首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Dysferlin is a large membrane protein found most prominently in striated muscle. Loss of dysferlin activity is associated with reduced exocytosis, abnormal intracellular Ca2+ and the muscle diseases limb-girdle muscular dystrophy and Miyoshi myopathy. The cytosolic region of dysferlin consists of seven C2 domains with mutations in the C2A domain at the N-terminus resulting in pathology. Despite the importance of Ca2+ and membrane binding activities of the C2A domain for dysferlin function, the mechanism of the domain remains poorly characterized. In this study we find that the C2A domain preferentially binds membranes containing PI(4,5)P2 through an interaction mediated by residues Y23, K32, K33, and R77 on the concave face of the domain. We also found that subsequent to membrane binding, the C2A domain inserts residues on the Ca2+ binding loops into the membrane. Analysis of solution NMR measurements indicate that the domain inhabits two distinct structural states, with Ca2+ shifting the population between states towards a more rigid structure with greater affinity for PI(4,5)P2. Based on our results, we propose a mechanism where Ca2+ converts C2A from a structurally dynamic, low PI(4,5)P2 affinity state to a high affinity state that targets dysferlin to PI(4,5)P2 enriched membranes through interaction with Tyr23, K32, K33, and R77. Binding also involves changes in lipid packing and insertion by the third Ca2+ binding loop of the C2 domain into the membrane, which would contribute to dysferlin function in exocytosis and Ca2+ regulation.  相似文献   

2.
The GLA domain, a common membrane-anchoring domain of several serine protease coagulation factors, is a key element in membrane association and activation of these factors in a highly Ca2+-dependent manner. However, the critical role of Ca2+ ions in binding is only poorly understood. Here, we present the atomic model of a membrane-bound GLA domain by using MD simulations of the GLA domain of human factor VIIa and an anionic lipid bilayer. The binding is furnished through a complete insertion of the omega-loop into the membrane and through direct interactions of structurally bound Ca2+ ions and protein side chains with negative lipids. The model suggests that Ca2+ ions play two distinct roles in the process: the four inner Ca2+ ions are primarily responsible for optimal folding of the GLA domain for membrane insertion, whereas the outer Ca2+ ions anchor the protein to the membrane through direct contacts with lipids.  相似文献   

3.
Corbin JA  Evans JH  Landgraf KE  Falke JJ 《Biochemistry》2007,46(14):4322-4336
The C2 domain is a ubiquitous, conserved protein signaling motif widely found in eukaryotic signaling proteins. Although considerable functional diversity exists, most C2 domains are activated by Ca2+ binding and then dock to a specific cellular membrane. The C2 domains of protein kinase Calpha (PKCalpha) and cytosolic phospholipase A2alpha (cPLA2alpha), for example, are known to dock to different membrane surfaces during an intracellular Ca2+ signal. Ca2+ activation targets the PKCalpha C2 domain to the plasma membrane and the cPLA2alpha C2 domain to the internal membranes, with no detectable spatial overlap. It is crucial to determine how such targeting specificity is achieved at physiological bulk Ca2+ concentrations that during a typical signaling event rarely exceed 1 muM. For the isolated PKCalpha C2 domain in the presence of physiological Ca2+ levels, the target lipids phosphatidylserine (PS) and phosphatidylinositol-4,5-bisphosphate (PIP2) are together sufficient to recruit the PKCalpha C2 domain to a lipid mixture mimicking the plasma membrane inner leaflet. For the cPLA2alpha C2 domain, the target lipid phosphatidylcholine (PC) appears to be sufficient to drive membrane targeting to an internal membrane mimic at physiological Ca2+ levels, although the results do not rule out a second, unknown target molecule. Stopped-flow kinetic studies provide additional information about the fundamental molecular events that occur during Ca2+-activated membrane docking. In principle, C2 domain-directed intracellular targeting, which requires coincidence detection of multiple signals (Ca2+ and one or more target lipids), can exhibit two different mechanisms: messenger-activated target affinity (MATA) and target-activated messenger affinity (TAMA). The C2 domains studied here both utilize the TAMA mechanism, in which the C2 domain Ca2+ affinity is too low to be activated by physiological Ca2+ signals in most regions of the cell. Only when the C2 domain nears its target membrane, which provides a high local concentration of target lipid, is the effective Ca2+ affinity increased by the coupled binding equilibrium to a level that enables substantial Ca2+ activation and target docking. Overall, the findings emphasize the importance of using physiological ligand concentrations in targeting studies because super-physiological concentrations can drive docking interactions even when an important targeting molecule is missing.  相似文献   

4.
Natural killer cells and cytotoxic T-lymphocytes deploy perforin and granzymes to kill infected host cells. Perforin, secreted by immune cells, binds target membranes to form pores that deliver pro-apoptotic granzymes into the target cell. A crucial first step in this process is interaction of its C2 domain with target cell membranes, which is a calcium-dependent event. Some aspects of this process are understood, but many molecular details remain unclear. To address this, we investigated the mechanism of Ca2+ and lipid binding to the C2 domain by NMR spectroscopy and x-ray crystallography. Calcium titrations, together with dodecylphosphocholine micelle experiments, confirmed that multiple Ca2+ ions bind within the calcium-binding regions, activating perforin with respect to membrane binding. We have also determined the affinities of several of these binding sites and have shown that this interaction causes a significant structural rearrangement in CBR1. Thus, it is proposed that Ca2+ binding at the weakest affinity site triggers changes in the C2 domain that facilitate its interaction with lipid membranes.  相似文献   

5.
The C2 domain of protein kinase Calpha (PKCalpha) controls the translocation of this kinase from the cytoplasm to the plasma membrane during cytoplasmic Ca2+ signals. The present study uses intracellular coimaging of fluorescent fusion proteins and an in vitro FRET membrane-binding assay to further investigate the nature of this translocation. We find that Ca2+-activated PKCalpha and its isolated C2 domain localize exclusively to the plasma membrane in vivo and that a plasma membrane lipid, phosphatidylinositol-4,5-bisphosphate (PIP2), dramatically enhances the Ca2+-triggered binding of the C2 domain to membranes in vitro. Similarly, a hybrid construct substituting the PKCalpha Ca2+-binding loops (CBLs) and PIP2 binding site (beta-strands 3-4) into a different C2 domain exhibits native Ca2+-triggered targeting to plasma membrane and recognizes PIP2. Conversely, a hybrid containing the CBLs but lacking the PIP2 site translocates primarily to trans-Golgi network (TGN) and fails to recognize PIP2. Similarly, PKCalpha C2 domains possessing mutations in the PIP2 site target primarily to TGN and fail to recognize PIP2. Overall, these findings demonstrate that the CBLs are essential for Ca2+-triggered membrane binding but are not sufficient for specific plasma membrane targeting. Instead, targeting specificity is provided by basic residues on beta-strands 3-4, which bind to plasma membrane PIP2.  相似文献   

6.
Protein kinase C (PKC) isozymes comprise a family of related enzymes that play a central role in many intracellular eukaryotic signaling events. Isozyme specificity is mediated by association of each PKC isozyme with specific anchoring proteins, termed RACKs. The C2 domain of betaPKC contains at least part of the RACK-binding sites. Because the C2 domain contains also a RACK-like sequence (termed pseudo-RACK), it was proposed that this pseudo-RACK site mediates intramolecular interaction with one of the RACK-binding sites in the C2 domain itself, stabilizing the inactive conformation of betaPKC. BetaPKC depends on calcium for its activation, and the C2 domain contains the calcium-binding sites. The x-ray structure of the C2 domain of betaPKC shows that three Ca(2+) ions can be coordinated by two opposing loops at one end of the domain. Starting from this x-ray structure, we have performed molecular dynamics (MD) calculations on the C2 domain of betaPKC bound to three Ca(2+) ions, to two Ca(2+) ions, and in the Ca(2+)-free state, in order to analyze the effect of calcium on the RACK-binding sites and the pseudo-RACK sites, as well as on the loops that constitute the binding site for the Ca(2+) ions. The results show that calcium stabilizes the beta-sandwich structure of the C2 domain and thus affects two of the three RACK-binding sites within the C2 domain. Also, the interactions between the third RACK-binding site and the pseudo-RACK site are not notably modified by the removal of Ca(2+) ions. On that basis, we predict that the pseudo-RACK site within the C2 domain masks a RACK-binding site in another domain of betaPKC, possibly the V5 domain. Finally, the MD modeling shows that two Ca(2+) ions are able to interact with two molecules of O-phospho-l-serine. These data suggest that Ca(2+) ions may be directly involved in PKC binding to phosphatidylserine, an acidic lipid located exclusively on the cytoplasmic face of membranes, that is required for PKC activation.  相似文献   

7.
The plasma membrane Na+/Ca2+ exchanger (NCX) is almost certainly the major Ca2+ extrusion mechanism in cardiac myocytes. Binding of Na+ and Ca2+ ions to its large cytosolic loop regulates ion transport of the exchanger. We determined the solution structures of two Ca2+ binding domains (CBD1 and CBD2) that, together with an alpha-catenin-like domain (CLD), form the regulatory exchanger loop. CBD1 and CBD2 are very similar in the Ca2+ bound state and describe the Calx-beta motif. Strikingly, in the absence of Ca2+, the upper half of CBD1 unfolds while CBD2 maintains its structural integrity. Together with a 7-fold higher affinity for Ca2+, this suggests that CBD1 is the primary Ca2+ sensor. Specific point mutations in either domain largely allow the interchange of their functionality and uncover the mechanism underlying Ca2+ sensing in NCX.  相似文献   

8.
The ubiquitous C2 domain is a conserved Ca2+ triggered membrane-docking module that targets numerous signaling proteins to membrane surfaces where they regulate diverse processes critical for cell signaling. In this study, we quantitatively compared the equilibrium and kinetic parameters of C2 domains isolated from three functionally distinct signaling proteins: cytosolic phospholipase A2-alpha (cPLA2-alpha), protein kinase C-beta (PKC-beta), and synaptotagmin-IA (Syt-IA). The results show that equilibrium C2 domain docking to mixed phosphatidylcholine and phosphatidylserine membranes occurs at micromolar Ca2+ concentrations for the cPLA2-alpha C2 domain, but requires 3- and 10-fold higher Ca2+ concentrations for the PKC-beta and Syt-IA C2 domains ([Ca2+](1/2) = 4.7, 16, 48 microM, respectively). The Ca2+ triggered membrane docking reaction proceeds in at least two steps: rapid Ca2+ binding followed by slow membrane association. The greater Ca2+ sensitivity of the cPLA2-alpha domain results from its higher intrinsic Ca2+ affinity in the first step compared to the other domains. Assembly and disassembly of the ternary complex in response to rapid Ca2+ addition and removal, respectively, require greater than 400 ms for the cPLA2-alpha domain, compared to 13 ms for the PKC-beta domain and only 6 ms for the Syt-IA domain. Docking of the cPLA2-alpha domain to zwitterionic lipids is triggered by the binding of two Ca2+ ions and is stabilized via hydrophobic interactions, whereas docking of either the PKC-beta or the Syt-IA domain to anionic lipids is triggered by at least three Ca2+ ions and is maintained by electrostatic interactions. Thus, despite their sequence and architectural similarity, C2 domains are functionally specialized modules exhibiting equilibrium and kinetic parameters optimized for distinct Ca2+ signaling applications. This specialization is provided by the carefully tuned structural and electrostatic parameters of their Ca2+ and membrane-binding loops, which yield distinct patterns of Ca2+ coordination and contrasting mechanisms of membrane docking.  相似文献   

9.
The independently folding C2 domain motif serves as a Ca(2+)-dependent membrane docking trigger in a large number of Ca(2+) signaling pathways. A comparison was initiated between three closely related C2 domains from the conventional protein kinase C subfamily (cPKC, isoforms alpha, beta, and gamma). The results reveal that these C2 domain isoforms exhibit some similarities but are specialized in important ways, including different Ca(2+) stoichiometries. In the absence of membranes, Ca(2+) affinities of the isolated C2 domains are similar (2-fold difference) while Hill coefficients reveal cooperative Ca(2+) binding for the PKC beta C2 domain but not for the PKC alpha or PKC gamma C2 domain (H = 2.3 +/- 0.1 for PKC beta, 0.9 +/- 0.1 for PKC alpha, and 0.9 +/- 0.1 for PKC gamma). When phosphatidylserine-containing membranes are present, Ca(2+) affinities range from the sub-micromolar to the micromolar (7-fold difference) ([Ca(2+)](1/2) = 0.7 +/- 0.1 microM for PKC gamma, 1.4 +/- 0.1 microM for PKC alpha, and 5.0 +/- 0.2 microM for PKC beta), and cooperative Ca(2+) binding is observed for all three C2 domains (Hill coefficients equal 1.8 +/- 0.1 for PKC beta, 1.3 +/- 0.1 for PKC alpha, and 1.4 +/- 0.1 for PKC gamma). The large effects of membranes are consistent with a coupled Ca(2+) and membrane binding equilibrium, and with a direct role of the phospholipid in stabilizing bound Ca(2+). The net negative charge of the phospholipid is more important to membrane affinity than its headgroup structure, although a slight preference for phosphatidylserine is observed over other anionic phospholipids. The Ca(2+) stoichiometries of the membrane-bound C2 domains are detectably different. PKC beta and PKC gamma each bind three Ca(2+) ions in the membrane-associated state; membrane-bound PKC alpha binds two Ca(2+) ions, and a third binds weakly or not at all under physiological conditions. Overall, the results indicate that conventional PKC C2 domains first bind a subset of the final Ca(2+) ions in solution, and then associate weakly with the membrane and bind additional Ca(2+) ions to yield a stronger membrane interaction in the fully assembled tertiary complex. The full complement of Ca(2+) ions is needed for tight binding to the membrane. Thus, even though the three C2 domains are 64% identical, differences in Ca(2+) affinity, stoichiometry, and cooperativity are observed, demonstrating that these closely related C2 domains are specialized for their individual functions and contexts.  相似文献   

10.
The C2 domain is a ubiquitous Ca(2+)-binding motif that triggers the membrane docking of many key signaling proteins during intracellular Ca(2+) signals. Site-directed spin labeling was carried out on the C2 domain of cytosolic phospholipase A(2) in order to determine the depth of penetration and orientation of the domain at the membrane interface. Membrane depth parameters, Phi, were obtained by EPR spectroscopy for a series of selectively spin-labeled C2 domain cysteine mutants, and for spin-labeled lipids and spin-labeled bacteriorhodopsin cysteine mutants. Values of Phi were combined with several other constraints, including the solution NMR structure, to generate a model for the position of the C2 domain at the membrane interface. This modeling yielded an empirical expression for Phi, which for the first time defines its behavior from the bulk aqueous phase to the center of the lipid bilayer. In this model, the backbones of both the first and third Ca(2+)-binding loops are inserted approximately 10 A into the bilayer, with residues inserted as deep as 15 A. The backbone of the second Ca(2+)-binding loop is positioned near the lipid phosphate, and the two beta-sheets of the C2 domain are oriented so that the individual strands make angles of 30-45 degrees with respect to the bilayer surface. Upon membrane docking, spin labels in the Ca(2+)-binding loops exhibit decreases in local motion, suggesting either changes in tertiary contacts due to protein conformational changes and/or interactions with lipid.  相似文献   

11.
Site-directed spin labeling was used to determine the membrane orientation and insertion of the C2A domain from synaptotagmin I. A series of single cysteine mutants of the C2A domain of synaptotagmin I was prepared and labeled with a sulfhydryl specific spin label. Upon Ca2+ or membrane binding, the EPR line shapes of these mutants reveal dramatic decreases in label mobility within the Ca2+-binding loops. This loss in mobility is likely due in part to a reduction in local backbone fluctuations within the loop regions. Power saturation was then used to determine the position of each spin-labeled site along the bilayer normal, and these EPR distance constraints were used along with the high-resolution solution structure of C2A to generate a model for the orientation and position of the domain at the membrane interface. This model places the polypeptide backbone of both the first and third Ca2+-binding loops in contact with the membrane interface, with several labeled side chains lying within the bilayer interior. All three Ca2+-binding sites lie near a plane defined by the lipid phosphates. This model indicates that there is some desolvation of this domain upon binding and that hydrophobic as well as electrostatic interactions contribute to the binding of C2A. When compared to the C2 domain from cPLA2 (Frazier et al. (2002) Biochemistry 41, 6282), a similar orientation for the beta-sandwich region is found; however, the cPLA2 C2 domain is translocated 5-7 A deeper into the membrane hydrocarbon. This difference in depth is consistent with previous biophysical data and with the difference that long-range electrostatic interactions and desolvation are expected to make to the binding of these two C2 domains.  相似文献   

12.
Ca2+-dependent facilitation (CDF) of voltage-gated calcium current is a powerful mechanism for up-regulation of Ca2+ influx during repeated membrane depolarization. CDF of L-type Ca2+ channels (Ca(v)1.2) contributes to the positive force-frequency effect in the heart and is believed to involve the activation of Ca2+/calmodulin-dependent kinase II (CaMKII). How CaMKII is activated and what its substrates are have not yet been determined. We show that the pore-forming subunit alpha(1C) (Ca(v)alpha1.2) is a CaMKII substrate and that CaMKII interaction with the COOH terminus of alpha1C is essential for CDF of L-type channels. Ca2+ influx triggers distinct features of CaMKII targeting and activity. After Ca2+-induced targeting to alpha1C, CaMKII becomes tightly tethered to the channel, even after calcium returns to normal levels. In contrast, activity of the tethered CaMKII remains fully Ca2+/CaM dependent, explaining its ability to operate as a calcium spike frequency detector. These findings clarify the molecular basis of CDF and demonstrate a novel enzymatic mechanism by which ion channel gating can be modulated by activity.  相似文献   

13.
The regulation of calcium levels across the membrane of the sarcoplasmic reticulum involves the complex interplay of several membrane proteins. Phospholamban is a 52 residue integral membrane protein that is involved in reversibly inhibiting the Ca(2+) pump and regulating the flow of Ca ions across the sarcoplasmic reticulum membrane during muscle contraction and relaxation. The structure of phospholamban is central to its regulatory role. Using homonuclear rotational resonance NMR methods, we show that the internuclear distances between [1-(13)C]Leu7 and [3-(13)C]Ala11 in the cytoplasmic region, between [1-(13)C]Pro21 and [3-(13)C]Ala24 in the juxtamembrane region and between [1-(13)C]Leu42 and [3-(13)C]Cys46 in the transmembrane domain of phospholamban are consistent with alpha-helical secondary structure. Additional heteronuclear rotational-echo double-resonance NMR measurements confirm that the secondary structure is helical in the region of Pro21 and that there are no large conformational changes upon phosphorylation. These results support the model of the phospholamban pentamer as a bundle of five long alpha-helices. The long extended helices provide a mechanism by which the cytoplasmic region of phospholamban interacts with residues in the cytoplasmic domain of the Ca(2+) pump.  相似文献   

14.
The C2 domain acts as a membrane-targeting module in a diverse group of proteins including classical protein kinase Cs (PKCs), where it plays an essential role in activation via calcium-dependent interactions with phosphatidylserine. The three-dimensional structures of the Ca(2+)-bound forms of the PKCalpha-C2 domain both in the absence and presence of 1, 2-dicaproyl-sn-phosphatidyl-L-serine have now been determined by X-ray crystallography at 2.4 and 2.6 A resolution, respectively. In the structure of the C2 ternary complex, the glycerophosphoserine moiety of the phospholipid adopts a quasi-cyclic conformation, with the phosphoryl group directly coordinated to one of the Ca(2+) ions. Specific recognition of the phosphatidylserine is reinforced by additional hydrogen bonds and hydrophobic interactions with protein residues in the vicinity of the Ca(2+) binding region. The central feature of the PKCalpha-C2 domain structure is an eight-stranded, anti-parallel beta-barrel with a molecular topology and organization of the Ca(2+) binding region closely related to that found in PKCbeta-C2, although only two Ca(2+) ions have been located bound to the PKCalpha-C2 domain. The structural information provided by these results suggests a membrane binding mechanism of the PKCalpha-C2 domain in which calcium ions directly mediate the phosphatidylserine recognition while the calcium binding region 3 might penetrate into the phospholipid bilayer.  相似文献   

15.
A sustained Ca2+ entry is the primary signal for T lymphocyte activation after antigen recognition. This Ca2+ entry mainly occurs through store-operated Ca2+ channels responsible for a highly selective Ca2+ current known as I(CRAC). Ca2+ ions act as negative feedback regulators of I(CRAC), promoting its inactivation. Mitochondria, which act as intracellular Ca2+ buffers, have been proposed to control all stages of CRAC current and, hence, intracellular Ca2+ signaling in several types of non-excitable cells. Using the whole-cell configuration of the patch clamp technique, which allows control of the intracellular environment, we report here that respiring mitochondria located close to CRAC channels can regulate slow Ca2+-dependent inactivation of I(CRAC) by increasing the Ca2+-buffering capacity beneath the plasma membrane, mainly through the release of ATP.  相似文献   

16.
The C2 domain of cytosolic phospholipase A2 (cPLA2) is involved in the Ca2+-dependent membrane binding of this protein. To identify protein residues in the C2 domain of cPLA2 essential for its Ca2+ and membrane binding, we selectively mutated Ca2+ ligands and putative membrane-binding residues of cPLA2 and measured the effects of mutations on its enzyme activity, membrane binding affinity, and monolayer penetration. The mutations of five Ca2+ ligands (D40N, D43N, N65A, D93N, N95A) show differential effects on the membrane binding and activation of cPLA2, indicating that two calcium ions bound to the C2 domain have differential roles. The mutations of hydrophobic residues (F35A, M38A, L39A, Y96A, Y97A, M98A) in the calcium binding loops show that the membrane binding of cPLA2 is largely driven by hydrophobic interactions resulting from the penetration of these residues into the hydrophobic core of the membrane. Leu39 and Val97 are fully inserted into the membrane, whereas Phe35 and Tyr96 are partially inserted. Finally, the mutations of four cationic residues in a beta-strand (R57E/K58E/R59E/R61E) have modest and negligible effects on the binding of cPLA2 to zwitterionic and anionic membranes, respectively, indicating that they are not directly involved in membrane binding. In conjunction with our previous study on the C2 domain of protein kinase C-alpha (Medkova, M., and Cho, W. (1998) J. Biol. Chem. 273, 17544-17552), these results demonstrate that C2 domains are not only a membrane docking unit but also a module that triggers membrane penetration of protein and that individual Ca2+ ions bound to the calcium binding loops play differential roles in the membrane binding and activation of their parent proteins.  相似文献   

17.
The novel alpha1D Ca2+ channel together with alpha1C Ca2+ channel contribute to the L-type Ca2+ current (I(Ca-L)) in the mouse supraventricular tissue. However, its functional role in the heart is just emerging. We used the alpha1D gene knockout (KO) mouse to investigate the electrophysiological features, the relative contribution of the alpha1D Ca2+ channel to the global I(Ca-L), the intracellular Ca2+ transient, the Ca2+ handling by the sarcoplasmic reticulum (SR), and the inducibility of atrial fibrillation (AF). In vivo and ex vivo ECG recordings from alpha1D KO mice demonstrated significant sinus bradycardia, atrioventricular block, and vulnerability to AF. The wild-type mice showed no ECG abnormalities and no AF. Patch-clamp recordings from isolated alpha1D KO atrial myocytes revealed a significant reduction of I(Ca-L) (24.5%; P < 0.05). However, there were no changes in other currents such as I(Na), I(Ca-T), I(K), I(f), and I(to) and no changes in alpha1C mRNA levels of alpha1D KO atria. Fura 2-loaded atrial myocytes showed reduced intracellular Ca2+ transient (approximately 40%; P < 0.05) and rapid caffeine application caused a 17% reduction of the SR Ca2+ content (P < 0.05) and a 28% reduction (P < 0.05) of fractional SR Ca2+ release in alpha1D KO atria. In conclusion, genetic deletion of alpha1D Ca2+ channel in mice results in atrial electrocardiographic abnormalities and AF vulnerability. The electrical abnormalities in the alpha1D KO mice were associated with a decrease in the total I(Ca-L) density, a reduction in intracellular Ca2+ transient, and impaired intracellular Ca2+ handling. These findings provide new insights into the mechanism leading to atrial electrical dysfunction in the alpha1D KO mice.  相似文献   

18.
Several crystal and NMR structures of calmodulin (CaM) in complex with fragments derived from CaM-regulated proteins have been reported recently and reveal novel ways for CaM to interact with its targets. This review will discuss and compare features of the interaction between CaM and its target domains derived from the plasma membrane Ca2+-pump, the Ca2+-activated K+-channel, the Ca2+/CaM-dependent kinase kinase and the anthrax exotoxin. Unexpected aspects of CaM/target interaction observed in these complexes include: (a) binding of the Ca2+-pump domain to only the C-terminal part of CaM (b) dimer formation with fragments of the K+-channel (c) insertion of CaM between two domains of the anthrax exotoxin (d) binding of Ca2+ ions to only one EF-hand pair and (e) binding of CaM in an extended conformation to some of its targets. The mode of interaction between CaM and these targets differs from binding conformations previously observed between CaM and peptides derived from myosin light chain kinase (MLCK) and CaM-dependent kinase IIalpha (CaMKIIalpha). In the latter complexes, CaM engulfs the CaM-binding domain peptide with its two Ca2+-binding lobes and forms a compact, ellipsoid-like complex. In the early 1990s, a model for the activation of CaM-regulated proteins was developed based on this observation and postulated activation through the displacement of an autoinhibitory or regulatory domain from the target protein upon binding of CaM. The novel structures of CaM-target complexes discussed here demonstrate that this mechanism of activation may be less general than previously believed and seems to be not valid for the anthrax exotoxin, the CaM-regulated K+-channel and possibly also not for the Ca2+-pump.  相似文献   

19.
植物液泡膜阳离子/H+反向转运蛋白结构和功能研究进展   总被引:1,自引:0,他引:1  
阳离子转运蛋白在调节细胞质阳离子浓度过程中发挥关键作用。液泡是一个储存多种离子的重要细胞器,阳离子 (Ca2+)/H+反向转运蛋白CAXs定位在液泡膜上,主要参与Ca2+向液泡的转运,也参与其他阳离子的转运。近年来,植物中分离鉴定了多个CAX基因,植物CAXs主要有4个功能域:NRR通过自抑制机制调节Ca2+转运活性,CaD和C功能域分别赋予CAXs的Ca2+和Mn2+专一性转运活性,D功能域可调节细胞质pH。拟南芥AtCAXs参与植物的生长发育和胁迫适应过程,AtCAX3主要在盐胁迫下转运Ca2+,At  相似文献   

20.
Synaptotagmin 1 probably functions as a Ca2+ sensor in neurotransmitter release via its two C2-domains, but no common Ca2+-dependent activity that could underlie a cooperative action between them has been described. The NMR structure of the C2B-domain now reveals a beta sandwich that exhibits striking similarities and differences with the C2A-domain. Whereas the bottom face of the C2B-domain has two additional alpha helices that may be involved in specialized Ca2+-independent functions, the top face binds two Ca2+ ions and is remarkably similar to the C2A-domain. Consistent with these results, but in contrast to previous studies, we find that the C2B-domain binds phospholipids in a Ca2+-dependent manner similarly to the C2A-domain. These results suggest a novel view of synaptotagmin function whereby the two C2-domains cooperate in a common activity, Ca2+-dependent phospholipid binding, to trigger neurotransmitter release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号