共查询到20条相似文献,搜索用时 0 毫秒
1.
Ca2+ activation of the cPLA2 C2 domain: ordered binding of two Ca2+ ions with positive cooperativity
During Ca(2+) activation, the Ca(2+)-binding sites of C2 domains typically bind multiple Ca(2+) ions in close proximity. These binding events exhibit positive cooperativity, despite the strong charge repulsion between the adjacent divalent cations. Using both experimental and computational approaches, the present study probes the detailed mechanisms of Ca(2+) activation and positive cooperativity for the C2 domain of cytosolic phospholipase A(2), which binds two Ca(2+) ions in sites I and II, separated by only 4.1 A. First, each of the five coordinating side chains in the Ca(2+)-binding cleft is individually mutated and the effect on Ca(2+)-binding affinity and cooperativity is measured. The results identify Asp 43 as the major contributor to Ca(2+) affinity, while the two coordinating side chains that provide bridging coordination to both Ca(2+) ions, Asp 43 and Asp 40, are observed to make the largest contributions to positive cooperativity. Electrostatic calculations reveal that Asp 43 possesses the highest pseudo-pK(a) of the coordinating acidic residues, as well as the highest general cation affinity, due to its relatively buried location within 3.5 A of seven protein oxygens with full or partial negative charges. These calculations therefore explain the greater importance of Asp 43 in defining the Ca(2+) affinity. Overall, the experimental and computational results support an activation model in which the first Ca(2+) ion binds usually to site I, thereby preordering both bridging side chains Asp 40 and 43, and partially or fully deprotonating the three coordinating Asp residues. This initial binding event prepares the conformation and protonation state of the remaining site for Ca(2+) binding, enabling the second Ca(2+) ion to bind with higher affinity than the first as required for positive cooperativity. 相似文献
2.
McIntosh DB Clausen JD Woolley DG MacLennan DH Vilsen B Andersen JP 《The Journal of biological chemistry》2004,279(31):32515-32523
Residues in conserved motifs (625)TGD, (676)FARXXPXXK, and (701)TGDGVND in domain P of sarcoplasmic reticulum Ca(2+)-ATPase, as well as in motifs (601)DPPR and (359)NQR(/K)MSV in the hinge segments connecting domains N and P, were examined by mutagenesis to assess their roles in nucleotide and Mg(2+) binding and stabilization of the Ca(2+)-activated transition state for phosphoryl transfer. In the absence of Mg(2+), mutations removing the charges of domain P residues Asp(627), Lys(684), Asp(703), and Asp(707) increased the affinity for ATP and 2',3'-O-(2,4,6-trinitrophenyl)-8-azidoadenosine 5'-triphosphate. These mutations, as well as Gly(626)--> Ala, were inhibitory for ATP binding in the presence of Mg(2+) and for tight binding of the beta,gamma-bidentate chromium(III) complex of ATP. The hinge mutations had pronounced, but variable, effects on ATP binding only in the presence of Mg(2+). The data demonstrate an unfavorable electrostatic environment for binding of negatively charged nucleotide in domain P and show that Mg(2+) is required to anchor the phosphoryl group of ATP at the phosphorylation site. Mutants Gly(626) --> Ala, Lys(684) --> Met, Asp(703) --> Ala/Ser/Cys, and mutants with alteration to Asp(707) exhibited very slow or negligible phosphorylation, making it possible to measure ATP binding in the pseudo-transition state attained in the presence of both Mg(2+) and Ca(2+). Under these conditions, ATP binding was almost completely blocked in Gly(626) --> Ala and occurred with 12- and 7-fold reduced affinities in Asp(703) --> Ala and Asp(707) --> Cys, respectively, relative to the situation in the presence of Mg(2+) without Ca(2+), whereas in Lys(684) --> Met and Asp(707) --> Ser/Asn the affinity was enhanced 14- and 3-5-fold, respectively. Hence, Gly(626) and Asp(703) seem particularly critical for mediating entry into the transition state for phosphoryl transfer upon Ca(2+) binding at the transport sites. 相似文献
3.
Stable activation of single Ca2+ release-activated Ca2+ channels in divalent cation-free solutions 总被引:3,自引:0,他引:3
The regulation of store-operated, calcium-selective channels in the plasma membrane of rat basophilic leukemia cells (RBL-2H3 m1), an immortalized mucosal mast cell line, was studied at the single-channel level with the patch clamp technique by removing divalent cations from both sides of the membrane. The activity of the single channels in excised patches could be modulated by Ca(2+), Mg(2+), and pH. The maximal activation of these channels by divalent cation-free conditions occurred independently of depletion of intracellular Ca(2+) stores, whether in excised patches or in whole cell mode. Yet, a number of points of evidence establish these single-channel openings as amplified store-operated channel events. Specifically, (i) the single channels are exquisitely sensitive to inhibition by intracellular Ca(2+), and (ii) both the store-operated current and the single-channel openings are completely blocked by the capacitative calcium entry blocker, 2-aminoethoxydiphenyl borane. In addition, in Jurkat T cells single-channel openings with lower open probability have been observed in the whole cell mode with intracellular Mg(2+) present (Kerschbaum, H. H., and Cahalan, M. D. (1999) Science 283, 836-839), and in RBL-2H3 m1 cells a current with similar properties is activated by store depletion. 相似文献
4.
Single channel models of intracellular calcium (Ca(2+)) channels such as the 1,4,5-trisphosphate receptor and ryanodine receptor often assume that Ca(2+)-dependent transitions are mediated by constant background cytosolic [Ca(2+)]. This assumption neglects the fact that Ca(2+) released by open channels may influence subsequent gating through the processes of Ca(2+)-activation or inactivation. Similarly, the influence of the dynamics of luminal depletion on the stochastic gating of intracellular Ca(2+) channels is often neglected, in spite of the fact that the sarco/endoplasmic reticulum [Ca(2+)] near the luminal face of intracellular Ca(2+) channels influences the driving force for Ca(2+), the rate of Ca(2+) release, and the magnitude and time course of the consequent increase in cytosolic domain [Ca(2+)]. Here we analyze how the steady-state open probability of several minimal Ca(2+)-regulated Ca(2+) channel models depends on the conductance of the channel and the time constants for the relaxation of elevated cytosolic [Ca(2+)] and depleted luminal [Ca(2+)] to the bulk [Ca(2+)] of both compartments. Our approach includes Monte Carlo simulation as well as numerical solution of a system of advection-reaction equations for the multivariate probability density of elevated cytosolic [Ca(2+)] and depleted luminal [Ca(2+)] conditioned on each state of the stochastically gating channel. Both methods are subsequently used to study the role of luminal depletion in the dynamics of Ca(2+) puff/spark termination in release sites composed of Ca(2+) channels that are activated, but not inactivated, by cytosolic Ca(2+). The probability density approach shows that such minimal Ca(2+) release site models may exhibit puff/spark-like dynamics in either of two distinct parameter regimes. In one case, puffs/spark termination is due to the process of stochastic attrition and facilitated by rapid Ca(2+) domain collapse [cf. DeRemigio, H., Smith, G., 2005. The dynamics of stochastic attrition viewed as an absorption time on a terminating Markov chain. Cell Calcium 38, 73-86]. In the second case, puff/spark termination is promoted by the local depletion of luminal Ca(2+). 相似文献
5.
6.
Role of Ca2+ and Ca2+-activated protease in myoblast fusion 总被引:1,自引:0,他引:1
J E Schollmeyer 《Experimental cell research》1986,162(2):411-422
In this report, we have examined the effects of a calcium chelator, EGTA, and a calcium ionophore, A23187, on fusion of a cloned muscle cell line, L6. Our results confirm that EGTA essentially blocks all myoblast fusion because the lateral alignment of presumptive myoblasts cannot occur in the absence of extracellular calcium. A23187, however, promotes the precocious fusion of myoblasts, apparently by facilitating Ca2+ transport into myoblasts. We have also demonstrated that a Ca2+-activated protease, CAF (mM), appears to relocate in response to the Ca2+ flux, changing from a random, dispersed distribution in proliferative myoblasts to a predominantly peripheral distribution in prefusion myoblasts. Coincident with the mM CAF relocation is an altered distribution of a surface glycoprotein, fibronectin. Extracellular fibronectin is seen in abundance in proliferating myoblasts, but is essentially absent from the surface of fusing myoblasts. We suggest that mM CAF when activated by Ca2+ influx may act to promote the release of fibronectin from the myoblast cell surface, thus providing a mechanism by which the membrane of the fusing myoblast may be rearranged to accommodate fusion. 相似文献
7.
Common domain structure of Ca2+ and lipid-binding proteins 总被引:10,自引:0,他引:10
M J Geisow 《FEBS letters》1986,203(1):99-103
The phospholipase A2 inhibitor, lipocortin, shares common sequences with three abundant Ca2+-regulated membrane binding proteins of unknown function which are present in many cell and tissue types. A two-domain model for the structure of lipocortin is described and it is suggested that the new Ca2+-regulated proteins each contain at least one lipocortin domain. The structural and biochemical properties of each protein indicate that they all directly interact with phospholipids. Potential sites of interaction with the lipocortin domain are identified on the basis of homology with phospholipid transfer proteins and phospholipase A2. 相似文献
8.
Myometrial (Na+ + K+)-activated ATPase and its Ca2+ sensitivity 总被引:1,自引:0,他引:1
Ouabain-sensitive (Na+ + K+)-ATPase activity in the rat myometrial microsome fraction could only be determined following detergent treatment. The (Na+ + K+)-ATPase activity manifested by detergent treatment proved very stable even to high concentrations of NaN3, in contrast Mg+-ATPase activity was reduced to about 30 percent of the control. The major part of the Mg2+-ATPase in the myometrial membrane preparation was found to be identical with the NaN3-sensitive ATP diphosphohydrolase capable of ATP and ADP hydrolysis. This monovalent-cation-insensitive ATP hydrolysis could be extensively reduced by DMSO. Furthermore DMSO prevented the inactivation of the (Na+ + K+)-ATPase activity. 10-100 microM Ca2+ inhibited the (Na+ + K+)-ATPase activity obtained in the presence of SDS by 15-50 percent. The Ca2+ sensitivity of the enzyme was considerably decreased if the proteins solubilized by the detergent had been separated from the membrane fragments by ultracentrifugation. The inhibitory effect could be regained by combining the supernatant with the pellet. Ca2+ sensitivity of the (Na+ + K+)-ATPase activity was preserved even after removal of the solubilized proteins provided that DMSO had been applied. It appears that a factor in the plasma membrane solubilized by SDS may be responsible for the loss of Ca2+ sensitivity of the (Na+ + K+)-ATPase activity, the solubilization of which can be prevented by DMSO. 相似文献
9.
Petersen OH 《Cell calcium》2005,38(3-4):171-200
The development of the calcium signalling field, from its early beginnings some 40 years ago to the present, is described. Calcium signalling in exocrine gland acinar cells and the effects of neurotransmitter- or hormone-elicited rises in the cytosolic calcium ion concentration on ion channel gating are reviewed. The highly polarized arrangement of the organelle systems in living acinar cells is described as well as its importance for the physiologically relevant local and polarized calcium signalling events. 相似文献
10.
Pirani A Vinogradova MV Curmi PM King WA Fletterick RJ Craig R Tobacman LS Xu C Hatch V Lehman W 《Journal of molecular biology》2006,357(3):707-717
Contraction of striated muscles is regulated by tropomyosin strands that run continuously along actin-containing thin filaments. Tropomyosin blocks myosin-binding sites on actin in resting muscle and unblocks them during Ca2+-activation. This steric effect controls myosin-crossbridge cycling on actin that drives contraction. Troponin, bound to the thin filaments, couples Ca2+-concentration changes to the movement of tropomyosin. Ca2+-free troponin is thought to trap tropomyosin in the myosin-blocking position, while this constraint is released after Ca2+-binding. Although the location and movements of tropomyosin are well known, the structural organization of troponin on thin filaments is not. Its mechanism of action therefore remains uncertain. To determine the organization of troponin on the thin filament, we have constructed atomic models of low and high-Ca2+ states based on crystal structures of actin, tropomyosin and the "core domain" of troponin, and constrained by distances between filament components and by their location in electron microscopy (EM) reconstructions. Alternative models were also built where troponin was systematically repositioned or reoriented on actin. The accuracy of the different models was evaluated by determining how well they corresponded to EM images. While the initial low and high-Ca2+ models fitted the data precisely, the alternatives did not, suggesting that the starting models best represented the correct structures. Thin filament reconstructions were generated from the EM data using these starting models as references. In addition to showing the core domain of troponin, the reconstructions showed additional detail not present in the starting models. We attribute this to an extension of TnI linking the troponin core domain to actin at low (but not at high) Ca2+, thereby trapping tropomyosin in the OFF-state. The bulk of the core domain of troponin appears not to move significantly on actin, regardless of Ca2+ level. Our observations suggest a simple model for muscle regulation in which troponin affects the charge balance on actin and hence tropomyosin position. 相似文献
11.
The degranulation reactions of human neutrophils induced by 1-oleoyl-2-acetylglycerol (OAG), phorbol 12-myristate 13-acetate (PMA), and calcium ionophore A23187 or their combinations, were studied. OAG in the absence of the Ca2+-ionophore A23187 stimulated the releases of both lysozyme and lactoferrin, constituents of the specific granules, but did not stimulate the release of beta-glucuronidase, an enzyme of the azurophil granules. Electron microscopy revealed a selective decrease in the numbers of the specific granules in this case. The combined effects of A23187 at a concentration higher than 0.1 microM and OAG were essentially additive. W-7, known to be an inhibitor of both Ca2+-activated phospholipid-dependent protein kinase (C-kinase) and calmodulin, inhibited the degranulation induced by OAG or PMA, while it inhibited the reaction induced by A23187 less markedly. The release of lysozyme reached a plateau at about 0.1 microM A23187 and increased again at higher concentrations of A23187. The observations suggest that degranulation can be induced by the activation of the C-kinase, and the degranulation by A23187 at low concentrations may be due to the activation of the C-kinase; the effects of A23187 at high concentrations, however, could not be explained only in terms of the activation of the C-kinase. 相似文献
12.
Coexpression of the beta subunit (KV,Cabeta) with the alpha subunit of mammalian large conductance Ca2+- activated K+ (BK) channels greatly increases the apparent Ca2+ sensitivity of the channel. Using single-channel analysis to investigate the mechanism for this increase, we found that the beta subunit increased open probability (Po) by increasing burst duration 20-100-fold, while having little effect on the durations of the gaps (closed intervals) between bursts or on the numbers of detected open and closed states entered during gating. The effect of the beta subunit was not equivalent to raising intracellular Ca2+ in the absence of the beta subunit, suggesting that the beta subunit does not act by increasing all the Ca2+ binding rates proportionally. The beta subunit also inhibited transitions to subconductance levels. It is the retention of the BK channel in the bursting states by the beta subunit that increases the apparent Ca2+ sensitivity of the channel. In the presence of the beta subunit, each burst of openings is greatly amplified in duration through increases in both the numbers of openings per burst and in the mean open times. Native BK channels from cultured rat skeletal muscle were found to have bursting kinetics similar to channels expressed from alpha subunits alone. 相似文献
13.
Shimizu M Nakamura H Hirabayashi T Suganami A Tamura Y Murayama T 《Cellular signalling》2008,20(5):815-824
Calmodulin (CaM)-dependent protein kinase (CaM kinase) is proposed to regulate the type alpha of cytosolic phospholipase A(2) (cPLA(2)alpha), which has a dominant role in the release of arachidonic acid (AA), via phosphorylation of Ser515 of the enzyme. However, the exact role of CaM kinase in the activation of cPLA(2)alpha has not been well established. We investigated the effects induced by transfection with mutant cPLA(2)alpha and inhibitors for CaM and CaM kinase on the Ca(2+)-stimulated release of AA and translocation of cPLA(2)alpha. The mutation of Ser515 to Ala (S515A) did not change cPLA(2)alpha activity, although S228A and S505A completely and partially decreased the activity, respectively. Stimulation with hydrogen peroxide (H(2)O(2), 1 mM) and A23187 (10 microM) markedly released AA in C12 cells expressing S515A and wild-type cPLA(2)alpha, but the responses in C12-S505A, C12-S727A, and C12-S505A/S515A/S727A (AAA) cells were reduced. In HEK293T cells expressing cPLA(2)alpha, A23187 caused the translocation of the wild-type, the every mutants, cPLA(2)alpha-C2 domain, and cPLA(2)alpha-Delta397-749 lacking proposed phosphorylation sites such as Ser505 and Ser515. Treatment with inhibitors of CaM (W-7) and CaM kinase (KN-93) at 10 microM significantly decreased the release of AA in C12-cPLA(2)alpha cells and C12-S515A cells. KN-93 inhibited the A23187-induced translocation of the wild-type, S515A, AAA and cPLA(2)alpha-Delta397-749, but not cPLA(2)alpha-C2 domain. Our findings show a possible effect of CaM kinase on cPLA(2)alpha in a catalytic domain A-dependent and Ser515-independent manner. 相似文献
14.
15.
In order to learn about the endogenous Ca2+-buffering in the cytoplasm of chick dorsal root ganglion (DRG) neurons and the distance separating the ryanodine receptor Ca2+ release channels (RyRs) from the plasma membrane, we monitored the amplitude and time course of Ca2+-activated Cl- currents (I(ClCa)) in protocols that manipulated Ca2+-buffering. I(ClCa)was activated by Ca2+ influx via voltage-gated Ca2+ channels or by Ca2+ release via RyRs activated by 10 mM caffeine. I(ClCa)was measured in neurons at 20 degrees C and 35 degrees C using the amphotericin perforated patch technique that preserves endogenous Ca2+-buffering, or at 20 degrees C in neurons dialyzed with pipette solutions designed to replace the endogenous Ca2+ buffers. The amplitude of I(ClCa)activated by Ca2+ influx or Ca2+ at 20 degrees C was similar in the amphotericin neurons and neurons dialyzed with an 'unbuffered' pipette solution containing 10 mM citrate and 3 mM ATP as the only Ca2+ binding molecules. Thus, endogenous mobile Ca2+ buffers are relatively unimportant in chick DRG neurons. Warming the neurons from 20 degrees C to 35 degrees C increased the amplitude and the rate of deactivation of I(ClCa)consistent with an increased rate of Ca2+ buffering by fixed endogenous Ca2+-buffers. Dialysis with 2 mM EGTA/0.1 microM free Ca2+ reduced the amplitude and increased the rate of deactivation of I(ClCa)activated by Ca2+ influx and abolished I(ClCa)activated by Ca2+ release. Dialysis with 2 mM BAPTA/0.1 microM free Ca2+ abolished I(ClCa)activated by Ca2+ influx or release. Dialysis with 42 mM HEEDTA/0.5 microM free Ca2+ caused the persistent activation of I(ClCa). Calculations using a Ca2+-diffusion model suggest that the voltage-gated Ca2+ channels and the Ca2+-activated Cl- channels are separated by 50-400 nm and that the RyRs are more than 600 nm from the plasma membrane. 相似文献
16.
Giedrius Kanaporis 《Channels (Austin, Tex.)》2016,10(6):507-517
Cardiac alternans, defined beat-to-beat alternations in contraction, action potential (AP) morphology or cytosolic Ca transient (CaT) amplitude, is a high risk indicator for cardiac arrhythmias. We investigated mechanisms of cardiac alternans in single rabbit ventricular myocytes. CaTs were monitored simultaneously with membrane currents or APs recorded with the patch clamp technique. A strong correlation between beat-to-beat alternations of AP morphology and CaT alternans was observed. During CaT alternans application of voltage clamp protocols in form of pre-recorded APs revealed a prominent Ca2+-dependent membrane current consisting of a large outward component coinciding with AP phases 1 and 2, followed by an inward current during AP repolarization. Approximately 85% of the initial outward current was blocked by Cl? channel blocker DIDS or lowering external Cl? concentration identifying it as a Ca2+-activated Cl? current (ICaCC). The data suggest that ICaCC plays a critical role in shaping beat-to-beat alternations in AP morphology during alternans. 相似文献
17.
《Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology》1986,869(3):322-329
Rabbit muscle troponin C was selectively modified at Cys-98 by 1,3-difluoro-4,6-dinitrobenzene. The second function of the bifunctional reagent was triggered at alkaline pH in the presence and absence of Ca2+. The crosslinked troponin C was hydrolyzed by trypsin and the peptides containing a dinitrobenzene moiety were isolated. When troponin C was crosslinked in the presence of Ca2+, the single dinitrobenzene-containing peptide was Gly-89-Arg-100, in which Cys-98 was crosslinked with Lys-90. When crosslinking was performed in the absence of Ca2+, beside the above peptide two additional peptides containing dinitrobenzene were found. One of these peptides is made up of two fragments, Ser-91-Arg-100 and Asn-105-Arg-120, crosslinked between Cys-98 and Tyr-109. The second peptide, Ala-121-Lys-140, contains modified Lys-136, presumably crosslinked with His-135. The data indicate that the distances between the α-carbon of Cys-98 and those of Lys-90, Tyr-109, Lys-136 and probably the α-carbon distance His-125-Lys-136, do not exceed 14 Å. Comparison with the X-ray structure of troponin C (Herzberg, O, and James, M.N.G. (1985) Nature 313, 653–659) indicates that some of the above distances increase on Ca2+-binding. 相似文献
18.
19.
Limited autolysis of Ca2+-activated neutral protease (CANP) changes its sensitivity to Ca2+ ions 总被引:6,自引:0,他引:6
Ca2+-activated neutral protease (CANP) usually requires mM Ca2+ for activation. The sensitivity of CANP to Ca2+ is greatly enhanced by passing it through a casein-Sepharose column in the presence of Ca2+ ions. This conversion is ascribed to autolysis of CANP. The converted enzyme required 40 microM Ca2+ for 50% activation. Various properties of the converted enzyme were very similar to those of CANP-I, recently found in canine heart muscle. Names of "m-CANP" and "mu-CANP" are proposed for CANPs which require mM and microM order Ca2+ for inactivation, respectively. 相似文献
20.
Membrane blebbing is associated with Ca2+-activated hyperpolarizations induced by serum and alpha 2-macroglobulin 总被引:2,自引:0,他引:2
We have reported previously that serum and alpha 2-macroglobulin (alpha 2M) induce Ca2+-activated hyperpolarizations in the membrane potential of a clonal rat osteosarcoma cell line (ROS 17/2) (Dixon and Aubin, J. Cell, Physiol., 132:215-225, 1987). In this report, we describe morphological changes that accompany these hyperpolarizations. Both cell surface blebbing (zeiosis) and transient hyperpolarizations were induced by application of 10% fetal bovine serum (FBS) or alpha 2M; neither was induced by serum-free medium, a suspension of latex beads, or purified bovine serum albumin. Following a brief application of FBS or alpha 2M at time 0, electrical activity typically occurred between 7-40 s and was always followed by blebbing activity that began at 30 s and persisted for 3-5 min. In contrast, continuous exposure to FBS resulted in the persistence of both blebbing activity and transient hyperpolarizations for periods of at least several hours. Scanning electron microscopy (SEM) revealed that the blebs appeared concomitantly with the disappearance of microvilli and the appearance of surface pits that measured 100-300 nm in diameter. Coated pits and vesicles, similar in size to the pits observed by SEM, were observed using transmission electron microscopy (TEM). By TEM, blebs were found to contain few organelles other than centrally located free ribosomes. Fluorescence microscopy of nitrobenzooxadizole-phallacidin-labeled cells indicated that blebs contained filamentous actin and that microfilament bundles remained primarily on the substratum side of blebbed cells. We propose that blebbing results from a dynamic local reorganization of microfilaments initiated by ligand-induced transient increases in intracellular Ca2+. 相似文献