1 and ASIC may play a role in processing of muscle afferent signals, evoking the muscle pressor reflex.  相似文献   

17.
Talmadge, Robert J., Roland R. Roy, and V. Reggie Edgerton.Distribution of myosin heavy chain isoforms in non-weight-bearing rat soleus muscle fibers. J. Appl.Physiol. 81(6): 2540-2546, 1996.The effects of14 days of spaceflight (SF) or hindlimb suspension (HS) (Cosmos 2044)on myosin heavy chain (MHC) isoform content of the rat soleus muscleand single muscle fibers were determined. On the basis ofelectrophoretic analyses, there was a de novo synthesis of type IIx MHCbut no change in either type I or IIa MHC isoform proportions aftereither SF or HS compared with controls. The percentage of fiberscontaining only type I MHC decreased by 26 and 23%, and the percentageof fibers with multiple MHCs increased from 6% in controls to 32% inHS and 34% in SF rats. Type IIx MHC was always found in combinationwith another MHC or combination of MHCs; i.e., no fibers contained typeIIx MHC exclusively. These data suggest that the expression of thenormal complement of MHC isoforms in the adult rat soleus muscle isdependent, in part, on normal weight bearing and that the absence ofweight bearing induces a shift toward type IIx MHC protein expression in the preexisting type I and IIa fibers of the soleus.

  相似文献   

18.
This paper describes a finite element scheme for realistic muscle-driven simulation of human foot movements. The scheme is used to simulate human ankle plantar flexion. A three-dimensional anatomically detailed finite element model of human foot and lower leg is developed and the idea of generating natural foot movement based entirely on the contraction of the plantar flexor muscles is used. The bones, ligaments, articular cartilage, muscles, tendons, as well as the rest soft tissues of human foot and lower leg are included in the model. A realistic three-dimensional continuum constitutive model that describes the biomechanical behaviour of muscles and tendons is used. Both the active and passive properties of muscle tissue are accounted for. The materials for bones and ligaments are considered as homogeneous, isotropic and linearly elastic, whereas the articular cartilage and the rest soft tissues (mainly fat) are defined as hyperelastic materials. The model is used to estimate muscle tissue deformations as well as stresses and strains that develop in the lower leg muscles during plantar flexion of the ankle. Stresses and strains that develop in Achilles tendon during such a movement are also investigated.  相似文献   

19.
This paper describes a finite element scheme for realistic muscle-driven simulation of human foot movements. The scheme is used to simulate human ankle plantar flexion. A three-dimensional anatomically detailed finite element model of human foot and lower leg is developed and the idea of generating natural foot movement based entirely on the contraction of the plantar flexor muscles is used. The bones, ligaments, articular cartilage, muscles, tendons, as well as the rest soft tissues of human foot and lower leg are included in the model. A realistic three-dimensional continuum constitutive model that describes the biomechanical behaviour of muscles and tendons is used. Both the active and passive properties of muscle tissue are accounted for. The materials for bones and ligaments are considered as homogeneous, isotropic and linearly elastic, whereas the articular cartilage and the rest soft tissues (mainly fat) are defined as hyperelastic materials. The model is used to estimate muscle tissue deformations as well as stresses and strains that develop in the lower leg muscles during plantar flexion of the ankle. Stresses and strains that develop in Achilles tendon during such a movement are also investigated.  相似文献   

20.
Muscle sensory neurons, called Ia afferents, make monosynaptic connections with functionally related sets of motoneurons in the spinal cord. Previous work has suggested that peripheral target muscles play a major role in determining the central connections of Ia afferents with motoneurons. Here, we ask whether motoneurons can also be influenced by their target muscles in terms of the monosynaptic input they receive from Ia afferents, by transplanting thoracic motoneurons into the lumbosacral spinal cord so that they innervate foreign muscles. Three or four segments of thoracic neural tube from stage 14-15 chicken embryos were transplanted to the lumbosacral region of stage 16-17 embryos, and electrophysiological recordings were made from transplanted motoneurons after the embryos had reached stage 38-40. Transplanted thoracic motoneurons innervated limb muscles and received monosynaptic inputs from Ia afferents. These connections were not random: Most of the connections were formed between Ia afferents and motoneurons projecting to the same muscle (homonymous connections). Few aberrant connections were found although the anatomical distribution of afferents in the transplant indicated that they had ample opportunity to contact inappropriate motoneurons. We conclude that although peripheral target cues are not sufficient to respecify an already committed motoneuron (turn a thoracic motoneuron into a lumbosacral motoneuron), they do provide sufficient information for Ia afferent input to be functionally correct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号