首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigated the role of the herpes simplex virus type 1 UL8 gene product in viral DNA replication. First, we unambiguously fine mapped the mutation in tsS38 (complementation group 1-26) to an open reading frame, designated UL8, predicted to encode an 80-kilodalton protein. Previous studies indicated that tsS38 was capable of synthesizing low to moderate levels of viral DNA at the nonpermissive temperature (C. T. Chu, D. S. Parris, R. A. F. Dixon, F. E. Farber, and P. A. Schaffer, Virology 98:168-181, 1979); thus, it was not clear whether the UL8 gene product is essential for viral DNA synthesis. Therefore, a deletion-insertion mutation was constructed in the UL8 gene by removing most of its coding sequences and replacing them with the Escherichia coli lacZ gene under control of the viral ICP6 regulatory signals. The resulting recombinant, hr80, was propagated in helper cells (S22) which express the wild-type version of the UL8 gene, but was incapable of forming plaques in Vero cells. Furthermore, hr80 was totally defective in the synthesis of viral DNA and late proteins under nonpermissive growth conditions. These results demonstrated that the UL8 gene product is essential for viral DNA synthesis.  相似文献   

2.
An insertional mutagen was developed which consists of the lacZ gene of Escherichia coli under the control of the regulatory elements of the large subunit of ribonucleotide reductase (ICP6). This ICP6::lacZ cassette was used to create a mutation in a gene designated UL52 (D. J. McGeoch, M. A. Dalrymple, A. Dolan, D. McNab, L. J. Perry, P. Taylor, and M. D. Challberg, J. Virol. 62:444-453, 1988), which is predicted to encode a 114,000-molecular-weight protein. To isolate and propagate this mutant, we generated a cell line, BL-1, by cotransfection of Vero cells with pSV2neo and a plasmid containing the herpes simplex virus type 1 KOS strain BamHI L fragment (coordinates 0.708 to 0.745). An ICP6::lacZ insertion mutant, hr114, was capable of growing in BL-1 cells but not in normal Vero cells. In addition, hr114 was defective in the synthesis of viral DNA and late proteins; however, this mutant appeared to exhibit normal early gene expression. Thus, the results presented in this report show that the UL52 gene product is required for viral DNA synthesis. Furthermore, our studies indicate that the ICP6::lacZ cassette will provide a useful tool for obtaining mutants of other herpes simplex virus genes.  相似文献   

3.
4.
The UL5 gene product is required continuously during viral DNA synthesis (L. Zhu and S. K. Weller, Virology 166:366-378, 1988) and has been shown to be a component of a three protein helicase-primase complex encoded by herpes simplex virus type 1 (J. J. Crute, T. Tsurumi, L. Zhu, S. K. Weller, P.D. Olivo, M. D. Challberg, E. S. Mocarski, and I. R. Lehman, Proc. Natl. Acad. Sci. USA 86:2186-2189, 1989). The other members of the complex are viral proteins encoded by genes UL8 and UL52. In this study, we isolated a permissive cell line (L2-5) which contains the wild-type UL5 gene under the control of the strong and inducible promoter for the large subunit of herpes simplex virus type 1 ribonucleotide reductase (ICP6). An insertion mutant containing a mutation in the UL5 gene (hr99) was isolated by using the insertional mutagen ICP6::lacZ, in which the Escherichia coli lacZ gene is expressed under control of the viral ICP6 promoter. When grown on Vero cells, hr99 does not form plaques or synthesize viral DNA, although both defects are complemented efficiently on the L2-5 cells. These results confirm that the UL5 gene product is essential for viral growth and DNA replication. Furthermore, since no detectable UL5 protein is synthesized in hr99-infected cells, these cells provide a valuable control not only for the detection of the UL5 protein itself but also for the detection of protein-protein interactions with UL8 and UL52 by coimmunoprecipitation. In addition, the lacZ insertion in hr99 provides a convenient screening system for the introduction of site-specific mutations into the viral genome (L. Zhu and S. K. Weller, J. Virol. 66:469-479, 1992). Thus, hr99 is a valuable tool in the structure-function analysis of the UL5 gene.  相似文献   

5.
J D Baines  A P Poon  J Rovnak    B Roizman 《Journal of virology》1994,68(12):8118-8124
Previous studies have shown that a ts mutant [herpes simplex virus 1 (mP)ts66.4] in the UL15 gene fails to package viral DNA into capsids (A. P. W. Poon and B. Roizman, J. Virol. 67:4497-4503, 1993) and that although the intron separating the first and second exons of the UL15 gene contains UL16 and UL17 open reading frames, replacement of the first exon with a cDNA copy of the entire gene does not affect viral replication (J.D. Baines, and B. Roizman, J. Virol. 66:5621-5626, 1992). We report that (i) a polyclonal rabbit antiserum generated against a chimeric protein consisting of the bacterial maltose-binding protein fused in frame to the majority of sequences contained in the second exon of the UL15 gene reacted with two proteins with M(r) of 35,000 and 75,000, respectively, in cells infected with a virus containing the authentic gene yielding a spliced mRNA or with a virus in which the authentic UL15 gene was replaced with a cDNA copy. (ii) Insertion of 20 additional codons into the C terminus of UL15 exon II caused a reduction in the electrophoretic mobility of both the apparently 35,000- and 75,000-M(r) proteins, unambiguously demonstrating that both share the carboxyl terminus of the UL15 exon II. (iii) Accumulation of the 35,000-M(r) protein was reduced in cells infected and maintained in the presence of phosphonoacetate, an inhibitor of viral DNA synthesis. (iv) The UL15 proteins were localized in the perinuclear space at 6 h after infection and largely in the nucleus at 12 h after infection. (v) Viral DNA accumulating in cells infected with herpes simplex virus 1(mP)ts66.4 and maintained at the nonpermissive temperature was in an endless (concatemeric) form, and therefore UL15 is required for the cleavage of mature, unit-length molecules for packaging into capsids.  相似文献   

6.
ICP0 is a 110,000-molecular-weight immediate-early protein of herpes simplex virus type 1 (HSV-1) which is encoded by three exons. It has been shown to function as a promiscuous transactivator of a variety of different HSV-1 and non-HSV-1 promoters in transient expression assays. Analysis of mutations which truncated the carboxy-terminal end of this 775-amino-acid (aa) protein demonstrated that a polypeptide which contained only aa 1 to 553 still possessed significant transactivation potential. Additional carboxy-terminal truncations which sequentially removed aa 245 to 553 and thus the remainder of the third exon resulted in the eventual loss of transactivation capability in these mutants. However, further analysis of these truncated derivatives demonstrated that they behaved as dominant-negative mutants to the wild-type polypeptide. Moreover, one of the mutants was found to act as a promiscuous repressor, in that it could dramatically inhibit a variety of HSV-1 promoters, non-HSV-1 promoters, and heterologous transactivator proteins in transient expression assays, despite having lost almost the entire third exon. These results indicate that a domain encoded by the first two exons probably interacts with, and can effectively titrate, the unknown cellular factor(s) through which ICP0 mediates transactivation.  相似文献   

7.
F Yao  P A Schaffer 《Journal of virology》1994,68(12):8158-8168
The herpes simplex virus type 1 immediate-early protein ICP0 enhances expression of a spectrum of viral genes alone and synergistically with ICP4. To test whether ICP0 and ICP4 interact physically, we performed far-Western blotting analysis of proteins from mock-, wild-type-, and ICP4 mutant virus-infected cells with in vitro-synthesized [35S]Met-labeled ICP0 and ICP4 as probes. The ICP4 and ICP0 polypeptides synthesized in vitro exhibited molecular weights similar to those of their counterparts in herpes simplex virus type 1-infected cells, and the in vitro-synthesized ICP4 was able to bind to a probe containing the ICP4 consensus binding site. Far-Western blotting experiments demonstrated that ICP0 interacts directly and specifically with ICP4 and with itself. To further define the interaction between ICP0 and ICP4, we generated a set of glutathione S-transferase (GST)-ICP0 fusion proteins that contain GST and either ICP0 N-terminal amino acids 1 to 244 or 1 to 394 or C-terminal amino acids 395 to 616 or 395 to 775. Using GST-ICP0 fusion protein affinity chromatography and in vitro-synthesized [35S]Met-labeled ICP0 and ICP4, ICP4 was shown to interact preferentially with the fusion protein containing ICP0 C-terminal amino acids 395 to 775, whereas ICP0 interacted efficiently with both the N-terminal GST-ICP0 fusion proteins and the C-terminal GST-ICP0 fusion proteins containing amino acids 395 to 775. Fusion protein affinity chromatography also demonstrated that the C-terminal 235 amino acid residues of ICP4 are important for efficient interaction with ICP0. Collectively, these results reveal a direct and specific physical interaction between ICP0 and ICP4.  相似文献   

8.
The UL28 protein of herpes simplex virus type 1 (HSV-1) is one of seven viral proteins required for the cleavage and packaging of viral DNA. Previous results indicated that UL28 interacts with UL15 and UL33 to form a protein complex (terminase) that is presumed to cleave concatemeric DNA into genome lengths. In order to define the functional domains of UL28 that are important for DNA cleavage/packaging, we constructed a series of HSV-1 mutants with linker insertion and nonsense mutations in UL28. Insertions that blocked DNA cleavage and packaging were found to be located in two regions of UL28: the first between amino acids 200 to 400 and the second between amino acids 600 to 740. Insertions located in the N terminus or in a region located between amino acids 400 and 600 did not affect virus replication. Insertions in the carboxyl terminus of the UL28 protein were found to interfere with the interaction of UL28 with UL33. In contrast, all of the UL28 insertion mutants were found to interact with UL15 but the interaction was reduced with mutants that failed to react with UL33. Together, these observations were consistent with previous conclusions that UL15 and UL33 interact directly with UL28 but interact only indirectly with each other. Revertant viruses that formed plaques on Vero cells were detected for one of the lethal UL28 insertion mutants. DNA sequence analysis, in combination with genetic complementation assays, demonstrated that a second-site mutation in the UL15 gene restored the ability of the revertant to cleave and package viral DNA. The isolation of an intergenic suppressor mutant provides direct genetic evidence of an association between the UL28 and UL15 proteins and demonstrates that this association is essential for DNA cleavage and packaging.  相似文献   

9.
D Chen  E C Stabell    P D Olivo 《Journal of virology》1995,69(7):4515-4518
Varicella-zoster virus (VZV) gene 51 encodes a protein which is homologous to UL9, the origin of DNA replication-binding protein of herpes simplex virus type 1. No genetic information is available on VZV gene 51, but its product has been shown to bind to virtually the same recognition sequence as does UL9 (D. Chen and P. D. Olivo, J. Virol. 68:3841-3849, 1994; N. D. Stow, H. M. Weir, and E. C. Stow, Virology 177:570-577, 1990). We report here that gene 51 can complement a UL9 null mutant (hr94) (A. K. Malik, R. Martinez, L. Muncy, E. P. Carmichael, and S. K. Weller, Virology 190:702-715, 1992), but at a level which is only 20% of that of UL9. Quantitation of viral DNA synthesis suggests that this phenotype is due to a defect in viral DNA synthesis. Regardless, the ability of VZV gene 51 to complement UL9 suggests that alphaherpesviruses have a highly conserved mechanism of initiation of viral DNA synthesis.  相似文献   

10.
Varicella-zoster virus (VZV) can complement temperature-sensitive mutants of herpes simplex virus. Of seven mutants tested, two, carrying mutations in the immediate-early ICP4 and ICP27 proteins, were complemented. This complementation was not seen in coinfections with adenovirus type 5 or cytomegalovirus. Following transfection into CV-1 cells, a DNA fragment containing the VZV short repeat sequence complemented the ICP4 mutant. These data demonstrate a functional relationship between VZV and herpes simplex virus and have allowed localization of a putative VZV immediate-early gene.  相似文献   

11.
12.
13.
The UL15 gene of herpes simplex virus 1 consists of two exons and is highly conserved among the herpesviruses sequenced to date. Other than its homology to a phage protein involved in the packaging of DNA, nothing is known of its function. This report concerns the isolation of a temperature-sensitive mutant with a mutation mapping in the UL15 open reading frame. Cells infected with the parent, mutant, and rescued viruses all make DNA at the nonpermissive temperature. Direct analyses of the DNA and electron microscopic studies indicate that although viral DNA is made, it is not packaged into capsids present in nuclei. These studies suggest that UL15 may be involved in the packaging of viral DNA.  相似文献   

14.
Z Zhu  W Cai    P A Schaffer 《Journal of virology》1994,68(5):3027-3040
The results of transient expression assays and studies of viral mutants have shown that three of the five immediate-early proteins of herpes simplex virus type 1 (HSV-1) perform regulatory functions, individually and cooperatively. As part of efforts designed to explore the molecular basis for the functional cooperativity among ICP0, ICP4, and ICP27 in the regulation of HSV gene expression, we have examined the intracellular localization of ICP0 in cells infected with ICP4 and ICP27 null mutant viruses by indirect immunofluorescence. Although ICP0 was localized predominantly to the nuclei of wild-type virus-infected cells, it was found exclusively in the nuclei of ICP27 mutant-infected cells and in both the cytoplasm and nuclei of ICP4 mutant-infected cells, the cytoplasmic component being especially strong. These observations indicate that both ICP4 and ICP27 can affect the intracellular localization of ICP0. Transient expression assays with plasmids that express wild-type and mutant forms of ICP0, ICP4, and ICP27 confirmed that ICP4 promotes and that ICP27 inhibits the nuclear localization of ICP0. These results confirm the observations made for mutant virus-infected cells and indicate that the localization pattern seen in infected cells can be established by these three immediate-early proteins exclusive of other viral proteins. The C-terminal half of ICP27 was shown to be required to achieve its inhibitory effect on the nuclear localization of ICP0. The region of ICP0 responsive to ICP27 was mapped to the C terminus of the molecule between amino acid residues 720 and 769. In addition, the concentration of ICP27 was shown to have a significant effect on the intracellular localization of ICP0. Because the major regulatory activities of ICP0, ICP4, and ICP27 are expressed in the nucleus, the ability of these three proteins collectively to determine their own localization patterns within cells adds a new dimension to the complex process of viral gene regulation in HSV.  相似文献   

15.
Xing J  Wang S  Lin F  Pan W  Hu CD  Zheng C 《Journal of virology》2011,85(4):1881-1886
It has been reported that herpes simplex virus type 1 UL3, UL4, and UL20.5 proteins are localized to small, dense nuclear bodies together with ICP22 in infected cells. In the present study, we comprehensively characterized these interactions by subcellular colocalization, coimmunoprecipitation, and bimolecular fluorescence complementation assays. For the first time, it was demonstrated that both UL3 and UL20.5 are targeted to small, dense nuclear bodies by a direct interaction with ICP22, whereas UL4 colocalizes with ICP22 through its interaction with UL3 but not UL20.5 or ICP22. There was no detectable interaction between UL3 and UL20.5.  相似文献   

16.
By electron microscopy and image analysis, we find that baculovirus-expressed UL6 is polymorphic, consisting of rings of 11-, 12-, 13-, and 14-fold symmetry. The 12-mer is likely to be the oligomer incorporated into procapsids: at a resolution of 16 A, it has an axial channel, peripheral flanges, and fits snugly into a vacant vertex site. Its architecture resembles those of bacteriophage portal/connector proteins.  相似文献   

17.
The herpes simplex virus type 1 (HSV-1) immediate-early protein ICP0 interacts with several cellular proteins and induces the proteasome-dependent degradation of others during infection. In this study we show that ICP0 is required for the proteasome-dependent degradation of the ND10 protein Sp100 and, as with the other target proteins, the ICP0 RING finger domain is essential. Further, comparison of the kinetics and ICP0 domain requirements for the degradation of PMI and Sp100 suggests that a common mechanism is involved. Homologues of ICP0 are encoded by other members of the alphaherpesvirus family. These proteins show strong sequence homology to ICP0 within the RING finger domain but limited similarity elsewhere. Using transfection assays, we have shown that all the ICP0 homologues that we tested have significant effects on the immunofluorescence staining character of at least one of the proteins destabilized by ICP0, and by using a recombinant virus, we found that the equine herpesvirus ICP0 homologue induced the proteasome-dependent degradation of endogenous CENP-C and modified forms of PML and Sp100. However, in contrast to ICP0, the homologue proteins had no effect on the distribution of the ubiquitin-specific protease USP7 within the cell, consistent with their lack of a USP7 binding domain. We also found that ICP0 by itself could induce the abrogation of SUMO-1 conjugation and then the proteasome-dependent degradation of unmodified exogenous PML in transfected cells, thus demonstrating that other HSV-1 proteins are not required. Surprisingly, the ICP0 homologues were unable to cause these effects. Overall, these data suggest that the members of the ICP0 family of proteins may act via a similar mechanism or pathway involving their RING finger domain but that their intrinsic activities and effects on endogenous and exogenous proteins differ in detail.  相似文献   

18.
19.
The herpes simplex virus type 1 ICP35 assembly protein is involved in the formation of viral capsids. ICP35 is encoded by the UL26.5 gene and is specifically processed by the herpes simplex virus type 1 protease encoded by the UL26 gene. To better understand the functions of ICP35 in infected cells, we have isolated and characterized an ICP35 mutant virus, delta ICP35. The mutant virus was propagated in complementing 35J cells, which express wild-type ICP35. Phenotypic analysis of delta ICP35 shows that (i) mutant virus growth in Vero cells was severely restricted, although small amounts of progeny virus was produced; (ii) full-length ICP35 protein was not produced, although autoproteolysis of the protease still occurred in mutant-infected nonpermissive cells; (iii) viral DNA replication of the mutant proceeded at wild-type levels, but only a very small portion of the replicated DNA was processed to unit length and encapsidated; (iv) capsid structures were observed in delta ICP35-infected Vero cells by electron microscopy and by sucrose sedimentation analysis; (v) assembly of VP5 into hexons of the capsids was conformationally altered; and (vi) ICP35 has a novel function which is involved in the nuclear transport of VP5.  相似文献   

20.
Using Vero cells transformed with the wild-type gene for ICP4 as the permissive host cell, we isolated herpes simplex virus type 1 (HSV-1) mutants containing deletions in both copies of the ICP4 gene. The mutants, d120 and d202, contained deletions of 4.1 and 0.5 kilobases, respectively, in each copy of ICP4. ICP4 mRNA synthesized in d202-infected Vero cells was 0.5 kilobases smaller than that synthesized in cells infected with the wild-type virus. No ICP4 mRNA was detected in d120-infected Vero cells. d120 and d202 specified polypeptides that reacted with ICP4 antiserum and were smaller than the wild-type ICP4 polypeptide by 130 and 30 kilodaltons, respectively. The only other HSV-1 gene products detectable on infection of Vero cells with d120 and d202 were ICP6 (of the early kinetic class of HSV-1 polypeptides), ICP0 (immediate early), ICP22 (immediate early), and ICP27 (immediate early). Immediate-early polypeptides ICP0 and ICP27 were expressed to a higher level in Vero cells infected with an ICP4 temperature-sensitive (ts) mutant (tsB32) at 39 degrees C, indicating immediate-early stimulatory activity associated with the ts ICP4 polypeptide. In addition, the patterns of complementation of d120, d202, and tsB32 in ICP4-transformed cells also demonstrated inhibitory activity associated with the ts form of the ICP4 polypeptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号