首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
B-lymphocyte development requires the basic helix-loop-helix proteins encoded by the E2A gene. In this study, the control mechanism of E2A was further explored by disruption of the E2A-related genes, E2-2 and HEB. In contrast to E2A, E2-2 and HEB are not essential for the establishment of the B-cell lineage. However, both E2-2 and HEB are required for the generation of the normal numbers of pro-B cells in mouse embryos. Breeding tests among mice carrying different mutations revealed that E2-2 and HEB interact with E2A in many developmental processes including generation of B cells. Specifically, mice transheterozygous for any two mutations of these three genes produced fewer pro-B cells than the singly heterozygous littermates. This study indicates that B-cell development is dependent not only on an essential function provided by the E2A gene but also on a combined dosage set by E2A, E2-2, and HEB.  相似文献   

6.
7.
Activating and inhibitory NK receptors regulate the development and effector functions of NK cells via their ITAM and ITIM motifs, which recruit protein tyrosine kinases and phosphatases, respectively. In the T cell lineage, inhibitory Ly49 receptors are expressed by a subset of activated T cells and by CD1d-restricted NKT cells, but virtually no expression of activating Ly49 receptors is observed. Using mice transgenic for the activating receptor Ly49D and its associated ITAM signaling DAP12 chain, we show in this article that Ly49D-mediated ITAM signaling in immature thymocytes impairs development due to a block in maturation from the double negative (DN) to double positive (DP) stages. A large proportion of Ly49D/DAP12 transgenic thymocytes were able to bypass the pre-TCR checkpoint at the DN3 stage, leading to the appearance of unusual populations of DN4 and DP cells that lacked expression of intracellular (ic) TCRβ-chain. High levels of CD5 were expressed on ic TCRβ(-) DN and DP thymocytes from Ly49D/DAP12 transgenic mice, further suggesting that Ly49D-mediated ITAM signaling mimics physiological ITAM signaling via the pre-TCR. We also observed unusual ic TCRβ(-) single positive thymocytes with an immature CD24(high) phenotype that were not found in the periphery. Importantly, thymocyte development was completely rescued by expression of an Ly49A transgene in Ly49D/DAP12 transgenic mice, indicating that Ly49A-mediated ITIM signaling can fully counteract ITAM signaling via Ly49D/DAP12. Collectively, our data indicate that inappropriate ITAM signaling by activating NK receptors on immature thymocytes can subvert T cell development by bypassing the pre-TCR checkpoint.  相似文献   

8.
9.
10.
11.
12.
H J Brady  G Gil-Gmez  J Kirberg    A J Berns 《The EMBO journal》1996,15(24):6991-7001
Bax alpha can heterodimerize with Bcl-2 and Bcl-X(L), countering their effects, as well as promoting apoptosis on overexpression. We show that bax alpha transgenic mice have greatly reduced numbers of mature T cells, which results from an impaired positive selection in the thymus. This perturbation in positive selection is accompanied by an increase in the number of cycling thymocytes. Further to this, mature T cells overexpressing Bax alpha have lower levels of p27Kip1 and enter S phase more rapidly in response to interleukin-2 stimulation than do control T cells, while the converse is true of bcl-2 transgenic T cells. These data indicate that apoptotic regulatory proteins can modulate the level of cell cycle-controlling proteins and thereby directly impact on the cell cycle.  相似文献   

13.
Allelic exclusion of immune receptor genes (and molecules) is incompletely understood. With regard to TCRalphabeta lineage T cells, exclusion at the tcr-b, but not tcr-a, locus seems to be strictly controlled at the locus rearrangement level. Consequently, while nearly all developing TCRalphabeta thymocytes express a single TCRbeta protein, many thymocytes rearrange and express two different TCRalpha chains and, thus, display two alphabetaTCRs on the cell surface. Of interest, the number of such dual TCR-expressing cells is appreciably lower among the mature T cells. To understand the details of TCR chain regulation at various stages of T cell development, we analyzed TCR expression in mice transgenic for two rearranged alphabetaTCR. We discovered that in such TCR double-transgenic (TCRdTg) mice peripheral T cells were functionally monospecific. Molecularly, this monospecificity was due to TCRalpha exclusion: one transgenic TCRalpha protein was selectively down-regulated from the thymocyte and T cell surface. In searching for the mechanism(s) governing this selective TCRalpha down-regulation, we present evidence for the role of protein tyrosine kinase signaling and coreceptor involvement. This mechanism may be operating in normal thymocytes.  相似文献   

14.
15.
16.
Immature myeloid and NK cells exist, and undergo cytokine-induced differentiation, in the periphery. In this study, we show that also immature CD2(-/low) T cells exist in peripheral blood. These cells produce the type 2 cytokines IL-13, IL-4, and IL-5, but not IFN-gamma or IL-10, and, upon culture with IL-12- and TCR-mediated stimuli, differentiate to IL-13(+)IFN-gamma(+) cells producing high IL-2 levels, and finally IL-13(-)IFN-gamma(+) cells. The monokine combination IL-12, IL-18, and IFN-alpha substitutes for TCR-mediated stimulation to induce the same differentiation process in both immature CD2(-/low) and primary mature CD2(+) IL-13(+) T cells. IFN-alpha is needed to maintain high level IL-2 production, which is confined to type 2 cytokine-producing cells and lost in the IFN-gamma(+) ones. Upon TCR-mediated stimulation, IFN-gamma(+) cells are then induced to produce IL-10 as they undergo apoptosis. These data indicate that peripheral type 2 cytokine(+) T cells are immature cells that can differentiate to effector IFN-gamma(+) cells following a linear monokine-regulated pathway identical with that previously described for NK cells. They define the cellular bases to support that cell-mediated immune responses are regulated not only via Ag-induced activation of mature effector cells, but also via bystander monokine-induced maturation of immature T cells.  相似文献   

17.
Norepinephrine has been suggested to play a neurotrophic role during development and is present in the brain as early as embryonic day (E) 12. We have recently demonstrated that the alpha2A adrenoceptor subtype is widely expressed during times of neuronal migration and differentiation throughout the developing brain. Here, we report the temporal and spatial expression pattern of alpha2A adrenoceptors in neocortex during late embryonic and early postnatal development using in situ hybridization and receptor autoradiography. Functional alpha2 receptors in embryonic rat cortex were also detected using agonist stimulated [35S]GTPgammaS autoradiography. Both alpha2A mRNA and protein expression were strongly increased by E19 and E20, respectively. The increased expression was in the cortical plate and intermediate and subventricular zones, corresponding to tiers of migrating and differentiating neurons. This transient up-regulation of alpha2A adrenoceptors was restricted to the lateral neocortex. At E20, functional alpha2 adrenoceptors were also detected in deep layers of lateral neocortex. During the first week of postnatal development, the expression of alpha2A mRNA and protein changed markedly, giving rise to a more mature pattern of anatomical distribution. The temporal and spatial distribution of alpha2A adrenoceptors in developing neocortex is consistent with expression of functional proteins on migrating and differentiating layer IV to II neurons. These findings suggest that alpha2A receptors may mediate a neurotrophic effect of norepinephrine during fetal cortical development. The early delineation of the lateral neocortex, which will develop into somatosensory and auditory cortices, suggests an intrinsic regulation of alpha2A mRNA expression.  相似文献   

18.
Expression of CD28 is highly regulated during thymic development, with CD28 levels extremely low on immature thymocytes but increasing dramatically as CD4- CD8- cells initiate expression of TCRbeta. B7-1 and B7-2, the ligands for CD28, have a restricted distribution in the thymic cortex where immature thymocytes reside and are more highly expressed in the medulla where the most mature thymocytes are located. To determine the importance of this regulated CD28/B7 expression for T cell development, we examined the effect of induced CD28 signaling of immature thymocytes in CD28/B7-2 double-transgenic mice. Strikingly, we found that differentiation to the CD4+ CD8+ stage in CD28/B7-2 transgenics proceeds independent of the requirement for TCRbeta expression manifest in wild-type thymocytes, occurring even in Rag- or CD3epsilon- knockouts. These findings indicate that signaling of immature thymocytes through CD28 in the absence of TCR- or pre-TCR-derived signals can promote an aberrant pathway of T cell differentiation and highlight the importance of finely regulated physiologic expression of CD28 and B7 in maintaining integrity of the "beta" checkpoint for pre-TCR/TCR-dependent thymic differentiation.  相似文献   

19.
During alphabeta T cell development, CD4(-)CD8(-) thymocytes first express pre-TCR (pTalpha/TCR-beta) before their differentiation to the CD4(+)CD8(+) stage. Positive selection of self-tolerant T cells is then determined by the alphabeta TCR expressed on CD4(+)CD8(+) thymocytes. Conceivably, an overlap in surface expression of these two receptors would interfere with the delicate balance of thymic selection. Therefore, a mechanism ensuring the sequential expression of pre-TCR and TCR must function during thymocyte development. In support of this notion, we demonstrate that expression of TCR-alpha by immature thymocytes terminates the surface expression of pre-TCR. Our results reveal that expression of TCR-alpha precludes the formation of pTalpha/TCR-beta dimers within the endoplasmic reticulum, leading to the displacement of pre-TCR from the cell surface. These findings illustrate a novel posttranslational mechanism for the regulation of pre-TCR expression, which may ensure that alphabeta TCR expression on thymocytes undergoing selection is not compromised by the expression of pre-TCR.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号