首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract LXA-1, a novel plasmid-mediated β-lactamase, was observed in clinical isolates of Klebsiella oxytoca, Klebsiella pneumoniae, Citrobacter freundii and Enterobacter cloacae . All the strains additionally produced TEM-1 β-lactamase. LXA-1 had an M r of 24 000 and a pI of 6.7. It hydrolysed benzyl-penicillin, ampicillin, carbenicillin and first generation cephalosporins, but not methicillin, oxacillin or cefotaxime. Clavulanate and cloxacillin were inhibitors. Studies of one of the E. cloacae isolates showed that LXA-1 was encoded by a 41-MDa IncFII plasmid distinct from that encoding TEM-1 enzyme in the strain. Transconjugants which acquired LXA-1 production, but not TEM-1, exhibited only low-level resistance to substrate β-lactams.  相似文献   

2.
Abstract We have determined the nucleotide sequence of the blaT -3 gene of plasmid pCF04 which confers resistance to penicillins and most cephalosporins by mediating the production of TEM-3 β-lactamase. The deduced amino acid sequence of TEM-3 differed in two positions from that of the TEM-2 penicillinase: Lys (TEM-3) for Glu (TEM-2) at position 102, and Ser (TEM-3) for Gly (TEM-2) at position 236 of the unprocessed protein. Examination of the location of the two modified amino acids of TEM-3 in the tertiary structure of class A β-lactamases suggested that they both are part of the substrate binding site. Analysis, by in vitro recombination, indicated that each mutation contributes to the extented substrate range of the enzyme, compared to that of the TEM-type penicillinase, and that the strength of the promoter of blaT -3 is responsible for high-level resistance towards broad-spectrum cephalosporins of strains producing TEM-3.  相似文献   

3.
A range of concentrations of ceftazidime (4–64 mg I-1) was shown to cause no induction of the TEM-1 and TEM-5 β-lactamases produced by Escherichia coli Nb. Increasing the concentration of ceftazidime in cultures of E. coli Nb caused a concomitant increase in the intensity of a satellite band of pI 5.2. The same increase in this satellite band was observed when ceftazidime was added to cell-free β-lactamase peparations from E. coli Nb and the separate addition of 11 different β-lactams to TEM-1 showed that each compound produced its own unique pattern of satellite bands. In addition, the mixing of ceftazidime with TEM-1 and 13 other TEM-derived β-lactamases caused a similar satellite band to be observed but ceftazidime did not have the same effect on PSE or SHV β-lactamases. Consequently, the addition of ceftazidime to a β-lactamase preparation prior to isoelectric focusing (IEF) may help to verify if a particular β-lactamase is TEM-derived. Purification of the satellite bands by electrodialysis and their subsequent re-focusing demonstrated that the ceftazidime-induced satellite bands can revert to a protein which has a pI similar to the parent band, illustrating the possible reversibility and dynamic nature of β-lactamase satellite bands on IEF. These results enable a better interpretation to be made of β-lactamase satellite bands observed on IEF.  相似文献   

4.
Abstract As part of a surveillance programme of the prevalence of antibiotic resistance, the faecal bacteria of healthy people ( n = 1348) were examined, and the antibiotic resistance of the Escherichia coli strains determined. One strain out of 142 amoxycillin-resistant isolates, E. coli strain 1662, was also resistant to piperacillin-tazobactam but susceptible to amoxycillin-clavulanic acid. The piperacillin-tazobactam resistance determinant was transferable to standard E. coli strains by conjugation. However, the strain produced a β-lactamase with several characteristics very similar to those of the TEM-1 β-lactamase, i.e. p I of 5.4, an M r value of 22 000 and a comparable substrate profile. The enzyme was as efficiently inhibited by clavulanic acid and tazobactam as the TEM-1 and TEM-2 β-lactamases but more than the amoxycillin-clavulanic acid-resistant TRC-1 enzyme. The transferable resistance to piperacillin-tazobactam appears to be mediated by a novel resistance mechanism that has previously not been described.  相似文献   

5.
An SHV β-lactamase gene was amplified from a β-lactam resistant Klebsiella pneumoniae K-71 genomic DNA. After expression and purification, we demonstrated that peptide P1 could inhibit the hydrolysis activity of both TEM-1 and SHV β-lactamase in vitro. Three mutations were introduced into P1 in which the first residue S was replaced by F, the 18th residue V was mutated to Y, and the 15th residue Y was substituted with A, C, G, and R to obtain the mutants of P1-A, P1- C, P1-G, and P1-R, respectively. The mutant peptides were purified and their inhibitory constants against TEM-1 and SHV β-lactamase were determined. All these β-lactamase inhibitory peptides could inhibit the activity of both β-lactamases, while the mutant peptides showed stronger inhibitory activities against TEM-1 β-lactamase than against SHV β-lactamase. Inhibition data suggested that P1-A improved the β-lactamase inhibitory activity by over 3-fold compare to P1. When P1-A was incubated with K. pneumoniae K-71 in Luria-Bertani medium containing ampicillin, it showed a much stronger growth of inhibition ratio over P1. This study gives us a good candidate for development of novel β-lactamase inhibitors.  相似文献   

6.
Abstract Two bla TEM-like genes were characterized that encoded IRT β-lactamases (previously called TRI) in clinical isolates of Escherichia coli resistant to amoxycillin alone and to combinations of amoxycillin with β-lactamase inhibitors. Plasmids carrying this resistance were isolated from E. coli K 12 transconjugants and the genes were sequenced after amplification of defined fragments, using TEM-1-specific primers. The gene for IRT-1 β-lactamase resembled the bla TEM-1B gene, and that for IRT-2 resembled bla TEM-2. However, both IRT enzymes have a glutamine residue at position 37, which is characteristic of TEM-1. The unique nucleotide difference with parental genes corresponding to amino acid variation was observed at nucleotide position 929. The consequence of C to T transition in the bla IRT-1 gene and C to A transversion in the bla IRT-2 gene was the substitution of arginine 241 in the native protein by cysteine and serine, respectively, in the mutants. Thus, the nature of amino acid 241 is critical in conferring resistance or susceptibility to β-lactamase inhibitors. Furthermore, these basic to neutral amino acid replacements explain the more acidic p I (p I =5.2) of these IRT enzymes compared to that of TEM-1 (p I =5.4). The presence of cysteine-241 in IRT-1 also explains the selective sensitivity of this β-lactamase to inhibition by p -chloromercuribenzoate.  相似文献   

7.
Abstract A metallo-β-lactamase has been isolated from a clinical strain of Pseudomonas cepecia and partially purified using Cibacron blue F3GA coupled agarose. The resulting preparation showed a single band of β-lactamase activity (p I 8.45) after analytical isoelectric focusing. The enzyme was particularly effective in the hydrolysis of imipenem. Meropenem, biapenem, cephaloridine, ceftazidine, benzylpenicillin, ampicillin and carbenicillin were also hydrolysed, although at a lower rate. An unusual inhibition profile was noted. Inhibition by the metal ion chelators ethylenediaminetetraacetic acid and o -phenanthroline was reversed by addition of zinc, indicating a metallo-enzyme, whilst > 90% inhibition was attainable with 0.1 mM concentrations of tazobactam and clavulanic acid. A study of 8 other clinical isolates showed the enzyme to be present and inducible by imipenen in each case. This enzyme was assigned PCM-I ( Pseudomonas cepacia metalloenzyme I).  相似文献   

8.
β-Lactamases are bacterial enzymes that hydrolyze β-lactam antibiotics. TEM-1 is a prevalent plasmid-encoded β-lactamase in Gram-negative bacteria that efficiently catalyzes the hydrolysis of penicillins and early cephalosporins but not oxyimino-cephalosporins. A previous random mutagenesis study identified a W165Y/E166Y/P167G triple mutant that displays greatly altered substrate specificity with increased activity for the oxyimino-cephalosporin, ceftazidime, and decreased activity toward all other β-lactams tested. Surprisingly, this mutant lacks the conserved Glu-166 residue critical for enzyme function. Ceftazidime contains a large, bulky side chain that does not fit optimally in the wild-type TEM-1 active site. Therefore, it was hypothesized that the substitutions in the mutant expand the binding site in the enzyme. To investigate structural changes and address whether there is an enlargement in the active site, the crystal structure of the triple mutant was solved to 1.44 Å. The structure reveals a large conformational change of the active site Ω-loop structure to create additional space for the ceftazidime side chain. The position of the hydroxyl group of Tyr-166 and an observed shift in the pH profile of the triple mutant suggests that Tyr-166 participates in the hydrolytic mechanism of the enzyme. These findings indicate that the highly conserved Glu-166 residue can be substituted in the mechanism of serine β-lactamases. The results reveal that the robustness of the overall β-lactamase fold coupled with the plasticity of an active site loop facilitates the evolution of enzyme specificity and mechanism.  相似文献   

9.
Abstract To rapidly characterise TEM-derived extended-spectrum β-lactamases a fast and easy method using polymerase chain reaction-restriction fragment length polymorphism was developed. This method was validated with ten reference TEM-type extended-spectrum β-lactamases. The mutations involved in TEM-20 and TEM-21, which were previously reported only with biochemical analysis, were then characterised. TEM-20 differed from TEM-19 by a silent mutation at position 925 (A for G), and TEM-21 differed from TEM-3 and TEM-14 by a single mutation (G for A) in an unreported position 660, involving an amino acid substitution, arginine for histidine, at position 153. Moreover, a new extended-spectrum β-lactamase conferring low resistance to ceftazidime (TEM-29), was described. TEM-29 derived from TEM-1, with an amino acid substitution, his-164. Finally, the combination of polymerase chain reaction-restriction fragment length polymorphism and plasmid analysis allowed us to investigate nosocomial outbreaks due to clinical isolates of multi-resistant Klebsiella pneumoniae in three hospitals.  相似文献   

10.
Abstract Aztreonam-resistant Klebsiella oxytoca strain SL7811 was selected on agar containing 1 μg of aztreonam per ml from a susceptible strain SL781. The MICs for the resistant mutant towards penicillins, aztreonam and ceftriaxone were much higher, to cefotaxime slightly higher and to ceftazidime unchanged. Synthesis of β-lactamase was 223-fold greater in the mutant compared with the susceptible strain. SL781 and its resistant mutant SL7811 produced β-lactamase with the same isoelectric point and substrate profile. The β-lactamase genes from SL781 and SL7811 were cloned in plasmid pBGS18 giving pBOF-1 and pBOF-4 respectively. The sequences of the two putative promoters indicated two modifications in the resistant plasmid pBOF-4: a transversion (G → T) in the first base of the − 10 consensus sequence and a deletion of one C residue four base pairs upstream of the − 10 hexamer.  相似文献   

11.
The stability and kinetics of unfolding and refolding of the P167T mutant of the TEM-1 β-lactamase have been investigated as a function of guanidine hydrochloride concentration. The activity of the mutant enzyme was not significantly modified, which strongly suggests that the Glu166–Thr167 peptide bond, like the Glu166–Pro167, is cis. The mutation, however, led to a significant decrease in the stability of the native state relative to both the thermodynamically stable intermediate and the fully unfolded state of the protein. In contrast to the two slower phases seen in the refolding of the wild-type enzyme, only one phase was detected in the refolding of the mutant, indicating a determining role of proline 167 in the kinetics of folding of the wild-type enzyme. The former phases are replaced by rapid refolding when the enzyme is unfolded for short periods of time, but the latter is independent of the time of unfolding. The monophasic refolding reaction of the mutant is proposed to reflect mainly the transcis isomerization of the Glu166–Thr167 peptide bond. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
Abstract The OXA-2 β-lactamase gene was first found on a conjugative plasmid R46 from a clinical isolate of Salmonella typhimurium . To transfer the gene to Streptomyces lividans a shuttle vector was created by fusing an Escherichia coli plasmid carrying the OXA-2 β-lactamase gene with the S. lividans vector pIJ61. The OXA-2 β-lactamase gene was expressed in S. lividans , although with a much reduced efficiency; virtually all of the β-lactamase activity was found in the culture supernatant. The identity of the enzyme was established by substrate specificity and isoelectric focusing.  相似文献   

13.
Four known and nine new ceftazidime-resistance β-lactamases were generated by a novel, contaminating codon-based mutagenesis approach. In this method, wild-type codons are spiked with a set of mutant codons during oligonucleotide synthesis, generating random combinatorial libraries of primers that contain few codon replacements per variant. Mutant codons are assembled by tandem addition of a diluted mixture of five Fmoc-dimer amidites to the growing oligo and a mixture of four DMTr-monomer amidites to generate 20 trinucleotides that encode a set of 18 amino acids. Wild-type codons are assembled with conventional chemistry and the whole process takes place in only one synthesis column, making its automation feasible. The random and binomial behavior of this approach was tested in the polylinker region of plasmid pUC19 by the synthesis of three oligonucleotide libraries mutagenized at different rates and cloned as mutagenic cassettes. Additionally, the method was biologically assessed by mutating six contiguous codons that encode amino acids 237–243 (ABL numbering) of the TEMpUC19 β-lactamase, which is functionally equivalent to the clinically important TEM-1 β-lactamase. The best ceftazidime-recognizing variant was a triple mutant, R164H:E240K: R241A, displaying a 333-fold higher resistance than the wild-type enzyme.  相似文献   

14.
Abstract We compared the phenotype of two thermosensitive Escherichia coli mutants defective in lipid A biosynthesis i.e. SM101 ( lpxA ) and CDH23-213 ( lpxD ). More than 40% of the periplasmic 27-kDa marker enzyme β-lactamase was released from SM101 at 28°C. At this temperature, the mutant still grew with a generation time (67 min), not much longer than that of the parent control strain (57 min). CDH23-213 released β-lactamase only at higher temperatures. SM101 and CDH23-213 were both unable to grow in hypo-osmotic conditions. Derivatives of SM101 and CDH23-213 with mdoA ::Tn 10 had identical phenotypes (including thermosensitivity and defective outer membrane permeability barrier to hydrophobic probes) to those of SM101 and CDH23-213, indicating that the potential loss of membrane-derived oligosaccharides (MDO) did not explain these phenotypic properties. A method for the estimation of lipid A synthesis rate was developed.  相似文献   

15.
Several mutants and other variants of Myxococcus xanthus HP100 were obtained with differences in their sensitivity to carbenicillin and other penicillin derivatives. The specific activities of -lactamase in different resistant organisms varied from strain to strain but were consistently higher than in HP100. The relative molecular mass (M r ) of the enzyme in M. xanthus HP100 was found to be 22,300. In certain carbenicillin resistant strains a second fraction of -lactamase activity of molecular weight 186,000 presumed to be an octamer of the other form was present. The enzyme was found in cell free extracts and also in culture supernatants of all carbenicillin resistant mutants but not in culture supernatants of strain HP100. In all the carbenicillin resistant mutants a part of the intracellular enzyme activity was released by osmotic shock and this activity may be periplasmic. The forms of the enzyme present in the culture supernatants and released by osmotic shock were monomeric. Carbenicillin resistance was not transferable between strains by conjugation. One resistance allele inhibited the transfer of the R factor Sa between myxococci.Non-standard abbreviations CS CR sensitivity and resistance to carbenicillin - C u R C S R unstable and stable resistance to carbenicillin  相似文献   

16.
Haemophilus influenzae is a frequent causative bacterial pathogen of respiratory tract infections. Resistance to β-lactam antibiotics has been a significant clinical problem in treatment for H. influenzae respiratory infections. This study describes the serotype, antibiotic resistance and distribution of TEM-1 or ROB-1 β-lactamase in H. influenzae isolates from local private hospitals from 2002 to 2004. Among the 100 H. influenzae respiratory isolates, only 7% were identified as serotypes a, b, e, and f, with the remaining 93% being nontypeable. Resistance to ampicillin, cefaclor, and tetracycline was 57%, 46%, and 16%, respectively. All strains were susceptible to azithromycin and ciprofloxacin, whereas amoxicillin/clavulanate, cefotaxime, and imipenem exhibited reduced susceptibilities of 99%, 99%, and 91%, respectively. All 57 ampicillinresistant strains (minimum inhibitory concentration, MIC≥4 μg/ml) were β-lactamase-positive and possessed the TEM-1 type β-lactamase. One β-lactamase-positive amoxicillin/clavulanate-resistant isolate that was resistant to ampicillin (MIC>128 μg/ml) had the TEM-1 type β-lactamase and not susceptible to cefaclor and cefotaxime. Analysis of penicillin binding protein 3 revealed six residues (Asp-350, Met-377, Ala-502, Asn-526, Val-547, and Asn-569) that were substituted by Asn, Ile, Val, Lys, Ile, and Ser, respectively.  相似文献   

17.
The ISlacZ/hah transposon carried by pIT2 and derived originally from Tn5 has been a popular system in the generation of random insertion mutants of Pseudomonas aeruginosa. Using this system in the current study, two transconjugants were identified as conferring high levels of carbenicillin resistance. Analyses by gene complementation tests and site-specific gene knockout experiments support the conclusion that carbenicillin resistance in these two mutants is not due to the insertion of ISlacZ/hah transposon into the affected genes. Instead, the production of a TEM β-lactamase was detected, and integration of the bla gene from pIT2 to the chromosome of the recipient strain was confirmed by polymerase chain reaction. This surprising event was reproducible, with an estimated frequency among the transconjugants of 4% to 10%, and it may cause a potential complication in the interpretation of mutant phenotypes without notice.  相似文献   

18.
Extended-spectrum β-lactamases (ESBLs) produced by a clinical isolate of Shigella flexneri from chickens were detected with confirmatory phenotypic tests of the Clinical and Laboratory Standards Institute, and minimum inhibitory concentrations of several antibacterial drugs against the isolate were determined by the twofold dilution method. The genotype and subtype of the ESBL-producing S. flexneri isolate were identified by PCR amplifying of ESBL genes and DNA sequencing analysis. The results revealed that the isolate was able to produce ESBLs. They were resistant to third-generation cephalosporins such as ceftiofur and ceftriaxone and showed characteristics of multidrug resistance. The ESBL gene from the S. flexneri isolate was of the TEM type. Sequence analysis indicated that the TEM-type gene had 99.1% and 99.2% identity to TEM-1D ESBL and TEM-1 β-lactamase, respectively, at the nucleotide level. The amino acid sequence inferred from the TEM-type gene revealed three substitutions compared with the TEM-1 and TEM-1D enzymes: Ser51Gly, Val82Ila and Ala182Val. When it was compared with TEM-116 (99.8% identity), there were only two mutations (A151G and T403C) in the TEM-type gene, resulting in the substitution of Ser to Gly at position 51 in the amino acid sequence. The TEM type was a TEM-116 derivative.  相似文献   

19.
20.
Abstract A β-lactamase was purified from a thermophilic Bacillus strain, that had been isolated from a traditional hot bath in the Meknes area (Morocco). The properties of the enzyme were very similar to those of the β-lactamase produced by Bacillus licheniformis 749C but it exhibited a somewhat increased thermostability and a higher activation energy with cefazolin as substrate. These properties were expected for an enzyme produced by a thermophilic strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号