首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The photoreversible nature of the regulation of nitrate reductase is one of the most interesting features of this enzyme. As well as other chemicals, NH2OH reversibly inactivates the reduced form of nitrate reductase from Ankistrodesmus braunii. From the partial activities of the enzyme, only terminal nitrate reductase is affected by NH2OH. To demonstrate that the terminal activity was readily inactivted by NH2OH, the necessary reductants of the terminal part of the enzyme had to be cleared of dithionite since this compound reacts chemically with NH2OH. Photoreduced flavins and electrochemically reduced methyl viologen sustain very effective inactivation of terminal nitrate reductase activity, even if the enzyme was previously deprived of its NADH-dehydrogenase activity. The early inhibition of nitrate reductase by NH2OH appears to be competitive versus NO3. Since NO3, as well as cyanate, carbamyl phosphate and azide (competitive inhibitors of nitrate reductase versus NO3), protect the enzyme from NH2OH inactivation, it is suggested that NH2OH binds to the nitrate active site. The NH2OH-inactivated enzyme was photoreactivated in the presence of flavins, although slower than when the enzyme was previously inactivated with CN. NH2OH and NADH concentrations required for full inactivation of nitrate reductase appear to be low enough to potentially consider this inactivation process of physiological significance.  相似文献   

3.
Fixation of 14CO2 by synchronized cultures of Ankistrodesmus braunii was highest for young growing cells, low for mature cells, and lowest for dividing cells. The amount of 14C excreted during photosynthesis followed the same trend. Cells at the end of the growing phase, after 10 hours of a 16-hour light phase, excreted nearly 35% of the total 14C fixed as one product, glycolate. Dividing cells from the dark phase, when tested in the light, excreted only 4% as much glycolate-14C as the young growing cells. Dividing cells also excreted as much mesotartrate as glycolate and also some isocitrate lactone and an unidentified acid. None of these excreted acids were found inside the cells in significant amounts. Methods for isolation and identification of the excreted acids are present. With 14C-labeled algae, it was shown that the excretion of glycolate was light-dependent and inhibited by 1,1-dimethyl-3-(p-chlorophenyl) urea. The excretion of labeled mesotartrate, isocitrate lactone, and an unknown acid, but not glycolate, also occurred in the dark. The excreted mesotartrate was predominantly carboxyl-labeled even after long periods of 14CO2 fixation. Since glycolate is known to be uniformly labeled, glycolate could not be the precursor of the carboxyl-labeled mesotartrate. The reason for the specific excretion of glycolate, mesotartrate, and isocitrate lactone is not known, but the metabolism of all three acids by the algae may be limited and each can form dilactides or lactones by dehydration. In this context isocitrate lactone was excreted rather than the free acid.  相似文献   

4.
Summary The occurrence of heterotrophic nitrification in nitrogen-starved cells of Ankistrodesmus braunii was confirmed. The levels of nitrate and nitrite were measured over a period of four weeks. The validity of quantitative determinations in the presence of highly active nitrate and nitrite reductases is discussed. Whereas free hydroxylamine as an intermediate could not be detected, increased hydroxylamine oxidase activity was found in nitrogen-starved cultures. Nitrite reductase and hydroxylamine oxidase can be assigned to particles by sucrose density gradient centrifugation. The possible involvement of microbodies, which were found to be present in Ankistrodesmus, in metabolic processes during nitrogen starvation is discussed.Abbreviations NR nitrate reductase - NiR nitrite reductase - NNEDA N-(1-naphthyl)ethylenediaminedihydrochloride - DCPIP 2,6-dichlorophenolindophenol - EDTA ethylenediaminetetraacetic acid - TCA trichloroacetic acid - DAB 3,3-diaminobenzidine - AT 3-amino-1H-1,2,4-triazole - AMP 2-amino-2-methyl-1,3-propanediol  相似文献   

5.
Various regulators of protein kinase activities were tested for their effects on the in vitro transfer of phosphate from [gamma-32P]ATP to four proteins of rat brain synaptic particulate preparations. One protein, of apparent molecular weight 44,000, accepted 32P in the presence of 8 mM EDTA and no added Mg2+. It was the major phosphoprotein of brain mitochondria. Its phosphorylation was inhibited by pyruvate and stimulated by K+, and it comigrated in electrophoretic gels with authentic alpha-subunit of pyruvate: lipoamide oxidoreductase (decarboxylating) (EC 1.2.4.1) from bovine heart. The major kinase acting on three proteins of apparent molecular weights 24,000, 21,000, and 19,000 was stimulated by Ca2+, by preincubation with phospholipase C, and by 12-tetradecanoyl 4-beta-phorbol 13-acetate. Phosphorylation of these lower-molecular-weight proteins was inhibited by ACTH1-24, by cyclic 3',5'-adenosine monophosphate, and by 50 microM trifluoperazine. The stimulatory effect of Ca2+ was antagonized by calmodulin. The kinase in question appears to be B-50 protein kinase or protein kinase C.  相似文献   

6.
The unicellular, green alga Ankistrodesmus braunii is subjectto a rapid photoinhibition of photosynthesis when exposed toa photon fluence rate in excess of that required to saturatephotosynthesis. Photoinhibition is manifested as a time-dependentdecrease in the capacity for either 14CO2 fixation or CO2-dependentO2 evolution. Room temperature chlorophyll fluorescence inductionin intact cells, has been used to probe the primary site(s)of light damage during photoinhibition. Initially, at least,photoinhibition is due to a block in Photosystem II of photosyntheticelectron transport, at a site on the water-splitting side. (Received September 19, 1983; Accepted February 7, 1984)  相似文献   

7.
Chlorophyll (Chl) a and b content, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) content and activity, and electron transport rate were measured in flag leaves of wheat genotypes Uniculm and Kalyansona, grown at suboptimal and optimal supply of nitrogen. The Chl content, RuBPCO activity, and electron transport rate were decreased due to suboptimal nitrogen supply only in Kalyansona. There was no change in the ratio of RuBPCO and photosystem 2 (PS2) activity at various stages which suggests that there was no alteration in distribution of N due to additional N supply. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Koesmaryono  Y.  Sugimoto  H.  Ito  D.  Haseba  T.  Sato  T. 《Photosynthetica》1998,35(4):573-578
The diurnal variation of net photosynthetic (PN) and transpiration (E) rates in soybean [Glycine max (L.) Merr. cv. Fukuyutaka] plants grown under 100, 50, or 25 % of full sun irradiance (I100, I50, I25 plants) were compared. In the morning, activities of the plants were measured at irradiances under which they grew. However, during the afternoon, all the plants were tested under full irradiance. The lower the growth irradiance, the lower PN, E, and mesophyll conductance values were found. Stomatal conductance was considerably lower in I25 plants only. Both the increase in specific leaf area (SLA) and the decrease in nitrogen content per leaf area unit contributed to the PN reduction of soybean plants grown under low irradiances. Though E of the plants grown under different irradiances differed less markedly than PN, the water use efficiency declined from I100 to I25.  相似文献   

9.
10.
Properties of fish gelatin (FG) gel as affected by gellan (GL) at different levels (2.5–7.5% FG substitution) in combination with calcium chloride (CaCl2) at various concentrations (3–9 mM) were studied. Gel strength and hardness of FG/GL mixed gel increased as the levels of GL increased (P < 0.05). Increasing CaCl2 concentration also resulted in the increases in both gel strength and hardness of mixed gel when GL at the same level was incorporated (P < 0.05). Conversely, the increasing GL and CaCl2 levels caused a decrease in springiness but an increase in syneresis of mixed gels (P < 0.05). Gelling and melting temperatures were increased in the mixed gel as levels of GL and CaCl2 increased. L*- and b*-values of mixed gels decreased, whereas ?E*-value increased with increasing GL and CaCl2 levels (P < 0.05). Microstructure studies revealed that denser structure with smaller voids in gel network was observed in the mixed gel in the presence of CaCl2 at higher levels. However, mixed gels incorporated with GL above 5%, regardless of CaCl2 levels, yielded the lower likeness score than FG gel (control) (P < 0.05). The addition of GL at low level (2.5%) with CaCl2 (up to 6 mM) had no adverse effect on sensory property of mixed gels but could improve gelling property of FG via increasing gel strength and gelling point.  相似文献   

11.
Ge  Y.  Lu  Y.-J.  Liao  J.-X.  Guan  B.-H.  Chang  J. 《Photosynthetica》2004,42(3):387-391
We compared the photosynthetic traits in response to soil water availability in an endangered plant species Mosla hangchowensis Matsuda and in a weed Mosla dianthera (Buch.-Ham.) Maxim. The highest diurnal mean net photosynthetic rate (P Nmean), stomatal conductance (g s), and water use efficiency (WUE) of both species occurred at 60 % soil water holding capacity (WHC), while the lowest values occurred at 20 % WHC. The P Nmean, g s, and chlorophyll (Chl) a and b contents of M. hangchowensis were lower than those of M. dianthera, while the physiological plasticity indices were higher than those of M. dianthera. M. hangchowensis had strong adaptability to the changing soil water status but weak extending population ability in its habitats because of the low P Nmean, which may be one of the causes of its endangerment.  相似文献   

12.
13.
In Ankistrodesmus braunii, in the absence of CO2, i.e. in CO2-free air or N2, photosynthetic nitrate uptake and nitrate reduction were inhibited, especially at low pH. Under such conditions, glucose stimulated nitrate uptake and reduction to almost the same level in the pH range between 6 and 8.5. CO2 at 0.03% effected an intermediate pH dependence of nitrate uptake; saturating CO2 concentration (more than 1%) eliminated the pH dependence, as did glucose, but the rates were enhanced compared with glucose. Glucose and, even more, CO2, drastically reduced the release of nitrite and ammonia to the medium, the stoichiometry between alkalinization of the medium and nitrate uptake (OH/NO3) approached 1.  相似文献   

14.
The mode of adaptation of the photosynthetic apparatus of three unicellular green algae, Ankistrodesmus braunii, Chlorella fusca and Chlorella saccharophila to red and blue light are documented by the fluence-rate curves of photosynthetic oxygen evolution. For all three algae tested photosynthetic capacity, respiration and light compensation point were higher for cells grown under red light, while the chlorophyll content increased in blue light-grown cells. Blue light-adapted cells have a lower chlorophyll a to chlorophyll b ratio and more chlorophyll in the light-harvesting system than red light-adapted cells, as shown in the electrophoretic profile of the pigment-protein complexes. It is concluded that the action of red light resembles that of high levels of white light, while blue light causes the same effects as low levels of white light. In agreement with previous publications these findings indicate that the mode of adaptation to different light qualities is ubiquitous in unicellular green algae.  相似文献   

15.
1. It was demonstrated by silica gel thin layer chromatography that leucine-U-14C was incorporated into furanoterpenes, e. g. ipomeamarone, in sweet potato root tissue infected by Ceratocystis fimbriata.

2. Further proof for ipomeamarone synthesis from leucine-U-14C was obtained by the constancy of the specific radioactivity of ipomeamarone semicarbazone through repetitive crystallization.

3. The synthetic pathway of ipomeamarone from leucine was found to be connected with the synthetic pathway from acetate at least at some steps.

4. Leucine-U-14C was incorporated into both saponifiable and non-saponifiable materials in the same way as acetate-2-14C.  相似文献   

16.
The stomatal conductance and rate of photosynthesis of tropicaltree seedlings are reported (Terminalia ivorensis, T. superba,Triplochiton scleroxylon and Khaya senegalensis). The seedlingswere grown in various light regimes, defined by the photon fluxdensity and red: far-red ratio. Mesophyll conductance and apparentquantum efficiency were calculated. The maximum rates of photosynthesison an area or weight basis depended on the photon flux densityduring growth, being increased by growth at high photon fluxdensity except in the shade tolerant seedlings of K. senegalensis.The stomatal conductance was also highest in leaves which hadbeen grown at high photon flux density. Using plants which hadbeen grown at low photon flux density and contrasting red: far-redratio, it was found that the highest rates of photosynthesiswere attained when the red: far-red ratio was low. The resultsare discussed in relation to what is known of the natural lightclimate, and evaluated in relation to the carbon balance ofseedlings. Terminalia ivorensis, Terminalia superba, Triplochiton scleroxylon, Khaya senegalensis, tropical tree, photosynthesis, stomata, shade, red: far-red  相似文献   

17.
The water-insoluble 1,4-β-linked products formed from UDP-[14C]glucose by pea membranes were dissolved in hot dimethyl-sulfoxide/paraformaldehyde and fractionated on columns of controlled pore glass beads calibrated with dextran standards. The products eluted with a peak size close to 70 kilodaltons in dextran equivalents. Similar elution profiles were obtained for products formed in brief or extended incubations and at high or low substrate concentrations. Methylation analysis indicated that only a few [14C]glucose units had been added to an endogenous acceptor to form this product. In the presence of UDP-xylose at concentrations equal to or less than UDP-[14C]glucose, incorporation from the latter was enhanced and the products elongated with time to a size range where the major components eluted between dextran 264 and 500 kilodaltons. Treatment with endo-1,4-β-glucanase resulted in a mixture of oligosaccharides, including the xyloglucan subunit Glc4Xyl3, which were hydrolyzed further by mixed glycosidases to labeled glucose and isoprimeverose (xylosyl-1,6-α-d-glucose). In pulse-chase experiments, the low molecular weight product formed from UDP-[14C]glucose alone was clearly a precursor for high molecular weight products formed subsequently in the presence of both UDP-glucose and UDP-xylose. It is concluded that the 1,4-β-transglucosylation activity detected in these tests was due to an enzyme that is required for biosynthesis of the backbone of xyloglucan.  相似文献   

18.
19.
Aminoacyl-tRNAs (aa-tRNAs) are delivered to the ribosome as part of the ternary complex of aa-tRNA, elongation factor Tu (EF-Tu) and GTP. Here, we present a cryo-electron microscopy (cryo-EM) study, at a resolution of approximately 9 A, showing that during the incorporation of the aa-tRNA into the 70S ribosome of Escherichia coli, the flexibility of aa-tRNA allows the initial codon recognition and its accommodation into the ribosomal A site. In addition, a conformational change observed in the GTPase-associated center (GAC) of the ribosomal 50S subunit may provide the mechanism by which the ribosome promotes a relative movement of the aa-tRNA with respect to EF-Tu. This relative rearrangement seems to facilitate codon recognition by the incoming aa-tRNA, and to provide the codon-anticodon recognition-dependent signal for the GTPase activity of EF-Tu. From these new findings we propose a mechanism that can explain the sequence of events during the decoding of mRNA on the ribosome.  相似文献   

20.
Changes in phosphorus metabolism were studied by examining the incorporation of32P and33P into cells ofCandida utilis growing in phased culture during a 6 h cell cycle and a post-cycle period of 6 h. Three different chemically defined media were used; these were phosphorus, nitrogen and carbon limited. The patterns of incorporation of phosphorus into RNA, DNA, lipid and cold water extractable phosphate fractions showed a non-uniform behaviour during both cell cycle and post-cycle periods. The patterns were different in all three types of media. The results showed that a cell can grow and develop at a fixed growth rate in different ways: so that the pattern of behaviour during a cell cycle is not stereotyped for a given doubling time, but largely depends upon the nutrient environment in which the cell exists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号