首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 804 毫秒
1.
A moderately halophilic bacterium, designated strain 9-2T, was isolated from saline and alkaline soil collected in Lindian county, Heilongjiang province, China. The strain was observed to be strictly aerobic, Gram-negative, rod-shaped, oxidase-positive, catalase-positive and motile. It was found to require NaCl for growth and to grow at NaCl concentrations of 0.5–14 % (w/v) (optimum, 7–10 %, w/v), at temperatures of 10–45 °C (optimum 25–30 °C) and at pH 5.0–10.0 (optimum pH 8.0). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 9-2T is a member of the genus Halomonas and is closely related to Halomonas desiderata DSM 9502T (96.68 %), Halomonas campaniensis DSM 1293T (96.46 %), Halomonas ventosae DSM 15911T (96.27 %) and Halomonas kenyensis DSM 17331T (96.27 %). The DNA–DNA hybridization value was 38.9 ± 0.66 % between the novel isolate 9-2T and H. desiderata DSM 9502T. The predominant ubiquinones were identified as Q9 (75.1 %) and Q8 (24.9 %). The major fatty acids were identified as C16:0 (22.0 %), Summed feature 8 (C18:1 ω6c/C18:1 ω7c, 19.6 %), Summed feature 3 (C16:1 ω6c/C16:1 ω7c, 12.6 %), C12:0 3-OH (12.0 %) and C10:0 (11.7 %). The DNA G+C content was determined to be 69.7 mol%. On the basis of the evidence presented in this study, strain 9-2T is considered to represent a novel species of the genus Halomonas, for which the name Halomonas heilongjiangensis sp. nov. is proposed. The type strain is 9-2T (=DSM 26881T = CGMCC 1.12467T).  相似文献   

2.
Strains pyc13T and ZGT13 were isolated from Lake Pengyan and Lake Zigetang on Tibetan Plateau, respectively. Both strains were Gram-negative, catalase- and oxidase-positive, aerobic, rod-shaped, nonmotile, and nonflagellated bacteria. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains pyc13T and ZGT13 belong to the genus Halomonas, with Halomonas alkalicola 56-L4-10aEnT as their closest neighbor, showing 97.4% 16S rRNA gene sequence similarity. The predominant respiratory quinone of both strains was Q-9, with Q-8 as a minor component. The major fatty acids of both strains were C18:1ω6c/C18:1ω7c, C16:1ω6c/C16:1ω7c, C16:0, and C12:0 3OH. The polar lipids of both strains consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, glycolipid, phospholipids of unknown structure containing glucosamine, and unidentified phospholipids. The DNA G + C content of pyc13T and ZGT13 were 62.6 and 63.4 mol%, respectively. The DNA-DNA hybridization values of strain pyc13T were 34, 41, 61, 35, and 35% with the reference strains H. alkalicola 56-L4-10aEnT, H. sediminicola CPS11T, H. mongoliensis Z-7009T, H. ventosae Al12T, and H. fontilapidosi 5CRT, respectively. Phenotypic, biochemical, genotypic, and DNA-DNA hybridization data showed that strains pyc13T and ZGT13 represent a new species within the genus Halomonas, for which the name H. tibetensis sp. nov. is proposed. The type strain is pyc13T (= CGMCC 1.15949T = KCTC 52660T).  相似文献   

3.
A novel strain, SHET, of aerobic bacteriochlorophyll a-containing bacteria was isolated from the surface layer of bottom sediments from the soda lake Shuluutai-Ekhe-Torom (Chita oblast, Eastern Siberia, Russia). The lake water has a total mineralization of 30 g/l and a pH of 9.2. The cells of strain SHET are cocci or short rods, which reproduce by uniform division. The cells are motile by means of flagella. The cell wall structure is of the gram-negative type. Sparse intracytoplasmic membrane vesicles are located close to the cell wall. The new isolate is an obligate aerobe and facultative alkaliphile which grows in a pH range of 7.5–9.5 (with an optimum at pH 8.5–9.0). The best growth of strain SHET occurred at 2.0 g/l NaCl and 23–28°C. Photosynthetic pigments are represented by bacteriochlorophyll a, with the maximum absorption at 865 nm in the in vivo spectrum, and carotenoids (spirilloxanthin derivatives). Analysis of the 16S rRNA gene sequences demonstrated that strain SHET is closely related to Roseococcus thiosulfatophilus of the α-1 subclass of Proteobacteria (98.6 % similarity). The DNA G+C base content is 69.1 mol %. Unlike Rsc. thiosulfatophilus, strain SHET grows well on sugars and glycerol and is not capable of utilizing thiosulfate as an energy source. The new isolate is a facultative alkaliphile and reduces nitrates to nitrites. On the basis of its phenotypic and genetic characteristics, strain SHET was described as a new species of the genus Roseococcus, Rsc. suduntuyensis sp. nov.  相似文献   

4.
A Gram-stain-negative, non-motile, rod-shaped, aerobic bacterial strain, designated 1-3-3-8T, was isolated from soil and characterized taxonomically using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain 1-3-3-8T belongs to the family Cytophagaceae of phylum Bacteroidetes and is most closely related to Hymenobacter paludis KBP-30T (96.8% similarity), Hymenobacter ocellatus Myx2105T (96.8%), Hymenobacter coalescens WW84T (95.6%), and Hymenobacter deserti ZLB-3T (95.4%). The G + C content of the genomic DNA of strain 1-3-3-8T was 63.6 mol%. The isolate contained C15:0 iso (28.4%), summed feature 4 (C17:1 anteiso B/C17:1 iso I; 18.9%), and C15:0 anteiso (17.6%) as major fatty acids, MK-7 as the predominant respiratory quinone, and sym-homospermidine as the predominant polyamine. The major polar lipids were phosphatidylethanolamine and an unidentified lipid. The phenotypic and chemotaxonomic data supported the affiliation of strain 1-3-3-8T with the genus Hymenobacter. The DNA-DNA relatedness between strain 1-3-3-8T and H. paludis KCTC 32237T and H. ocellatus DSM 11117T were 24.5 and 27.4% respectively, clearly showing that the isolate is not related to them at the species level. Overall, the novel strain could be differentiated from its phylogenetic neighbors on the basis of several phenotypic, genotypic, and chemotaxonomic features. Therefore, strain 1-3-3-8T represents a novel species of the genus Hymenobacter, for which the name Hymenobacter jeollabukensis sp. nov. has been proposed. The type strain is 1-3-3-8T (= KCTC 52741T = JCM 32192T).  相似文献   

5.
A chemoorganotrophic, moderately halophilic bacterium (strain SMB35) has been isolated from a naphthalene-utilizing microbial community obtained from salt mines (Perm region of Russia). Strain SMB35 grows in a wide salinity range, 0.5 to 30% (wt/vol) NaCl. Cells are gram-negative rods motile by means of a single polar flagellum. The predominant fatty acids are 16:1ω7, 16:0, 18:1ω7, and 19 cy. The major lipoquinone is an unsaturated ubiquinone with nine isoprene units (Q9). The DNA G+C content is 63.0 mol %. The 16S rDNA-based phylogenetic analysis has shown that strain SMB35 formed a separate clade in the cluster of the family Halomonadaceae. The 16S rDNA sequence similarity of the isolate to the members of the family is in the range from 90.6 to 95.1%. The phylogenetic and phenotypic differences from Halomonas elongata (the type species of the genus) and from other members of the family suggest that the isolate represents a novel genus and species, for which the name Salinicola socius gen. nov., sp. nov. is proposed. The type strain is SMB35T(=VKM B-2397T).  相似文献   

6.
A Gram-stain-negative, non-motile, non-spore-forming, rod-shaped, aerobic bacterium, designated 15J9-6T, was isolated from beach soil on Jeju Island, South Korea. Strain 15J9-6T, grew at 10–30°C (optimum growth at 25°C) and pH 7–8 (optimum growth at pH 7) on R2A, NA, and TSA agar. Phylogenetically, the strain was closely related to members of the genus Spirosoma (92.3–90.1% 16S rRNA gene sequence similarities) and showed highest sequence similarity to Spirosoma panaciterrae DSM 21099T (92.3%). The G+C content of the genomic DNA of strain 15J9-6T was 45.7 mol%. The strain contained phosphatidylethanolamine, two unidentified aminophospholipids, an unidentified phospholipid, and an unidentified lipid as the major polar lipids; menaquinone MK-7 as the predominant respiratory quinone and summed feature 3 (C16:1 ω6c/C16:1 ω7c; 30.1%), C16:1 ω5c (23.1%), iso C15:0 (13.3%), and C16:0 (8.4%) as the major fatty acids which supported the affiliation of strain 15J9-6T to the genus Spirosoma. The results of physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 15J9-6T from recognized Spirosoma species. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain 15J9-6T represents a novel species of the genus Spirosoma, for which the name Spirosoma daeguensis sp. nov. is proposed. The type strain is 15J9-6T (=KCTC 52036T =JCM 31995T)  相似文献   

7.
The investigated green sulfur bacterium, strain M, was isolated from a sulfidic spring on the Black Sea Coast of the Caucasus. The cells of strain M are straight or curved rods 0.6–0.9 × 1.8–4.2 μm in size. According to the cell wall structure, the bacteria are gram-negative. Chlorosomes are located along the cell periphery. Strain M is an obligate anaerobe capable of photoautotrophic growth on sulfide, thiosulfate, and H2. Acetatate is utilized as an additional carbon source. It utilizes ammonium, urea, casein hydrolysate, and N2 as nitrogen sources and sulfide, thiosulfate, and elemental sulfur as sulfur sources. Bacteriochlorophyll c and the carotenoid chlorobactene are the main pigments. The optimal growth temperature is 25–28°C; the optimal pH is 6.8. The strain does not require NaCl. Vitamin B 12 stimulates growth. The content of the G+C base pairs in the DNA of strain M is 58.3 mol %. In the phylogenetic tree constructed on the basis of analysis of nucleotide sequences of 16S rRNA genes, strain M forms a separate branch, which occupies an intermediate position between the phylogenetic cluster containing representatives of the genus Chlorobaculum (94.9–96.8%) and the cluster containing species of the genus Chlorobium (94.1–96.5%). According to the results of analysis of the amino acid sequence corresponding to the fmo gene, strain M represents a branch which, unlike that in the “ribosomal” tree, falls into the cluster of the genus Chlorobaculum (95.8–97.2%). Phylogenetic analysis of the amino acid sequence corresponding to the nifH gene placed species of the genera Chlorobaculum and Chlorobium into a single cluster, whereas strain M formed a separate branch. The results obtained allow us to describe strain M as a new species of the genus ChlorobacChlorobaculum — Chlorobaculum macestae sp. nov.  相似文献   

8.
A bacterial isolate was recovered from a soil sample collected in Jeollabuk-do Province, South Korea, and subjected to polyphasic taxonomic assessment. Cells of the isolate, designated strain S1-2-1-2-1T, were observed to be rod-shaped, pink in color, and Gram-stain negative. The strain was able to grow at temperature range from 10 to 30 °C, with an optimum of 25 °C, and growth occurred at pH 6–8. Comparative 16S rRNA gene sequence analysis showed that strain S1-2-1-2-1T belongs to the genus Hymenobacter, with closely related type strains being Hymenobacter daeguensis 16F3Y-2T (95.8% similarity), Hymenobacter rubidus DG7BT (95.8%), Hymenobacter soli PBT (95.7%), Hymenobacter terrenus MIMtkLc17T (95.6%), Hymenobacter terrae DG7AT (95.3%), and Hymenobacter saemangeumensis GSR0100T (95.2%). The genomic DNA G+C content of strain S1-2-1-2-1T was 63.0 mol%. The main polar lipid of this strain was phosphatidylethanolamine, the predominant respiratory quinone was menaquinone-7, and the major fatty acids were C15:0 iso (27.3%), summed feature 3 (C16:1 ω7c/C16:1 ω6c) (16.5%), C15:0 anteiso (15.3%), and C16:0 (14.7%), supporting the affiliation of this strain with the genus Hymenobacter. The results of this polyphasic analysis allowed for the genotypic and phenotypic differentiation of strain S1-2-1-2-1T from recognized Hymenobacter species. On the basis of its phenotypic properties, genotypic distinctiveness, and chemotaxonomic features, strain S1-2-1-2-1T is considered to represent a novel species of the genus Hymenobacter, for which the name Hymenobacter agri sp. nov. is proposed. The type strain is S1-2-1-2-1T (=KCTC 52739T?=?JCM 32194T).  相似文献   

9.
Aerobic methane oxidation is a key process in the global carbon cycle that acts as a major sink of methane. In this study, we describe a novel methanotroph designated EMGL16-1 that was isolated from a freshwater lake using the floating filter culture technique. Based on a phylogenetic analysis of 16S rRNA gene sequences, the isolate was found to be closely related to the genus Methylomonas in the family Methylococcaceae of the class Gammaproteobacteria with 94.2–97.4% 16S rRNA gene similarity to Methylomonas type strains. Comparison of chemotaxonomic and physiological properties further suggested that strain EMGL16-1 was taxonomically distinct from other species in the genus Methylomonas. The isolate was versatile in utilizing nitrogen sources such as molecular nitrogen, nitrate, nitrite, urea, and ammonium. The genes coding for subunit of the particulate form methane monooxygenase (pmoA), soluble methane monooxygenase (mmoX), and methanol dehydrogenase (mxaF) were detected in strain EMGL16-1. Phylogenetic analysis of mmoX indicated that mmoX of strain EMGL16-1 is distinct from those of other strains in the genus Methylomonas. This isolate probably represents a novel species in the genus. Our study provides new insights into the diversity of species in the genus Methylomonas and their environmental adaptations.  相似文献   

10.
A novel, Gram-staining negative, yellow pigmented bacterial strain, designated 15J11-2T, was isolated from soil sample on Jeju Island, Republic of Korea. The strain was subjected to a taxonomic study using a polyphasic approach. The strain was able to grow at temperature range from 10°C to 30°C, pH 7–8, and in presence of 0–1% (w/v) NaCl. Comparative 16S rRNA gene sequence analysis showed that strain 15J11-2T belongs to the genus Spirosoma and levels of 16S rRNA gene sequence similarity ranged from 91.5% to 89.8%. The genomic DNA G + C content of strain 15J11-2T was 46.0 mol%. The isolate contained phosphatidylethanolamine and an unidentified aminophospholipid as the main polar lipids, menaquinone MK-7 as the predominant respiratory quinone, and summed feature 3 (C16:1ω6c/C16:1ω7c; 39.4%), C16:1ω5c (27.1%), and C16:0 (13.0%) as the major fatty acids, which supported the affiliation of strain 15J11-2T to the genus Spirosoma. The results of physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 15J11-2T from recognized Spirosoma species. On the basis of its phenotypic properties, genotypic distinctiveness, chemotaxonomic features, strain 15J11-2T represents a novel species of the genus Spirosoma, for which the name Spirosoma flavus sp. nov. is proposed. The type strain is 15J11-2T (= KCTC 52026T = JCM 31998T).  相似文献   

11.
A bacterial strain PBT33-2T was isolated from the air environment in an indoor pig farm. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain PBT33-2T belonged to the genus Nocardioides in the phylum Actinobacteria, and was most closely related to Nocardioides daphnia D287T in a maximum-likelihood and neighbor-joining phylogenetic trees. Strain PBT33-2T shared 95.3% sequence identity with N. daphnia D287T. However, the highest sequence similarity was shown with N. sediminis MSL-01T (96.0%). It had less than 96.0% sequence identities with other type species of the genus Nocardioides. Strain PBT-33-2T grew at 15–45°C (optimum 20–35°C), pH 5.0–11.0 (optimum pH 7.0) and 0–4.0% (w/v) NaCl (optimum 0%). The major fatty acid and quinone were iso-C16:0 and MK-8, and the DNA G+C content of strain PBT33-2T was 69.3 mol%. On the basis of poly-phasic results, strain PBT33-2T represents a novel species of the genus Nocardioides, for which the name Nocardioides suum sp. nov. is proposed. Its type strain is PBT33-2T (=KCTC 39558T =DSM 102833T).  相似文献   

12.
moderately halophilic spore forming, motile, Gram-positive, rod-shaped bacterial strain designated as KGW1T was isolated from water sample of Chilika Lake and characterized taxonomically using polyphasic approach. The strain grew in the presence of 0–25% (w/v) NaCl in marine salt agar media, hydrolyzes casein, and gelatin and shows presence of alkaline proteases. The major cell wall menaquinone was MK7 and major cellular fatty acids were anteiso-C15:0 (44.89%), anteiso-C17:0 (6.18%), isoC15:0 (19.38%), and iso-C16:0 (7.39%). Several chemotaxonomic features conform the isolate be a member of genus Halobacillus. The isolate KGW1T contained A1γ meso-Dpm-direct type of peptidoglycan which is different from its phylogenetically closest neighbours. The 16S rRNA gene sequence based phylogenetic analysis also revealed the strain KGW1T was affiliated to the genus Halobacillus and sequence similarity between the isolated strain and the type strains of Halobacillus species were found closest to, H. dabanensis D-8 DSM 18199T (99.08%) and H. faecis IGA7-4 DSM 21559T (99.01%), H. trueperi SL-5 DSM 10404T (98.94%). The in silico DDH showed that the values in a range of 14.2–17.5% with the most closest strain H. dabanensis D-8 DSM 18199T and other type strains of the genus Halobacillus for which whole genome sequence is reported. DNA-DNA relatedness between strain KGW1T and the closest type strain Halobacillus trueperi DSM 10404T was 11.75% (± 1.15). The draft genome sequence includes 3,683,819 bases and comprises of 3898 predicted coding sequences with a G + C content of 46.98%. Thus, the significant distinctiveness supported by phenotypic and genotypic data with its closest neighbors and other closely related species confirm the strain KGW1T to be classified as a novel species within the genus Halobacillus, for which the name Halobacillus marinus sp. nov. is proposed. The type strain is KGW1T (= DSM 29522 = JCM 30443).  相似文献   

13.
A Gram staining negative, rod-shaped, aerobic bacterial strain J5-3T with a single polar flagellum was isolated from coking wastewater collected from Shaoguan, Guangdong, China. It was motile and capable of optimal growth at pH 6–8, 30 °C, and 0–2 % (w/v) NaCl. Its predominant fatty acids were 11-methyl C18:1 ω7c (29.2 %), C16:0 (20.6 %), C19:0 cyclo ω8c (18.2 %), C18:0 (11.0 %), and C18:1 ω7c/C18:1 ω6c (10.9 %) when grown on trypticase soy agar. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, two unknown glycolipids (GL1, GL2), and two unknown phospholipid (PL1, PL2). The predominant ubiquinone was Q-10, and the genome DNA G+C content was 61.7 mol %. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain J5-3T belonged to the family Hyphomicrobiaceae in Alphaproteobacteria. It shared the 16S rRNA gene sequence similarities of 93.8–96.1 % with the genus Devosia, 94.5–94.8 % with the genus Pelagibacterium, and <92.0 % with all the other type strains in family Hyphomicrobiaceae. It can be distinguished from the closest phylogenetic neighbors based on several phenotypic and genotypic features, including α-galactosidase activity, tetracycline susceptibility, major fatty acid composition, polar lipid profile, DNA gyrase B subunit (gyrB) gene sequence, and random-amplified polymorphic DNA profile. Therefore, we consider strain J5-3T to represent a novel species of a novel genus within the family Hyphomicrobiaceae, for which the name Paradevosia shaoguanensis gen. nov., sp. nov. is proposed. The type strain of Paradevosia shaoguanensis is J5-3T (=CGMCC 1.12430T =LMG 27409T).  相似文献   

14.
A novel strain, alga-05, of alkaliphilic purple nonsulfur bacteria was isolated from sediments of a small saline (60 g/l) soda lake near Lake Algin (Barguzin Valley, Buryat Republic, Russia). These bacteria contain bacteriochlorophyll a and carotenoids of the alternative spirilloxanthin group with predominating demethylspheroidenone. They are facultative anaerobes; their photosynthetic structures are of the vesicular type and arranged along the cell periphery. Growth of this strain is possible in a salinity range of 5–80 g/l NaCl, with an optimum at 20 g/l NaCl. Best growth occurred at 20–35°C. Analysis of the 16S rRNA gene sequences demonstrated that the studied isolate is closely related to the alkaliphilic purple nonsulfur bacterium Rhodobaca bogoriensis (99% similarity) isolated from soda lakes of the African Rift Zone. According to the results of DNA-DNA hybridization, strain alga-05 has a 52% similarity with the type species of the genus Rhodobaca. On the basis of the obtained genotypic data and some phenotypic properties (dwelling in a hypersaline soda lake of Siberia, moderate halophily, ability to grow at relatively low temperatures, etc.), the isolated strain of purple bacteria was described as a new species of the genus Rhodobaca, Rca. barguzinensis sp. nov.  相似文献   

15.
A novel pale pink-coloured, strictly aerobic, Gram-stain negative bacterial strain, designated strain KER25-12T, was isolated from a laboratory air-conditioning system in South Korea. Cells were observed to be non-motile cocci showing positive catalase and oxidase reactions. Strain KER25-12T was found to grow at 10–30 °C (optimum, 25–30 °C), at pH 4.0–9.0 (optimum, pH 6.0–7.0) and in the presence of 0–2% (w/v) NaCl (optimum, 0%). Ubiquinone-10 and spermidine were detected as the sole respiratory quinone and the predominant polyamine, respectively. The major fatty acids were identified as summed feature 8 (comprising C18:1 ω7c and/or C18:1 ω6c), summed feature 3 (comprising C16:1 ω7c and/or C16:1 ω6c), C16:0 and C18:0. The genomic DNA G+C content of strain KER25-12T was determined to be 70.0 mol%. The major polar lipids were identified as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and an unidentified aminolipid. Phylogenetic analysis based on 16S rRNA gene sequence comparison revealed that strain KER25-12T belongs to the genus Roseomonas and shows high sequence similarity to Roseomonas aerilata 5420S-30T (98.57%), Roseomonas pecuniae N75T (97.44%) and Roseomonas vinacea CPCC 100056T (97.40%). Based on the morphological, physiological, chemotaxonomic and phylogenetic features, strain KER25-12T is concluded to represent a novel species of the genus Roseomonas, for which the name Roseomonas aeriglobus sp. nov. is proposed. The type strain is KER25-12T (= KACC 19282T = JCM 32049T).  相似文献   

16.
17.
Strain ZZ-8T, a Gram-negative, aerobic, non-spore-forming, non-motile, yellow-pigmented, rod-shaped bacterium, was isolated from metolachlor-contaminated soil in China. The taxonomic position was investigated using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain ZZ-8T is a member of the genus Flavobacterium and shows high sequence similarity to Flavobacterium humicola UCM-46T (97.2%) and Flavobacterium pedocola UCM-R36T (97.1%), and lower (<?97%) sequence similarity to other known Flavobacterium species. Chemotaxonomic analysis revealed that strain ZZ-8T possessed MK-6 as the major respiratory quinone; and iso-C15:0 (28.5%), summed feature 9 (iso-C17:1 w9c/C16:0 10-methyl, 22.9%), iso-C17:0 3-OH (17.0%), iso-C15:0 3-OH (8.9%), iso-C15:1 G (8.6%) and summed feature 3 (C16:1 w7c/C16:1 w6c, 5.7%) as the predominant fatty acids. The polar lipids of strain ZZ-8T were determined to be lipids, a glycolipid, aminolipids and phosphatidylethanolamine. Strain ZZ-8T showed low DNA–DNA relatedness with F. pedocola UCM-R36T (43.23?±?4.1%) and F. humicola UCM-46T (29.17?±?3.8%). The DNA G+C content was 43.3 mol%. Based on the phylogenetic and phenotypic characteristics, chemotaxonomic data and DNA–DNA hybridization, strain ZZ-8T is considered a novel species of the genus Flavobacterium, for which the name Flavobacterium zaozhuangense sp. nov. (type strain ZZ-8T?=?KCTC 62315 T?=?CCTCC AB 2017243T) is proposed.  相似文献   

18.
A Gram-stain-negative, non-motile, non-spore-forming, rod-shaped, aerobic bacterium, designated 15J9-8T, was isolated from soil on Jeju Island, Republic of Korea. The isolate was able to grow between 10 and 30°C, pH 6.5–8.5, and in presence of 0–1% (w/v) NaCl. The results of comparative 16S rRNA gene sequence analysis indicated that strain 15J9-8T represented a member of the family Cytophagaceae, phylum Bacteroidetes, and was most closely related to Spirosoma aerophilum 5516J-17T (96.1% similarity), Spirosoma pulveris JSH5-14T (95.6%), and Spirosoma linguale DSM 74T (95.2%). The G + C content of the genomic DNA of the isolate was 47.0 mol%. Strain 15J9-8T contained summed feature 3 (C16:1 ω7c/C16:1 ω6c), C16:1 ω5c, and iso-C15:0 as the major fatty acids, phosphatidylethanolamine and an unidentified aminophospholipid as the main polar lipids, and menaquinone MK-7 as the predominant respiratory quinone. On the basis of its phenotypic and genotypic properties, and phylogenetic distinctiveness, strain 15J9-8T should be classified as a representative of a novel species of the genus Spirosoma, for which the name Spirosoma migulaei sp. nov. is proposed. The type strain is 15J9-8T (=KCTC 52028T =JCM 31996T).  相似文献   

19.
Strain H2R21T, a novel actinobacterium, isolated from a forest soil sample collected from Heybeliada, Istanbul, Turkey, and a polyphasic approach was used for characterisation of the strain. Chemotaxonomic and morphological characterisation of strain H2R21T indicated that it belongs to the genus Nonomuraea. 16S rRNA gene sequence similarity showed that the strain is closely related to Nonomuraea purpurea 1SM4-01T (99.1%) and Nonomuraea solani CGMCC 4.7037T (98.4%). DNA–DNA relatedness values were found to be lower than 70% between the isolate and its phylogenetic neighbours N. purpurea 1SM4-01T, N. solani CGMCC 4.7037T and Nonomuraea rhizophila YIM 67092T. The whole cell hydrolysates of strain H2R21T were found to contain meso-diaminopimelic acid as the diagnostic diamino acid and glucose, madurose, mannose and ribose as the cell sugars. The polar lipids were identified as phosphatidylglycerol, diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, dihydroxy-phosphatidylethanolamine, phosphatidylinositol, glycophosphatidylinositol, two glycophospholipids and two unidentified lipids. The predominant menaquinones were identified as MK-9(H4) and MK-9(H6). The major fatty acids were found to be iso-C16:0, iso-C16:0 2OH and C17:0 10-methyl. On the basis of DNA–DNA relatedness data and some phenotypic characteristics, it is evident that strain H2R21T can be distinguished from the closely related species in the genus Nonomuraea. Thus, it is concluded that strain H2R21T represents a novel species of the genus Nonomuraea, for which the name Nonomuraea insulae sp. nov. is proposed. The type strain is H2R21T (= DSM 102915T = CGMCC 4.7338T = KCTC 39769T).  相似文献   

20.
During an investigation of the biodiversity of the cultivable bacterial community associated with paralytic shellfish poisoning toxin-producing marine dinoflagellate, Alexandrium minutum a novel algal-associated bacterium, designated strain AT2-AT was isolated. 16S rRNA gene sequence similarity analysis showed that the strain is a member of the genus Ponticoccus, with high sequence similarity to Ponticoccus litoralis DSM 18986T (97.9%) and Ponticoccus lacteus JCM 30379T (96.0%). However, based on the data obtained for the physiological and biochemical characteristics, and low level of DNA–DNA relatedness analysis, the strain could be genotypically and phenotypically differentiated from two type strains of the genus Ponticoccus. Therefore, this algal-associated bacterial strain is concluded to represent a novel species of the genus Ponticoccus, for which the name Ponticoccus alexandrii sp. nov. is proposed. The type strain is AT2-AT (CCTCC AB 2017228 T = KCTC 52626 T ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号