首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tropical root weevil, Diaprepes abbreviatus (L.), has been a pest of citrus and ornamental plants since its introduction into Lake County, FL, in 1964. Since then, it has colonized the Florida peninsula to the south of its point of introduction but has not expanded its range to the north. A lower threshold for oviposition by D. abbreviatus was estimated as 14.9 degrees C. Eggs were highly susceptible to cold, with 95% mortality (LTime95) occurring in 4.2 d at 12 degrees C. Relative susceptibility of life stages to cold was eggs > pupae > larvae > adults. Archived weather data from Florida were examined to guide a mapping exercise using the lower developmental threshold for larvae (12 degrees C) and the lower threshold for oviposition (15 degrees C) as critical temperatures for mapping the distribution of D. abbreviatus and the potential for establishment of egg parasitoids. Probability maps using the last 10 yr of weather data examined the frequency of at least 10, 15, 20, 25, or 30 d per winter when soil temperature was 相似文献   

2.
Environmental factors play an important role in the seasonal adaptation of body mass and thermogenesis in wild small mammals. In this study, we performed a factorial experiment (temperature x photoperiod) in which Brandt's voles and Mongolian gerbils were acclimated to different photoperiods (long photoperiod, 16L : 8D; short photoperiod, 8L : 16D) and temperatures (warm, 23 degrees C; cold, 5 degrees C) to test the hypothesis that photoperiod, temperature, or both together can trigger seasonal changes in serum leptin level, body mass, thermogenesis, and energy intake. Our data demonstrate that Brandt's voles showed a remarkable decrease in body mass in both the cold and a short photoperiod. However, no significant changes in body mass were found for gerbils exposed to similar conditions. The short photoperiod induced a decrease in serum leptin levels for both voles and gerbils that might contribute to an increase in energy intake. Furthermore, the short photoperiod induced an increase of uncoupling protein 1 (UCP1) content for both voles and gerbils, and cold can further enhance the increase in voles. No interactions between photoperiod and temperature were detected for the two species. Brandt's voles can decrease their body mass through changes in energy intake and expenditure, while Mongolian gerbils can keep body mass relatively stable by balancing energy metabolism under winterlike conditions. Leptin was potentially involved in the regulation of body mass and thermogenic capacity for the two species.  相似文献   

3.
In widespread species, northern taiga voles, most significant differences in the intensity of energy metabolism (M), maximum (Mmax) and reserve (Mres) metabolism were observed at winter temperatures (-5-20 degrees C): Clethrionomys rutilus greater than C. rufocanus greater than Microtus oeconomus; differences in seasonal increase of Mmax and Mres exhibit an inverse proportion. Seasonal changes in M and Mmax in autochthonous tundra rodents indicate that Lemmus sibiricus belongs to a more eurybiont species as compared to Dicrostonyx torquatus. The main characteristic feature of seasonal adaptation of M in lemmings, as compared to voles, is the evident decrease of M value in winter which is accompanied by a more significant increase of Mmax and Mres. Operative pattern and high seasonal mobility of chemical thermoregulation in lemmings are suggested which account for adaptation of these animals mainly to short-term extreme effects of low temperatures.  相似文献   

4.
Most duckling mortality occurs during the week following hatching and is often associated with cold, windy, wet weather and scattering of the brood. We estimated the thermoregulatory demands imposed by cold, windy weather on isolated 1-d-old mallard (Anas platyrhynchos) ducklings resting in cover. We measured O2 consumption and evaporative water loss at air temperatures from 5 degrees to 25 degrees C and wind speeds of 0.1, 0.2, 0.5, and 1.0 m/s. Metabolic heat production increased as wind increased or temperature decreased but was less sensitive to wind than that of either adult passerines or small mammals. Evaporative heat loss ranged from 5% to 17% of heat production. Evaporative heat loss and the ratio of evaporative heat loss to metabolic heat production was significantly lower in rest phase. These data were used to define a standard operative temperature (Tes) scale for night or heavy overcast conditions. An increase of wind speed from 0.1 to 1 m/s decreased Tes by 3 degrees -5 degrees C.  相似文献   

5.
To determine whether urban circumpolar residents show seasonal acclimatisation to cold, thermoregulatory responses and thermal perception during cold exposure were examined in young men during January-March (n=7) and August-September (n=8). Subjects were exposed for 24 h to 22 and to 10 degrees C. Rectal (T(rect)) and skin temperatures were measured throughout the exposure. Oxygen consumption (VO(2)), finger skin blood flow (Q(f)), shivering and cold (CDT) and warm detection thresholds (WDT) were assessed four times during the exposure. Ratings of thermal sensations, comfort and tolerance were recorded using subjective judgement scales at 1-h intervals. During winter, subjects had a significantly higher mean skin temperature at both 22 and 10 degrees C compared with summer. However, skin temperatures decreased more at 10 degrees C in winter and remained higher only in the trunk. Finger skin temperature was higher at 22 degrees C, but lower at 10 degrees C in the winter suggesting an enhanced cold-induced vasoconstriction. Similarly, Q(f) decreased more in winter. The cold detection threshold of the hand was shifted to a lower level in the cold, and more substantially in the winter, which was related to lower skin temperatures in winter. Thermal sensations showed only slight seasonal variation. The observed seasonal differences in thermal responses suggest increased preservation of heat especially in the peripheral areas in winter. Blunted vasomotor and skin temperature responses, which are typical for habituation to cold, were not observed in winter. Instead, the responses in winter resemble aggravated reactions of non-cold acclimatised subjects.  相似文献   

6.
A Ansart  P Vernon  J Daguzan 《Cryobiology》2001,42(4):266-273
Helix aspersa hibernates in Brittany (western France), where it may experience subzero temperatures. Studies on cold hardiness, although scarce in land snails, have shown a seasonal variation in supercooling ability, associated with high temperatures of crystallization (Tc). In the present work, two key environmental factors, temperature and photoperiod, were studied to elucidate, how they may affect the enhancement of supercooling ability in the snails from the end of summer to winter. Nine groups of adult snails were acclimated to different combinations of photoperiod (LD-16:8, LD-12:12, and LD-8:16 h) and temperature (15, 10, and 5 degrees C). Temperature of crystallization, hemolymph osmolality, and water content were measured. The results demonstrate a significant effect of the photoperiod on Tc, i.e., shorter photoperiods induce lower Tc (LD-16:8 h, mean Tc = -3.0 degrees C, SD = 2.0; LD-12:12 h, mean Tc = -4.3 degrees C, SD = 1.9; LD-8:16 h, mean Tc = -5.2 degrees C, SD = 1.9; n = 90), whereas the acclimation temperature had no effect. Measurements of hemolymph osmolality and water content showed that osmolality is negatively correlated with water content. Mechanisms such as dehydration are involved in the decrease of Tc. A declining photoperiod triggers a lower Tc, long before the onset of winter conditions. This response may have an adaptive component, allowing individuals to cope with the mild winters typically observed in oceanic regions.  相似文献   

7.
Simultaneous telemetry of the body and testis temperatures of 8 hedgehogs was carried out during hibernation and during sexual reactivation in spring. Between October and January, when the testes were involuted, the body/testis temperature differential was variable, with mean daily testis temperatures up to 1 degrees C warmer than body temperatures. From mid-February onwards, when plasma testosterone approached maximal concentrations, mean testicular temperatures stabilized 1.4 +/- 0.2 degrees C below body temperatures. During spermatogenesis testicular temperature of hedgehogs was significantly lower than body temperature. Over the euthermic body temperature range of 34.7-36.2 degrees C, testicular temperatures varied from 34.0 to 34.9 degrees C. Only at body temperatures over 36.2 degrees C did testicular temperature reach 35 degrees C. During spermatogenesis hedgehog testis temperatures are similar to those of many scrotal mammals.  相似文献   

8.
Nine young (20-25 years) and ten older (60-71 years) men, matched for body fatness and surface area:mass ratio, underwent cold tests in summer and winter. The cold tests consisted of a 60-min exposure, wearing only swimming trunks, to an air temperature of 17 degrees C (both seasons) and 12 degrees C (winter only). Rectal (Tre) and mean skin (Tsk) temperatures, metabolic heat production (M), systolic (BPs) and diastolic (BPd) blood pressures and heart rate (fc) were measured. During the equilibrium period (28 degrees C air temperature) there were no age-related differences in Tre, Tsk, BPs, BPd, or fc regardless of season, although M of the older men was significantly lower (P < 0.003). The decrease in Tre and Tsk (due to the marked decrease in six of the older men) and the increase in BPs and BPd were significantly greater (P < 0.004) for the older men during all the cold exposures. The rate of increase in M was significantly greater (P < 0.01) for the older group when exposed to 12 degrees C in winter and 17 degrees C in summer (due to the marked increase in four of the older men). This trend was not apparent during the 17 degrees C exposure in winter. There was no age-related difference in fc during the exposures. Significant decreases in Tre and Tsk and increases in M, BPs and BPd during the 12 degrees C exposure were observed for the older group (P < 0.003) compared to their responses during the 17 degrees C exposure in winter. In contrast, Tre, M, BPs in the young group were not affected as much by the colder environment. It was concluded that older men have more variable responses and some appear more or less responsive to mild and moderate cold air than young men.  相似文献   

9.
Adult male prairie voles (Microtus ochrogaster) were housed for 10 wk and exposed to long (16L:8D) or short (8L:16D) photoperiods at 21 degrees or 5 degrees C. Maintenance in short day lengths reduced testicular, epididymal, and seminal vesicle mass and also significantly depressed spermatogenic activity. Cold ambient temperature further suppressed gonadal size in voles exposed to short days. Several pelage characteristics were affected by photoperiod, but not by temperature. Increased fur density, fur depth, and length of guard hair and underhair were observed in voles exposed to short days. Intrascapular brown fat and gonadal fat pad mass as well as body mass were significantly less in voles housed in cold temperatures than in voles exposed to warm ambient temperatures; photoperiod did not affect these parameters. Approximately 30% of the male voles exposed to short days maintained their reproductive systems, yet they clearly processed photoperiodic information; all short-day males, regardless of reproductive condition, had comparable winter pelage development. Our results suggest that in prairie voles, photoperiod may be a predictive cue for reproductive function in nature; however, it appears that pelage development is a more obligatory response to photoperiod than is reproduction.  相似文献   

10.
Pronounced population cycles are characteristic of many herbivorous small mammals in northern latitudes. Although delayed density-dependent effects of predation and food shortage are often proposed as factors driving population cycles, firm evidence for causality is rare because sufficiently replicated, large-scale field experiments are lacking. We conducted two experiments on Microtus voles in four large predator-proof enclosures and four unfenced control areas in western Finland. Predator exclusion induced rapid population growth and increased the peak abundance of voles over 20-fold until the enclosed populations crashed during the second winter due to food shortage. Thereafter, voles introduced to enclosures which had suffered heavy grazing increased to higher densities than voles in previously ungrazed control areas which were exposed to predators. We concluded that predation inhibits an increase in vole populations until predation pressure declines, thus maintaining the low phase of the cycle, but also that population cycles in voles are not primarily driven by plant-herbivore interactions.  相似文献   

11.
In the temperate climate zone in Europe the composition of the diet of predatory vertebrates shows evident variability between the warm and cold season. However, the recently observed climate warming can mitigate the effect of snow cover and low temperatures on the winter foraging ecology of raptors, thus affecting trophic webs in ecosystems. We analysed diet variability in the tawny owl Strix aluco, between the warm and cold seasons of four unusually warm years (as compared to reference years of 1950–2000) in two habitats (forest vs. farmland) in Central Poland. The most important prey group in the tawny owl’s diet were mammals, constituting over 80% of prey items. There were distinct diet differences between the two seasons: insectivorous mammals, birds and amphibians were caught more often during the warm season, and Muridae and Arvicolidae during the cold season. The proportion of insectivorous mammals, voles and amphibians was significantly higher in forest than in farmland. Diet diversity, analysed with rarefaction methods and expressed as the expected cumulative mammal species number for a given number of randomly sampled preyed mammals, was independent of season and higher in forest than in the agricultural habitat. We conclude that even during unusually warm years tawny owls change significantly their feeding habits between the warm and cold season. The effect of season, habitat and weather factors on diet variability in raptors are discussed.  相似文献   

12.
1. To determine whether long-term cold exposure induces insulative adaptation in the rat, two groups of eight adult animals each were exposed to 4 and 25 degrees C, respectively, for 18 months. 2. At any ambient temperature between -5 and 30 degrees C, the cold adapted animals had a higher rate of oxygen uptake, and higher unfurred skin temperatures than the controls. 3. At ambient temperatures below thermoneutrality, whole body thermal resistance increased continuously in both groups of animals. 4. It is concluded that long-term exposure does not induce insulative adaptation, and that thermal resistance is not maximal at the lower critical temperature.  相似文献   

13.
In mammals, nocturnal light pulses (NLP) have been demonstrated to affect physiology and behavior. However, the impact of NLP as a stressor has been less broadly examined. The purpose of this study was to examine the effect of NLP (three 15 min 450 lux light pulses) during each scotophase on both thermoregulation and endocrine stress responses under short-day (SD; 8L:16D) acclimation. Voles were acclimated to either SD (SD voles) or SD+NLP (NLP voles). Resistance to cold was estimated by measurements of body temperature (Tb) during cold exposure (5°C). Daily rhythms of energy expenditure (calculated from oxygen consumption), urine production, and urinary adrenaline and serum cortisol levels were measured. Tb values of SD voles were generally unaffected by the cold stimulus, whereas in NLP voles, resistance to cold was markedly lowered. While SD- and NLP voles showed similar ultradian characteristics in energy expenditure with a period of 3.5 h, mean energy expenditure levels were lowest for voles exposed to NLP-treatment. In SD voles, but not in NLP voles, urine production rates showed clear time variations and were consistently highest for SD voles, with significant differences during the scotophase. Both mean total urinary adrenaline and serum cortisol levels were significantly elevated in NLP-treated voles compared with the control group. Taken together, the results suggest that NLP negatively affects winter acclimatization of thermoregulatory mechanisms of M. socialis, probably by mimicking summer acclimatization, and consequently the thermoregulatory mechanisms respond inappropriately to ambient conditions. One important finding of this study is that NLP may act as a stressor and correspondingly impose a major threat to the physiological homeostasis of M. socialis, such that over-winter survival might be compromised.  相似文献   

14.
Mastocarpus stellatus and Chondrus crispus are red macroalgae that co-dominate the lower rocky intertidal zones of the northern Atlantic coast. M. stellatus is more tolerant than C. crispus of environmental stresses, particularly those experienced during winter. This difference in tolerance has been attributed, in part, to greater contents or activities of certain antioxidants in M. stellatus. We compared the photosynthetic capacities and activities of three antioxidant enzymes--superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR)--as well as the contents of ascorbate from fronds of M. stellatus and C. crispus collected over a year. Photosynthetic capacity increased in winter, but did not differ between species in any season. The activities of the three antioxidant enzymes and the contents of ascorbate were significantly greater in tissues collected during months with mean air and water temperatures below 7.5 degrees C ("cold" months; December, February, March, April) than in months with mean air temperatures above 11 degrees C ("warm" months; June, July, August, October). Overall, C. crispus had significantly greater SOD and APX activities, while M. stellatus had higher ascorbate contents. Species-specific differences in GR activity depended upon mean monthly temperatures at the time of tissue collection; C. crispus had higher activities during cold months, whereas M. stellatus had higher activities during warm months. Taken together, these data indicate that increased ROS scavenging capacity is a part of winter acclimatization; however, only trends in ascorbate content support the hypothesis that greater levels of antioxidants underlie the relatively greater winter tolerance of M. stellatus in comparison to C. crispus.  相似文献   

15.
In mammals, nocturnal light pulses (NLP) have been demonstrated to affect physiology and behavior. However, the impact of NLP as a stressor has been less broadly examined. The purpose of this study was to examine the effect of NLP (three 15 min 450 lux light pulses) during each scotophase on both thermoregulation and endocrine stress responses under short‐day (SD; 8L:16D) acclimation. Voles were acclimated to either SD (SD voles) or SD+NLP (NLP voles). Resistance to cold was estimated by measurements of body temperature (Tb) during cold exposure (5°C). Daily rhythms of energy expenditure (calculated from oxygen consumption), urine production, and urinary adrenaline and serum cortisol levels were measured. Tb values of SD voles were generally unaffected by the cold stimulus, whereas in NLP voles, resistance to cold was markedly lowered. While SD‐ and NLP voles showed similar ultradian characteristics in energy expenditure with a period of 3.5 h, mean energy expenditure levels were lowest for voles exposed to NLP‐treatment. In SD voles, but not in NLP voles, urine production rates showed clear time variations and were consistently highest for SD voles, with significant differences during the scotophase. Both mean total urinary adrenaline and serum cortisol levels were significantly elevated in NLP‐treated voles compared with the control group. Taken together, the results suggest that NLP negatively affects winter acclimatization of thermoregulatory mechanisms of M. socialis, probably by mimicking summer acclimatization, and consequently the thermoregulatory mechanisms respond inappropriately to ambient conditions. One important finding of this study is that NLP may act as a stressor and correspondingly impose a major threat to the physiological homeostasis of M. socialis, such that over‐winter survival might be compromised.  相似文献   

16.
Sublingual and oesophageal temperatures were compared at various air temperatures in 16 subjects. In warm air (25-44 degrees C) sublingual temperatures stabilized within plus or minus 0-45 degrees C of oesophageal temperatures, but in air at room temperature (18-24 degrees C) they were sometimes as much as 1-1 degrees C below and in cold air (5-10 degrees C) as much as 4-4 degrees C below oesophageal readings. The sublingual-oesophageal temperature difference in cold air was greatly reduced by keeping the face warm, but it was not reduced in two patients breathing through tracheostomies and thereby eliminating cold air flow from the nose and pharynx. Parotid saliva temperature was low and saliva flow high during exposure, and cold saliva seemed to be mainly responsible for the erratic depression of sublingual temperature in the cold. These results indicate hazards in the casual use of sublingual temperatures, and indicate that external heat may have to be supplied to enable them to give reliable clinical assessments of body temperature.  相似文献   

17.
The objective of this study was to determine how seasonal changes affect the foraging activity and wood consumption of the Formosan subterranean termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae), in New Orleans, LA. There was a significant correlation between wood consumption and air temperature, soil temperature, and soil moisture, but not precipitation or number of rainy days. In the first year of the study, wood consumption was the lowest in December, February, and March. Wood consumption in January was not significantly different from consumption during the rest of the year. There were no seasonal changes in the number of underground monitoring stations occupied by termites. In the second year of the study, wood consumption was lowest from January to March. There was a significant decrease in the number of monitoring stations occupied by termites during the winter. This study determined that C. formosanus will remain in monitoring stations and resume feeding during warmer periods of a mild winter if average soil temperatures remain above 15 degrees C. Only prolonged periods of cold weather, with average soil temperatures below 15 degrees C, caused a significant number of termites to abandon underground monitoring stations. Seasonal changes in foraging activity would probably only disrupt baiting programs during severe winters in New Orleans, LA.  相似文献   

18.
Some studies suggest that mild winters decrease overwinter survival of small mammals or coincide with decreased cyclicity in vole numbers, whereas other studies suggest non-significant or positive relationships between mild winter conditions and vole population dynamics. We expect for the number of voles to be higher in the rich and low-lying habitats of the coastal areas than in the less fertile areas inland. We assume that this geographical difference in vole abundances is diminished by mild winters especially in low-lying habitats. We examine these relationships by generalized linear mixed models using prey remains of breeding tawny owls Strix aluco as a proxy for the abundance of voles. The higher number of small voles in the coastal area than in the inland area suggest that vole populations were denser in the coastal area. Vole populations of both areas were affected by winter weather conditions particularly in March, but these relationships differed between areas. The mild ends of winter with frequent fluctuations of the ambient temperature around the freezing point (“frost seesaw”) constrained significantly the coastal vole populations, while deep snow cover, in general after hard winters, was followed by significantly lowered number of voles only in the inland populations. Our results suggest that coastal vole populations are more vulnerable to mild winters than inland ones. We also show that tawny owl prey remains can be used in a meaningful way to study vole population dynamics.  相似文献   

19.
Energetic adaptation to fasting in the cold has been investigated in a nocturnal raptor, the barn owl (Tyto alba), during winter. Metabolic rate and body temperature (Tb) were monitored in captive birds, (1) after acute exposure to different ambient temperatures (Ta), and (2) during a prolonged fast in the cold (4 degrees C), to take into account the three characteristic phases of body fuel utilization that occur during a long-term but reversible fast. In postabsorptive birds, metabolic rate in the thermoneutral zone was 4. 1+/-0.1 W kg-1 and increased linearly below a lower critical temperature of 23 degrees C. Metabolic rate was 70% above basal at +4 degrees C Ta. Wet thermal conductance was 0.22 W kg-1 degrees C-1. During fasting in the cold, the mass-specific resting metabolic rate decreased by 16% during the first day (phase I) and remained constant thereafter. The amplitude of the daily rhythm in Tb was only moderately increased during phase II, with a slight lowering (0. 6 degrees C) in minimal diurnal Tb, but rose markedly in phase III with a larger drop (1.4 degrees C) in minimal diurnal Tb. Refeeding the birds ended phase III and reversed the observed changes. These results indicate that diurnal hypothermia may be used in long-term fasting barn owls and could be triggered by a threshold of body lipid depletion, according to the shift from lipid to protein fuel metabolism occurring at the phase II/phase III transition. The high cost of regulatory thermogenesis and the limited use of hypothermia during fasting may contribute to the high mortality of barn owls during winter.  相似文献   

20.
Survival of small mammals in winter requires proper adjustments in physiology, behavior and morphology. The present study was designed to examine the changes in serum leptin concentration and the molecular basis of thermogenesis in seasonally acclimatized root voles (Microtus oeconomus) from the Qinghai-Tibetan plateau. In January root voles had lower body mass and body fat mass coupled with higher nonshivering thermogenesis (NST) capacity. Consistently, cytochrome c oxidase activity and mitochondrial uncoupling protein-1 (UCP1) protein contents in brown adipose tissues were higher in January as compared to that in July. Circulating level of serum leptin was significantly lower in winter and higher in July. Correlation analysis showed that serum leptin levels were positively related with body mass and body fat mass while negatively correlated with UCP1 protein contents. Together, these data provided further evidence for our previous findings that root voles from the Qinghai-Tibetan plateau mainly depend on higher NST coupled with lower body mass to enhance winter survival. Further, fat deposition was significantly mobilized in cold winter and leptin was potentially involved in the regulation of body mass and thermogenesis in root voles. Serum leptin might act as a starvation signal in winter and satiety signal in summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号