共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Kinetic studies of interaction between acridine orange and DNA 总被引:1,自引:0,他引:1
The interaction between acridine orange (AO) and deoxyribonucleic acid (DNA) was studied by the stopped-flow method. The spectral change of AO due to interaction with DNA was followed over the wavelength range 350–600 nm at various concentration ratios of DNA phosphate to dye. The spectral change observed by the stopped-flow method was found distinctly different from that, during the dead-time, leading to a conclusion that the binding of AO to the outside of DNA occurs much faster than the intercalation into base pairs of DNA. The dependence of the rate of reaction on the reactant concentration and on the salt, concentration of the solution was also studied. The results are consistent with the mechanism that the intercalation proceeds via the outside bound state. 相似文献
3.
M G Strakhovskaia N A Kirpichnikova G Ia Fra?kin 《Nauchnye doklady vysshe? shkoly. Biologicheskie nauki》1986,(11):33-36
The interaction of serotonin and acridine orange dye with DNA isolated from bacterium Escherichia coli and the yeast Candida utilis has been analysed by spectrofluorimetric method. Using data on competitive binding to DNA of serotonin and acridine orange, known as DNA intercalator, a conclusion concerning the formation of intercalated complex between serotonin and DNA has been made. It is shown that for yeast DNA the constant of intercalated binding of serotonin is 3,5-fold smaller than for the bacterial one. 相似文献
4.
5.
Study on the interaction between cannabinol and DNA using acridine orange as a fluorescence probe 下载免费PDF全文
Zhengshan Tian Zechun Wang Xinxin Han Ning Wang Ruiyong Wang 《Journal of molecular recognition : JMR》2018,31(2)
The interaction between cannabinol (CBN) and herring‐sperm deoxyribonucleic acid was investigated by using acridine orange as a fluorescence probe in this work. UV‐Vis spectroscopy, fluorescence spectroscopy, and DNA melting techniques were used. The fluorescence of DNA acridine orange was quenched by CBN. The results indicated that CBN can bind to DNA. The binding constant for the CBN and herring‐sperm deoxyribonucleic acid was obtained at 3 temperatures, respectively. Results of molecular docking corroborated the experimental results obtained from spectroscopic investigations. The influence of ionic strength on the fluorescence properties was also investigated. The thermodynamic results indicated that hydrophobic interaction played a major role in the binding between CBN and DNA. 相似文献
6.
Charles R. Stewart 《Biopolymers》1968,6(12):1737-1743
Acridine Orange, at appropriate intermediate concentrations, causes a substantial broadening of the thermal transitions of Bacillus subtilis DNA and of dAT. Experiments in which the two polymers are healed together show that the broadening is the result of the transfer of acridine orange molecules from denatured to native DNA molecules. 相似文献
7.
The absorption and rotatory properties of acridine orange-poly-S-carboxymethyl-L -cysteine system in water and in 0.2 M NaCl have been measured at different pH and polymer-to-dye mixing ratios. The absorption spectra indicate that the dyes are bound to the polymer in dimeric or highly aggregated forms. At neutral pH where the polymer is randomly coiled, no optical activity is induced on the absorption bands of bound acridine orange. At acid pH where the polymer has the β-conformation, a pair of positive and negative circular dichroic bands occur at each of the absorption bands, centered around 458 and 261 mμ. The signs of those bands are opposite to those found for α-helical poly-L -glutamic acid. A model for the binding of dye to the β-form polymer is presented, in which dimeric dyes are attached to ionized carboxyl groups and slack one another to form linear arrays on both sides of an extended polypeptide chain. The observed circular dichroism spectra can be explained by the Tinoco's exciton mechanism, based on this model. Low molecular weight poly-S-carboxymethyl-L -cysteine induces quite a different circular dichroism on bound acridine orange. 相似文献
8.
The circular dichroism (CD) spectra of DNA–acridine orange (DNA–AO) complex in the visible region were measured at DNA phosphate-to-dye ratios (P/D) from 1 to 550. The CD spectrum of DNA–AO complex in the P/D ratio between 1 and approximately 40 consists of four components, i.e., positive CD bands centered at 510 and 480 mμ, and negative CD bands at 497 and 468 mμ. The CD bands at 510 and 468 mμ are optimum at P/D = 4, and the change of ε1 ? εr with P/D suggests that both of them are induced from the interaction between dye molecules bound to adjacent DNA binding sites, each of which is composed of four nucleotides. This is supported by the fact that the values of ε1 ? εr for both decrease with increasing temperature or increasing methylene blue concentration added to the complex. The negative Cotton effect at, 497 mμ is most favored at larger P/D ratio (~8), and the suggested assignment is to the interaction between two dye molecules bound with an empty site between them. A positive Cotton effect at 480 mμ is observed at P/D ratio of less than 4 and is optimum at 1. Above P/D ratio of 40, the CD spectrum of the complex can not be resolved into its components and even at sufficiently high P/D ratio (550) the complex shows a small Cotton effect. 相似文献
9.
10.
11.
E B Moroshkina T F Stepanova V V Raketskaia E V Frisman 《Molekuliarnaia biologiia》1987,21(2):389-395
The comparative studies of the formation of DNA-complexes with the acridines containing one and two chromophores were accomplished. It was shown that both of acridines were bonded with DNA by means of intercalation irrespective of the ionic strength of medium (mu). When mu = 0.1 the diacridine (1,6-bis(9-acridylamino)-hexan) behaves as an mono-intercalator. Under these conditions both of the ligands exert equal influence of the molecular parameters of DNA. When mu = 0.001 the binding mode of the diacridine with DNA depends on its concentration in a complex. If a number of diacridine molecules on a pair of nucleotides (r) falls in a region 0 less than r less than 0.2 its binding with DNA is accomplished via the bis-intercalation mode and accompanied by the structure distortion of the monomer remnant of the macromolecule. As r increases from 0.2 to 0.4 the gradual change of the binding mode of the diacridine with DNA from bis-intercalation to mono-intercalation takes place. Moreover the structure of nucleotides is reduced. When mu = 0.001 the behaviour of DNA complexes with mono-acridine is analogous to the observed one when mu = 0.1. 相似文献
12.
13.
The interaction between acridine orange (AO) and diluted and concentrated solutions of DNA, DNP systems and chromatin suspension at the physiologic ionic strength was investigated. The effect of AO on DNP systems was also investigated. It was shown that highest possible number of AO molecules bound to DNA made up 70% of the total number of nucleotides. The model of AO binding to DNA is proposed and used for calculation of constants of stronger and weaker AO-binding capacities equal to 6-10(6) M-1 and 1,7-10(5) M-1, respectively. The AO-DNA binding constants in DNP-complex are five as low. The primary number of binding sites in chromatin suspension made up 10% of the corresponding sites in DNA and increased as AO was adsorbed. AO induced the supercontraction of oriented DNP systems at the physiologic ionic strength and the appearance of the low-temperature melting hump. 相似文献
14.
M M Roth 《Journal of bacteriology》1967,93(1):506-507
15.
16.
17.
The mechanism of interaction of acridine orange (AO), a fluorescent, weak base, with rabbit kidney brush border membrane vesicles (BBMV) has been studied by absorption, and steady-state and time-resolved fluorescence spectroscopy. Equilibrium binding experiments indicate that AO binds to an apparent single class of sites on BBMV with a dissociation constant of 90 microM and site stoichiometry of 810 nmol/mg protein. The absorption spectra AO indicate that BBMV induces aggregation of AO; experiments with lipid vesicles show that the aggregation requires BBMV membrane proteins. Fluorescence stopped-flow experiments in which 0.15 mg/ml BBMV is mixed with increasing concentrations of AO result in a time course of fluorescence enhancement for [AO] less than 1.5 microM, and of fluorescence quenching for [AO] greater than 1.5 microM. Similar stopped-flow experiments with phosphatidylcholine lipid vesicles result only in a fluorescence enhancement time course. These results indicate the presence of two parallel pathways for AO binding to BBMV: one for AO binding to BBMV lipid, the other for AO binding to BBMV protein. Nanosecond lifetime measurements and fluorescence titration experiments confirm the presence of two environments for AO in BBMV. Fluorescence stopped-flow experiments indicate that AO responds to the imposition of an outwardly directed proton gradient by a rapid (less than 0.5 s) decrease in fluorescence, corresponding to re-equilibration of AO into the acidic intravesicular compartment, followed by an increase in fluorescence, corresponding to proton flux across the membrane. These findings have been incorporated into a stepwise mechanism for AO interaction with BBMV which have direct implications for the use of AO as a pH indicator in biological systems. 相似文献
18.
19.
Z. Darżynkiewicz F. Traganos T. Sharpless M.R. Melamed 《Experimental cell research》1975,90(2):411-428
Thermal denaturation of nuclear DNA is studied in situ in individual cells or isolated cell nuclei by employing the property of the fluorochrome acridine orange (AO) to differentially stain native and denatured DNA and by using an automated flow-through cytofluorimeter for measurement of cell fluorescence. RNAse-treated cells, or cell nuclei, are heated, stained and measured while in suspension and AO-DNA interaction is studied under equilibrium conditions. Measurements are made rapidly (200 cells/sec); subpopulations of cells from a measured sample can be chosen on the basis of differences in their staining or light-scattering properties and analysed separately. DNA denaturation in situ is rapid; it approaches maximum during the first 5 min of cell heating. Divalent cations stabilize DNA against denaturation. At low pH the transition occurs at lower temperature and the width of the transition curves (‘melting profiles’) is increased. Decrease in ionic strength lowers the DNA melting temperature. This effect is much more pronounced in cells pretreated with acids under conditions known to remove histones. Histones thus appear to stabilize DNA in situ by providing counterions. At least four separate phases can be distinguished in melting profiles of DNA in situ; they are believed to indicate different melting points of DNA in complexes with particular histones. A decrease in cell (nuclear) ability to scatter light coincides with DNA melting in situ, possibly representing altered refractive and/or reflective properties of cell nuclei. Formaldehyde, commonly used to prevent DNA renaturation, is not used in the present method. The heat-induced alterations in nuclear chromatin are adequately stabilized after cell cooling in the absence of this agent. Cells heated at 60–85 °C exhibit increased total fluorescence after AO-staining, which is believed to be due to unmasking of new sites on DNA. This increase is neither correlated with DNA melting, nor with the presence of histones. Possibly, it reflects destruction of DNA superstructure maintained at lower temperatures by DNA associations with other than histone macromolecules (nuclear membrane). 相似文献
20.
The photosensitized degradation of guanosine by acridine orange 总被引:3,自引:0,他引:3