首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Properties of glutamate dehydrogenase from developing maize endosperm   总被引:2,自引:0,他引:2  
Glutamate dehydrogenase (EC 1.4.1.3) activity was assayed in homogenates of maize ( Zea mays L. inbred lines Oh43 and Oh43o2) endosperm during development. During the period 20–35 days after pollination anabolic (aminative) activities were higher than catabolic (deaminating) ones. In order to study the regulation of GDH activity, glutamine or glutamate were injected into the ear peduncle before sample harvesting. The amination and deamination reactions showed similar behaviour with different nitrogen sources: glutamine increased, whereas glutamate decreased, both aminative and deaminative reactions. Partially purified enzyme was active with NADH and NADPH in a ratio 9:1. In Tris-HCl buffer a broad optimum at pH 7.6–8.9 and pH 6.8–8.9 was observed with NADH and NADPH, respectively, NADH activity was activated by Ca2+. Saturation curves for (NH4)2SO4 and NADH showed normal Michaelis-Menten kinetics in the presence of 1 m M Ca2+, but substrate inhibition occurred without Ca2+. The enzyme was inactivated by EDTA. The effect of EDTA was reversed by Ca2+ and Mn2+, but not by Cu2+ and Mg2+.  相似文献   

2.
The involvement of the internal rotenone-insensitive NADPH dehydrogenase on the inner surface of the inner mitochondrial membrane [NDin(NADPH)] in the oxidation of strictly NAD+-linked substrates by pea ( Pisum sativum L.) leaf mitochondria was measured. As estimated by the inhibition caused by 5 μ M diphenyleneiodonium (DPI) in the presence of rotenone to inhibit complex I, the activity of NDin(NADPH) during glycine oxidation (measured both as O2 uptake and as CO2 release) was 40–50 nmol mg−1 protein min−1. No significant activity of NDin(NADPH) could be detected during the oxidation of 2-oxoglutarate, another strictly NAD+-linked substrate; this was possibly due to its relatively low oxidation rate. Control experiments showed that, even at 125 μ M , DPI had no effect on the activity of glycine decarboxylase complex (GDC) and lipoamide dehydrogenase. The relative activity of complex I, NDin(NADPH), and NDin(NADH) during glycine oxidation, estimated using rotenone and DPI, differed depending on the pyridine nucleotide supply in the mitochondrial matrix. This was shown by loading the mitochondria with NAD+ and NADP+, both of which were taken up by the organelle. We conclude that the involvement of NADP turnover during glycine oxidation is not due to the direct production of NADPH by GDC but is an indirect result of this process. It probably occurs via the interconversion of NADH to NADPH by the two non-energy-linked transhydrogenase activities recently identified in plant mitochondria.  相似文献   

3.
Respiration is an oxidation-reduction process in which the electronflux through the respiratory electron transfer system (ETS)is sustained by the action of different dehydrogenases. Theseenzymes, as parts of the ETS, oxidize natural substrates (succinate,NADH and NADPH) of the cells and use the reducing equivalentsto activate ATP synthesis. We studied the relative contributionof the three main dehydrogenases to the overall ETh activityin some marine organisms. Each organism was analysed for thecombined and separate activities of NADH, NADPH and succinatedehydrogenases. The ETS activity was measured as the abilityof each organism to reduce the tetrazolium salt, INT, when suppliedwith their natural substrates. The results showed that (i) NADHdehydrogenase was generally the most active dehydrogenase inprokaryotic and eukaryotic cells; (ii) INT does not fully collectreducing equivalents from succinate through the succinate dehydrogenase;and (iii) the sum of the activities measured separately exceedsthe combined activity when the three enzymes are measured together.We suggest that competition of the individual dehydrogenasesfor a common limiting electron acceptor, ubiquinone, may explainthese observations.  相似文献   

4.
Abstract A glycerol:NADP+ 2-oxidoreductase was purified to homogeneity from Phycomyces blakesleeanus sporangiospores. The enzyme had an M r of 34 000–39 000 and consisted of a single polypeptide. It had a pH optimum between 6–6.5 and a K m of 3.9 mM for dihydroxyacetone. The reverse reaction had a pH optimum of 9.4 and a K m for glycerol of more than 2 M. The enzyme was completely specific for NADPH ( K m= 0.01 mM) or NADP+ ( K m= 0.17 mM) and greatly preferred dihydroxyacetone over glyceraldehyde as substrate. Besides glycerol, l -arabitol and mesoerythritol were also oxidized by the enzyme. It was inhibited by ionic strengths in excess of 100 mM and is probably involved in the synthesis of glycerol during early spore germination.  相似文献   

5.
delta 1-Pyrroline-5-carboxylate reductase (L-proline:NAD(P)+ 5-oxidoreductase, EC 1.5.1.2) has been purified from rat lens and biochemically characterized. Purification steps included ammonium sulfate fractionation, affinity chromatography on Amicon Matrex Orange A, and gel filtration with Sephadex G-200. These steps were carried out at ambient temperature (22 degrees C) in 20 mM sodium phosphate/potassium phosphate buffer (pH 7.5) containing 10% glycerol, 7 mM mercaptoethanol and 0.5 mM EDTA. The enzyme, purified to apparent homogeneity, displayed a molecular weight of 240 000 by gel chromatography and 30 000 by SDS-polyacrylamide gel electrophoresis. This suggests that the enzyme is composed of eight subunits. The purified enzyme displays a pH optimum between 6.5 and 7.1 and is inhibited by heavy metal ions and p-chloromercuribenzoate. Kinetic studies indicated Km values of 0.62 mM and 0.051 mM for DL-pyrroline-5-carboxylate as substrate when NADH and NADPH respectively were employed as cofactors. The Km values for the cofactors NADH and NADPH with DL-pyrroline-5-carboxylate as substrate were 0.37 mM and 0.006 mM, respectively. With L-pyrroline-5-carboxylate as substrate, Km values of 0.21 mM and 0.022 mM were obtained for NADH and NADPH, respectively. Enzyme activity is potentially inhibited by NADP+ and ATP, suggesting that delta 1-pyrroline-5-carboxylate reductase may be regulated by the energy level and redox state of the lens.  相似文献   

6.
The involvement of pyridine nucleotides in the reduction of extracytoplasmatic electron acceptors by iron-deficient Plantago lanceolata L. roots has been examined by measuring the changes in NAD(P)H and NAD(P) induced by various external acceptors. Exposure of the plants to FeEDTA, ferricyanide, ferric citrate or hexachloroiri-date resulted in a transient decrease in NADPH and an increase in NAD. No major differences in this pattern were observed between acceptors which were assumed to be reduced by different enzymes. The application of the membrane-permeable oxidant nitro blue tetrazolium led to similar changes in reduced and oxidized pyridine nucleotides and decreased the reduction of external acceptors. The amino acid analog p -fluorophenylalanine caused a transient decline in both NADPH level and NADPH/ NADP ratio and a decrease in the ratio of NADH to NAD without affecting the level of NADH. Exposure of the plants to the translation inhibitor cycloheximide increased both NADH and NADPH concentrations. A comparison of the redox activities and pyridine nucleotide fractions after inhibitor treatment revealed that the constitutive, but not iron stress-induced redox activity correlates with NADPH levels. These results are interpreted as confirming that the redox systems on the root plasma membrane are separately regulated. Possible metabolic reactions during the reduction processes are discussed.  相似文献   

7.
J L Gabriel  G W Plaut 《Biochemistry》1984,23(12):2773-2778
The activity of NAD-dependent isocitrate dehydrogenase from bovine heart was inhibited by NADH (apparent Ki about 4.3 microM) and NADPH (Ki about 9.8 microM) at subsaturating substrate concentrations at pH 7.4. The inhibition by NADH or NADPH was reversed competitively by magnesium isocitrate in the presence of ADP, but not without ADP. Reversal of inhibition by NADH or NADPH with respect to NAD+ was competitive or of the linear mixed type depending on whether ADP was absent or present. ADP3- (0.2 mM) increased the Ki(app) for NADPH from 9.8 to 27.1 microM; further addition of Ca2+ (0.2 mM) raised the Ki(app) to 127 microM. For the modification of NADPH inhibition by ADP, S0.5 for Ca2+ was approximately 48 microM. This compares to the Km for Ca2+ of 0.3-1 microM for the activation of the enzyme without NADPH [Denton, R. M., Richards, D. A., & Chin, J. G. (1978) Biochem. J. 176, 899-906; Aogaichi, T., Evans, J., Gabriel, J., & Plaut, G. W. E. (1980) Arch. Biochem. Biophys. 204, 350-360]. ADP did not affect the Ki for NADH. Magnesium citrate, which was about 100-fold more effective as a positive modifier of the enzyme with ADP than without ADP [Gabriel, J. L., & Plaut, G. W. E. (1983) Fed. Proc., Fed. Am. Soc. Exp. Biol. 42, 2082], reversed competitively the inhibition by NADPH in the presence of ADP, but not without ADP. Magnesium citrate did not reverse NADH inhibition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A membrane-bound NADH oxidase of an anaerobic alkaliphile, M-12 (a strain of Amphibacillus sp.), was solubilized with decanoyl N-methylglucamide and purified by chromatography on DEAE-Sepharose and hydroxyapatite. The purified enzyme appears to consist of a single polypeptide component with an apparent molecular mass of 56 kDa. The enzyme catalyzed the oxidation of NADH with the formation of H2O2 and exhibited a specific activity of 46 μmol NADH min–1 (mg protein)–1. NADPH did not serve as a substrate for the enzyme. The K m for NADH was estimated to be 0.05 mM. The enzyme exhibited a pH dependence for activity, with a pH optimum at approximately 9.5. The enzyme required a high concentration of salt and exhibited maximum activity in the presence of 600 mM NaCl. Received: 3 August 1998 / Accepted: 23 December 1998  相似文献   

9.
The kinetics of NADP-GPD from spinach chloroplasts are biphasic vs NADPH and PGA. Thus, two maximum velocities exist with an intermediary plateau and two Km values. Activation by NADPH + DTT increases Vmax of both sections, but does not change the substrate affinities. Sulphite reduces the maximum activities of both sections vs NADPH, however, it causes normal substrate kinetics vs PGA; even Vmax is reduced. Sulphite, present only during the activation process, suppresses the enzyme form with the higher Vmax. The kinetics vs NADH are also biphasic; the activity is strongly reduced by preincubation of the chloroplasts with NADH + DTT or at NADH concentrations > 0.4mM. Using NADH as cofactor, inverted peaks in the kinetics vs PGA occur; sulphite is active in a similar way as when NADPH is used as cofactor. The biphasic kinetics are discussed with respect to additional potential for regulation of enzyme activity according to illumination and NADPH concentrations respectively.  相似文献   

10.
The NAD-dependent glycerol-3-phosphate dehydrogenase (glycerol-3-phosphate:NAD+ oxidoreductase; EC 1.1.1.8; G3P DHG) was purified 178-fold to homogeneity from Saccharomyces cerevisiae strain H44-3D by affinity- and ion-exchange chromatography. SDS-PAGE indicated that the enzyme had a molecular mass of approximately 42,000 (+/- 1,000) whereas a molecular mass of 68,000 was observed using gel filtration, implying that the enzyme may exist as a dimer. The pH optimum for the reduction of dihydroxyacetone phosphate (DHAP) was 7.6 and the enzyme had a pI of 7.4. NADPH will not substitute for NADH as coenzyme in the reduction of DHAP. The oxidation of glycerol-3-phosphate (G3P) occurs at 3% of the rate of DHAP reduction at pH 7.0. Apparent Km values obtained were 0.023 and 0.54 mM for NADH and DHAP, respectively. NAD, fructose-1,6-bisphosphate (FBP), ATP and ADP inhibited G3P DHG activity. Ki values obtained for NAD with NADH as variable substrate and FBP with DHAP as variable substrate were 0.93 and 4.8 mM, respectively.  相似文献   

11.
Leaf extracts from seven monocotyledonous and dicotyledonous species contained considerable levels of NADPH-dependent glyoxylate- and hydroxypyruvate reductase activities. These activities ranged from 0.02 to 0.22 μmol (mg protein)−1 min−1. For all plants tested, the glyoxylate reductase (GR) activity, assayed with either NADPH or NADH, was sensitive to inhibition by acetohydroxamate, a glycine analogue. Hydroxypyruvate reductase (HPR) activities were unaffected by acetohydroxamate. Differential precipitation of soluble leaf proteins of spinach, pea and barley by ammonium sulfate (0–45% and 45–60% saturation) indicated the presence of at least three distinct reductases, which differed in their specificities for glyoxylate, hydroxypyruvate and NAD(P)H. For all species, the NADH-dependent HPR-activity was almost completely precipitated by low ammonium sulfate concentration (45%), while precipitation of the NADPH-GR, NADH-GR and, to some extent, NADPH-HPR activities required 60% ammonium sulfate. The NADPH-dependent GR and HPR activities had high affinity for glyoxylate and hydroxypyruvate, respectively, as indicated by low apparent Km values of 40–120 μ M . The occurrence of at least three distinct reductases utilizing hydroxypyruvate and/or glyoxylate as substrate was supported by antibody-precipitation studies using antibodies prepared against NADH(NADPH)-HPR, the well-known peroxisomal enzyme that also shows non-specific GR activity. These data are discussed with respect to recent reports on the purification and characterization of NADPH(NADH)-GR, and NADPH (NADH)-HPR, two cytosolic reductases, and the role is assessed for these enzymes in reducing hydroxypyruvate and glyoxylate that may be leaked from peroxisomes.  相似文献   

12.
Properties of glutamate dehydrogenase purified from Bacteroides fragilis   总被引:2,自引:0,他引:2  
The dual pyridine nucleotide-specific glutamate dehydrogenase [EC 1.4.1.3] was purified 37-fold from Bacteroides fragilis by ammonium sulfate fractionation, DEAE-Sephadex A-25 chromatography twice, and gel filtration on Sephacryl S-300. The enzyme had a molecular weight of approximately 300,000, and polymeric forms (molecular weights of 590,000 and 920,000) were observed in small amounts on polyacrylamide gel disc electrophoresis. The molecular weight of the subunit was 48,000. The isoelectric point of the enzyme was pH 5.1. This glutamate dehydrogenase utilized NAD(P)H and NAD(P)+ as coenzymes and showed maximal activities at pH 8.0 and 7.4 for the amination with NADPH and with NADH, respectively, and at pH 9.5 and 9.0 for the deamination with NADP+ and NAD+, respectively. The amination activity with NADPH was about 5-fold higher than that with NADH. The Lineweaver-Burk plot for ammonia showed two straight lines in the NADPH-dependent reactions. The values of Km for substrates were: 1.7 and 5.1 mM for ammonium chloride, 0.14 mM for 2-oxoglutarate, 0.013 mM for NADPH, 2.4 mM for L-glutamate, and 0.019 mM for NADP+ in NADP-linked reactions, and 4.9 mM for ammonium chloride, 7.1 mM for 2-oxoglutarate, 0.2 mM for NADH, 7.3 mM for L-glutamate, and 3.0 mM for NAD+ in NAD-linked reactions. 2-Oxoglutarate and L-glutamate caused substrate inhibition in the NADPH- and NADP+-dependent reactions, respectively, to some extent. NAD+- and NADH-dependent activities were inhibited by 50% by 0.1 M NaCl. Adenine nucleotides and dicarboxylic acids did not show remarkable effects on the enzyme activities.  相似文献   

13.
Abstract Two constitutive acetoacetyl-CoA (AcAc-CoA) reductases were purified from Alcaligenes eutrophus . Incorporation of [1-14C]-acetyl-CoA into poly-3-hydroxybutyrate (PHB) by systems reconstituted from purified preparations of either 3-ketothiolase, AcAc-CoA reductase and PHB synthase, occurred only when NADPH-AcAc-CoA reductase was present. The NADH reductase was active with all of the d (−)- and l (+)-3-hydroxyacyl-CoA substrates tested (C4-C10), whereas the NADPH reductase was only active with d (−)-3-hydroxyacyl-CoAs (C4-C6). The products of AcAc-CoA reduction by the NADH- and NADPH-linked enzymes were l (+)-3-hydroxybutyryl-CoA and d (−)-3-hydroxybutyryl-CoA, respectively. The NADH-linked enzyme had an M r of 150,000 (containing identical M r 30,000 sub-units) and the NADPH-linked enzyme appeared to be a tetramer ( M r 84,000) with identical sub-units ( M r 23,000). K mapp values of 22 μM and 5 μM for AcAc-CoA and 13 μM (NADH) and 19 μM (NADPH) for the coenzymes were determined for the NADH- and NADPH-linked enzymes, respectively.  相似文献   

14.
Robinson R  Sobrado P 《Biochemistry》2011,50(39):8489-8496
Mycobacterium smegmatis G (MbsG) is a flavin-dependent monooxygenase that catalyzes the NAD(P)H- and oxygen-dependent hydroxylation of the terminal amino group on the side chain of l-lysine in the biosynthetic pathway of the siderophore mycobactin. Mycobactins are essential for mycobacterium growth under iron-limiting conditions encountered during infection in mammals. Thus, enzymes involved in the biosynthesis of mycobactin represent potential drug targets. MbsG was expressed in Escherichia coli and purified using metal affinity and ionic exchange chromatographies. Recombinant MbsG represents the first member of this class of enzymes isolated in the active form, with a tightly bound FAD cofactor. The k(cat) value for formation of hydroxylated l-lysine under steady-state conditions was 5.0 min(-1), and K(m) values of 0.21 mM for l-lysine, 1.1 mM for NADH, and 2.4 mM for NADPH were calculated. The enzyme functioned as an oxidase when the activity of MbsG was measured by monitoring oxygen consumption in the absence of l-lysine, oxidizing NADH and NADPH with k(cat) values of 59 and 49 min(-1), respectively. Under these conditions, MbsG produced both hydrogen peroxide and superoxide. In contrast, when l-lysine was present, the reaction became more coupled, producing hydroxylated l-lysine and decreasing the oxidase activity. These results suggest that substrate binding modulates the function of MbsG from an oxidase to a monooxygenase.  相似文献   

15.
Biliverdin reductase was purified from pig spleen soluble fraction to a purity of more than 90% as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme was a monomer protein with a molecular weight of about 34,000. Its isoelectric point was at 6.1-6.2. The enzyme was strictly specific to biliverdin and no other oxiodoreductase activities could be detected in the purified enzyme preparation. The purified enzyme could utilize both NADPH and NADH as electron donors for the reduction of biliverdin. However, there were considerable differences in the kinetic properties of the NADPH-dependent and the NADH-dependent biliverdin reductase activities: Km for NADPH was below 5 microM while that for NADH was 1.5-2 mM; the pH optimum of the reaction with NADPH was 8.5 whereas that of the reaction with NADH was 6.9; Km for biliverdin in the NADPH system was 0.3 microM whereas that in the NADH system was 1-2 microM. In addition, both the NADPH-dependent and NADH-dependent activities were inhibited by excess biliverdin, but this inhibition was far more pronounced in the NADPH system than in the NADH system. IX alpha-biliverdin was the most effective substrate among the four biliverdin isomers, and the dimethylester of IX alpha-biliverdin could not serve as a substrate. Biliverdin reductase was also purified about 300-fold from rat liver soluble fraction. The hepatic enzyme was also a monomer protein with a molecular weight of 34,000 and showed properties quite similar to those of the splenic enzyme as regards the biliverdin reductase reaction. The isoelectric point of the hepatic enzyme, however, was about 5.4. It was assumed that NADPH rather than NADH is the physiological electron donor in the intracellular reduction of IX alpha-biliverdin. The stimulatory effects of bovine and human serum albumins on the biliverdin reductase reactions were also examined.  相似文献   

16.
alpha-L-Glycerolphosphate dehydrogenase (sn-glycerol-3-phosphate:NAD+ 2-oxidoreductase, EC 1.1.1.8) from Saccharomyces carlsbergensis was purified 400-fold. The enzyme preparation is free of interfering activities, such as glyceraldehyde phosphate dehydrogenase, alcohol dehydrogenase, triose phosphate isomerase and glycerolphosphatase. At pH 7.0 it is specific for NADH (Km = 0.027 mM with 0.8 mM dihydroxyacetone phosphate) and dihydroxyacetone phosphate (Km = 0.2 mM with 0.2 mM NADH). Between pH 5.0 and 6.0 the enzyme functions with NADPH, but only at 7% of the rate with NADH. Various anions (I- greater than SO42- greater than Br- greater than Cl-) act as inhibitors competing with the substrate dihydroxyacetone phosphate. Inorganic phosphate (Ki = 0.1 mM), pyrophosphate and arsenate are strong inhibitors. The nucleotides ATP and ADP are also inhibitory, but their action seems to be of the same type as the general anion competition (Ki = 0.73 mM for ATP). The results are consistent with the notion that the enzyme may regulate the redox potential of the NAD+/NADH couple during fermentation.  相似文献   

17.
A novel reductase displaying high specificity for glyoxylate and NADPH was purified 3343-fold from spinach leaves. The enzyme was found to be an oligomer of about 125 kDa, composed of four equal subunits of 33 kDa each. A Km for glyoxylate was about 14-fold lower with NADPH than with NADH (0.085 and 1.10 mM respectively), but the maximal activity, 210 mumol/min per mg of protein, was similar with either cofactor. Km values for NADPH and NADH were 3 and 150 microM respectively. Optimal rates with either NADPH or NADH were found in the pH range 6.5-7.4. The enzyme also showed some reactivity towards hydroxypyruvate with rates less than 2% of those observed for glyoxylate. Results of immunological studies, using antibodies prepared against either glyoxylate reductase or spinach peroxisomal hydroxypyruvate reductase, suggested substantial differences in molecular structure of the two proteins. The high rates of NADPH(NADH)-glyoxylate reductase in crude leaf extracts of spinach, wheat and soya bean (30-45 mumol/h per mg of chlorophyll) and its strong affinity for glyoxylate suggest that the enzyme may be an important side component of photorespiration in vivo. In leaves of nitrogen-fixing legumes, this reductase may also be involved in ureide breakdown, utilizing the glyoxylate produced during allantoate metabolism.  相似文献   

18.
It was found that the cytoplasm of light-grown cells of Rhodospirillum rubrum could catalyze the reduction of methyl viologen (MV) (Em, 7 = -0.44 V) by NADH and NADPH. In the present study, the enzyme capable of catalyzing MV reduction by NADH (NADH-MV reductase) was purified 1,500-fold from an extract of cells with a yield of 4.4%. The purification procedure comprised (NH4)2SO4 fractionation, and chromatographies on Sepharose CL-6B, DEAE-Sepharose CL-6B, phenyl-Sepharose CL-4B, Blue-Cellulofine, and TSK-Gel G3000SW. Two NADPH-MV reductases were separated during the purification. The NADH-MV reductase obtained was nearly homogeneous, as judged on polyacrylamide gel electrophoresis both in the presence and absence of sodium dodecyl sulfate. The enzyme has a molecular weight of 220,000 and an isoelectric point of 4.8; it is composed of four subunits with a molecular weight of 57,000, and is bound with about 1 mol FAD/mol subunit. The activity is optimum at pH 8. The Km values for NADH and MV are 115 microM and 1.3 mM, respectively, with a molecular activity of 13,000 min-1. The activity was stimulated 2.4-fold in the presence of 20-100 mM ammonium ions. The enzyme also catalyzed the reduction of benzyl viologen, methylene blue and 2,6-dichlorophenol-indophenol (Em, 7 = -0.36, +0.011, and +0.217 V, respectively) at comparable rates. The ratios of the activity with NADH to that with NADPH were 80, 133, 41, and 5.5 with MV, benzyl viologen, methylene blue and 2,6-dichlorophenolindophenol, respectively. The enzyme was significantly stable in the presence of both 5mM 2-mercaptoethanol and 20% (w/v) glycerol. The activity was not appreciably influenced by the presence of 2 M urea, although the reagent caused dissociation to the subunits.  相似文献   

19.
Abstract Cell-free extracts of vegetative mycelia of Streptomyces aureofaciens and Streptomyces rimosus were found to reduce streptomycete-origin 8-hydroxy-5-deazaisoalloxazine derivatives (SF420) using NADPH as a dnor of hydrogen and electrons. 7,8-didemethyl-8-hydroxy-5-deazariboflavin (F0) also was a substrate, although with a lower reaction rate than that for SF420. NADH could not substitute for NADPH. The F420-reductase activity was also observed in homogenates of S. aureofaciens spores.  相似文献   

20.
Nitrate reductase (NR) (EC 1.6.6.2) from Chlorella variegata 211/10d has been purified by blue sepharose affinity chromatography. The enzyme can utilise NADH or NADPH for nitrate reduction with apparent K m values of 11.5 M and 14.5 M, respectively. Apparent K m values for nitrate are 0.13 mM (NADH-NR) and 0.14 mM (NADPH-NR). The diaphorase activity of the enzyme is inhibited strongly by parachloromercuribenzoic acid; NADH or NADPH protects the enzyme against this inhibition. NR proper activity of the enzyme is partially inactive after extraction and may be activated after the addition of ferricyanide. The addition of NAD(P)H and cyanide causes a reversible inactivation of the NR proper activity although preincubation with either NADH or NADH and ADP has no significant effect.Abbreviations NR Nitrate reductase - FAD Flavin-adenine dinucleotide - FMN Riboflavin 5-phosphate - p-CMB para-Chloromercuribenzoic - BV Benzyl viologen  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号