首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
High arterial blood oxygen tension increases vascular resistance, possibly related to an interaction between reactive oxygen species and endothelium-derived vasoactive factors. Vitamin C is a potent antioxidant capable of reversing endothelial dysfunction due to increased oxidant stress. We tested the hypotheses that hyperoxic vasoconstriction would be prevented by vitamin C, and that acetylcholine-mediated vasodilation would be blunted by hyperoxia and restored by vitamin C. Venous occlusion strain gauge plethysmography was used to measure forearm blood flow (FBF) in 11 healthy subjects and 15 congestive heart failure (CHF) patients, a population characterized by endothelial dysfunction and oxidative stress. The effect of hyperoxia on FBF and derived forearm vascular resistance (FVR) at rest and in response to intra-arterial acetylcholine was recorded. In both healthy subjects and CHF patients, hyperoxia-mediated increases in basal FVR were prevented by the coinfusion of vitamin C. In healthy subjects, hyperoxia impaired the acetylcholine-mediated increase in FBF, an effect also prevented by vitamin C. In contrast, hyperoxia had no effect on verapamil-mediated increases in FBF. In CHF patients, hyperoxia did not affect FBF responses to acetylcholine or verapamil. The addition of vitamin C during hyperoxia augmented FBF responses to acetylcholine. These results suggest that hyperoxic vasoconstriction is mediated by oxidative stress. Moreover, hyperoxia impairs acetylcholine-mediated vasodilation in the setting of intact endothelial function. These effects of hyperoxia are prevented by vitamin C, providing evidence that hyperoxia-derived free radicals impair the activity of endothelium-derived vasoactive factors.  相似文献   

2.
Williams WM  Chung YW 《Life sciences》2006,79(17):1638-1644
Effects of aging and oxidative stress were studied in cerebral microvessels and microvessel-depleted brain from 6-, 18-, and 24-month-old C57Bl/6J mice exposed to normoxia, 24 or 48 h hyperoxia, or 24 h hyperoxia followed by 24 h normoxia. Microvessels lacked smooth muscle and consisted predominantly of endothelium. Following exposure and isolation of microvessel and parenchymal proteins, Western blot analysis was performed for detection of cytosolic thioredoxin 1 (TRx 1) and mitochondrial thioredoxin 2 (TRx 2), protein carbonyl, and mitochondrial superoxide dismutase (MnSOD). Both microvessel and parenchymal TRx 1 levels were increased by hyperoxia; however, the microvascular response was limited and delayed in comparison to that of the parenchymal fraction. Whereas TRx 2 levels in microvessels were increased in older mice, irrespective of exposure condition, hyperoxia per se had little or no apparent effect. Parenchymal cells showed no age-related increase in TRx 2 level under normoxic conditions, but showed increased levels following hyperoxia. Microvessel MnSOD was lower than that in parenchymal cells, but increased with age under normoxia, and also was correlated with the duration of hyperoxia. Although hyperoxia augmented MnSOD levels in young (6 months) and middle-aged (18 months) animals, the response was less pronounced in microvessels from senescent, 24-month-old mice. Unlike microvessels, which showed a sustained age-related increase in MnSOD level under each exposure condition, parenchymal cells from normoxic mice showed no increase, and hyperoxia-induced elevations declined with prolonged 48 h exposure. These results indicate that the microvessel endothelium is (1) subjected to a more intense oxidative environment than neurons and glia and (2) is limited by aging in its ability to respond to oxidative insult.  相似文献   

3.
Beside classical antioxidative enzymes, the response to hyperoxia might be mediated via regulation of other systems, such as heme oxygenase (HO). Ho-1 gene expression is found to be upregulated by hyperoxia in all groups of mice, while HO-1 protein isoform was increased only in 4 months old male mice. In steady-state conditions ho-1 and ho-2 gene expression remained unchanged irrespective of sex or age, which was not the case with protein level of both isoforms. This study suggests that in lungs of CBA mice the response to oxidative stress may be mediated through the interaction of other systems such as heme oxygenase, primarily via upregulation of ho-1 gene expression in both sexes. Contrary to our previous study in liver of hyperoxia treated mice, current results might imply that at conventional oxygen conditions lungs of female mice with the emphasis on aging females, are better prepared for oxidative stress conditions through the increase of HO-activity.  相似文献   

4.
Necroptosis has been found to be involved in the pathogenesis of some lung diseases, but its role in hyperoxic acute lung injury (HALI) is still unclear. This study aimed to investigate contribution of necroptosis to the pathogenesis of HALI induced by hyperbaric hyperoxia exposure in a rat model. Rats were divided into control group, HALI group, Nec-1 (necroptosis inhibitor) group and edaravone group. Rats were exposed to pure oxygen at 250?kPa for 6?h to induce HALI. At 30?min before hyperoxia exposure, rats were intraperitoneally injected with Nec-1 or edaravone, and sacrificed at 24?h after hyperoxia exposure. Lung injury was evaluated by histology, lung water to dry ratio (W/D) and bronchoalveolar lavage fluid (BALF) biochemistry; the serum and plasma oxidative stress, expression of RIP1, RIP3 and MLKL, and interaction between RIP1 and RIP3 were determined. Results showed hyperoxia exposure significantly caused damage to lung and increased necroptotic cells and the expression of RIP1, RIP3 and MLKL. Edaravone pre-treatment not only inhibited the oxidative stress in HALI, but also reduced necroptotic cells, decreased the expression of RIP1, RIP3 and MLKL and improved lung pathology. Nec-1 pretreatment inhibited necroptosis and improved lung pathology, but had little influence on oxidative stress. This study suggests hyperoxia exposure induces oxidative stress may activate necroptosis, involving in the pathology of HALI, and strategies targeting necroptosis may become promising treatments for HALI.  相似文献   

5.
The uncoupling protein-3 (UCP3) is a mitochondrial protein expressed mainly in skeletal muscle. Among several hypotheses for its physiological function, UCP3 has been proposed to prevent excessive production of reactive oxygen species. In the present study, we evaluated the effect of an oxidative stress induced by hyperoxia on UCP3 expression in mouse skeletal muscle and C2C12 myotubes. We found that the hyperoxia-mediated oxidative stress was associated with a 5-fold and 3-fold increase of UCP3 mRNA and protein levels, respectively, in mouse muscle. Hyperoxia also enhanced reactive oxygen species production and UCP3 mRNA expression in C2C12 myotubes. Our findings support the view that both in vivo and in vitro UCP3 may modulate reactive oxygen species production in response to an oxidative stress.  相似文献   

6.
7.
Cytotoxic reactive oxygen species are constantly formed as a by-product of aerobic respiration and are thought to contribute to aging and disease. Cells respond to oxidative stress by activating various pathways, whose balance is important for adaptation or induction of cell death. Our lab recently reported that BiP (GRP78), a proposed negative regulator of the unfolded protein response (UPR), declines during hyperoxia, a model of chronic oxidative stress. Here, we investigate whether exposure to hyperoxia, and consequent loss of BiP, activates the UPR or sensitizes cells to ER stress. Evidence is provided that hyperoxia does not activate the three ER stress receptors IRE1, PERK, and ATF6. Although hyperoxia alone did not activate the UPR, it sensitized cells to tunicamycin-induced cell death. Conversely, overexpression of BiP did not block hyperoxia-induced ROS production or increased sensitivity to tunicamycin. These findings demonstrate that hyperoxia and loss of BiP alone are insufficient to activate the UPR. However, hyperoxia can sensitize cells to toxicity from unfolded proteins, implying that chronic ROS, such as that seen throughout aging, could augment the UPR and, moreover, suggesting that the therapeutic use of hyperoxia may be detrimental for lung diseases associated with ER stress.  相似文献   

8.
Yen CC  Lai YW  Chen HL  Lai CW  Lin CY  Chen W  Kuan YP  Hsu WH  Chen CM 《PloS one》2011,6(10):e26870
An important issue in critical care medicine is the identification of ways to protect the lungs from oxygen toxicity and reduce systemic oxidative stress in conditions requiring mechanical ventilation and high levels of oxygen. One way to prevent oxygen toxicity is to augment antioxidant enzyme activity in the respiratory system. The current study investigated the ability of aerosolized extracellular superoxide dismutase (EC-SOD) to protect the lungs from hyperoxic injury. Recombinant human EC-SOD (rhEC-SOD) was produced from a synthetic cassette constructed in the methylotrophic yeast Pichia pastoris. Female CD-1 mice were exposed in hyperoxia (FiO2>95%) to induce lung injury. The therapeutic effects of EC-SOD and copper-zinc SOD (CuZn-SOD) via an aerosol delivery system for lung injury and systemic oxidative stress at 24, 48, 72 and 96 h of hyperoxia were measured by bronchoalveolar lavage, wet/dry ratio, lung histology, and 8-oxo-2'-deoxyguanosine (8-oxo-dG) in lung and liver tissues. After exposure to hyperoxia, the wet/dry weight ratio remained stable before day 2 but increased significantly after day 3. The levels of oxidative biomarker 8-oxo-dG in the lung and liver were significantly decreased on day 2 (P<0.01) but the marker in the liver increased abruptly after day 3 of hyperoxia when the mortality increased. Treatment with aerosolized rhEC-SOD increased the survival rate at day 3 under hyperoxia to 95.8%, which was significantly higher than that of the control group (57.1%), albumin treated group (33.3%), and CuZn-SOD treated group (75%). The protective effects of EC-SOD against hyperoxia were further confirmed by reduced lung edema and systemic oxidative stress. Aerosolized EC-SOD protected mice against oxygen toxicity and reduced mortality in a hyperoxic model. The results encourage the use of an aerosol therapy with EC-SOD in intensive care units to reduce oxidative injury in patients with severe hypoxemic respiratory failure, including acute respiratory distress syndrome (ARDS).  相似文献   

9.
It is well established that exposure to high levels of oxygen (hyperoxia) injures and kills microvascular endothelial and alveolar type I epithelial cells. In contrast, significant death of airway and type II epithelial cells is not observed at mortality, suggesting that these cell types may express genes that protect against oxidative stress and damage. During a search for genes induced by hyperoxia, we previously reported that airway and alveolar type II epithelial cells uniquely express the growth arrest and DNA damage (Gadd)45a gene. Because Gadd45a has been implicated in protection against genotoxic stress, adult Gadd45a (+/+) and Gadd45a (-/-) mice were exposed to hyperoxia to investigate whether it protected epithelial cells against oxidative stress. During hyperoxia, Gadd45a deficiency did not affect loss of airway epithelial expression of Clara cell secretory protein or type II epithelial cell expression of pro-surfactant protein C. Likewise, Gadd45a deficiency did not alter recruitment of inflammatory cells, edema, or overall mortality. Consistent with Gadd45a not affecting the oxidative stress response, p21(Cip1/WAF1) and heme oxygenase-1 were comparably induced in Gadd45a (+/+) and Gadd45a (-/-) mice. Additionally, Gadd45a deficiency did not affect oxidative DNA damage or apoptosis as assessed by oxidized guanine and terminal deoxyneucleotidyl transferase-mediated dUTP nick-end labeling staining. Overexpression of Gadd45a in human lung adenocarcinoma cells did not affect viability or survival during exposure, whereas it was protective against UV-radiation. We conclude that increased tolerance of airway and type II epithelial cells to hyperoxia is not attributed solely to expression of Gadd45a.  相似文献   

10.
Fetuses develop in a marked hypoxic environment in utero. Premature infants often require high concentrations of oxygen to survive and develop in an environment that would be considered an oxygen stress for the fetus. Postnatal hyperoxia alters organ development, but there is minimal research regarding the role of hyperoxia in intestinal development. We attempted to determine whether postnatal hyperoxia exposure alters intestinal growth and function by using a reliable, objective and sensitive set of methods to study region-specific postnatal intestinal maturation. Rat pups born naturally were placed in continual exposure to room air (normoxia) or 85% oxygen (hyperoxia) immediately after birth. Pups were sacrificed at 1 and 2 weeks of age. Intestines were removed and fixed in formalin. Average mucosal, submucosal, and muscularis thicknesses were measured on hematoxylin and eosin stained sections. Immunohistochemistry was performed using antibodies against NOS II. The staining intensity was determined and quantified for site-specific regions of intestinal sections. No differences in mucosal thickness, submucosal thickness, or muscularis thickness were measured in the duodenum, jejunum or colon at any age. At two weeks of age, the thickness of the ileal mucosa was significantly greater in the group reared in 85% oxygen, and the group exposed to room air demonstrated significantly greater NOS II protein concentration than the hyperoxia group within the distal villus, proximal villus/crypts, submucosa, and muscularis in the distal small intestine.  相似文献   

11.
Oxygen toxicity is a problem in diving which can have fatal consequences in the water. When divers use closed-circuit oxygen rebreathing apparatus they are taking only oxygen 100% and this hyperoxic exposure increases the generation of reactive oxygen species (ROS) in biological tissues. The objective of the present study is to evaluate the effects of hyperoxia on biomarkers of oxidative stress in closed-circuit oxygen military divers. Fifteen professional divers of Spanish Navy Diving Center participated in a training program which consisted of one-hour immersion at seven metres of depth breathing oxygen 100% with closed-circuit oxygen rebreathing apparatus. The training went on two or three times per week for the first six weeks and once a week for the last six weeks. Serum total antioxidant status (TAS), levels of glutathione peroxidase (GPx), nitrates (NO3 ?) and urinary concentrations of 15-isoprostane F2t were measured. The results show that TAS decreased significantly after 6 weeks (mean 1.38 versus 1.23 mmol/l), with a slight increase at the end (mean 1.31 mmol/l). GPx and F2-isoprostanes were significantly lower after 6 and 12 weeks and NO3 ? was significantly lower after 6 weeks and remained unchanged until the end. In summary, professional divers who use closed-circuit apparatus and therefore breathe oxygen 100%, do not suffer an important oxidative hyperoxia-induced stress, probably due an adaptive process after hyperoxia. The age and good physical form of the subjects studied could probably enhance the adaptive process to hyperoxia.  相似文献   

12.
Mice were fed a chow diet plus 10% cellulose, 10% fish oil or 10% sunflower oil for 3 weeks, then exposed to 100% oxygen for 75 h. Large changes in lung fatty acid composition occurred, but this did not affect hyperoxic lung damage nor levels of thiobarbituric acid reactive substances or myeloperoxidase in lungs of mice following exposure to hyperoxia. Thus there is no evidence that the ingestion of large quantities of fish oil increased the susceptibility to the oxidative stress induced by hyperoxia.  相似文献   

13.
Endogenous free radical production and resulting oxidative damage may result from exposure to hypoxia, hyperoxia, or hydrogen sulfide. Previous investigations of sulfide-induced oxidative damage have produced conflicting results, perhaps because these studies utilized species presumably adapted to sulfide. We examined the effects of sulfide, hypoxia and hyperoxia on the surf clam Donax variabilis to test whether these stressors induce a cellular response to oxidative stress. These clams inhabit high-energy sandy beaches and are unlikely to have specific adaptations to these stressors. In duplicate flow-through experiments performed in fall and spring, clams were exposed to normoxia (22 kPa P(O(2))), hypoxia (10 kPa), hyperoxia (37 kPa), or sulfide with normoxia ( approximately 100 mumol L(-1), 22 kPa respectively) for 24 h. We quantified whole-animal expression of three antioxidants (Cu/Zn and Mn superoxide dismutases, glutathione peroxidase), a lipid peroxidation marker (4-hydroxy-2E-nonenol-adducted protein), a DNA repair enzyme (OGG1-m), four heat shock proteins (small Hsp, Hsp60, Hsp70, and mitochondrial Hsp70), ubiquitin, and actin. Clams exposed to sulfide showed upregulation of the greatest number of stress proteins and the pattern was consistent with a cellular response to oxidative stress. Furthermore, there was a marked seasonality, with greater stress protein expression in clams from the spring.  相似文献   

14.
J J Gille  H Joenje 《Mutation research》1992,275(3-6):405-414
According to the free radical theory of aging, loss of cellular function during aging is a consequence of accumulating subcellular damage inflicted by activated oxygen species. In cells, the deleterious effects of activated oxygen species may become manifest when the balance between radical formation and destruction (removal) is disturbed creating a situation denoted as 'oxidative stress'. Cell culture systems are especially useful to study the effects of oxidative stress, in terms of both toxicity and cellular adaptive responses. A better understanding of such processes may be pertinent to fully comprehend the cellular aging process. This article reviews three model systems for oxidative stress: extracellular sources of O2-. and H2O2, and normobaric hyperoxia (elevated ambient oxygen). Methodological and practical aspects of these exposure models are discussed, as well as their prominent effects as observed in cultures of Chinese hamster cell lines. Since chronic exposure models are to be preferred, it is argued that normobaric hyperoxia is a particularly relevant oxidative stress model for in vitro cellular aging studies.  相似文献   

15.
Lung epithelium in cystic fibrosis (CF) patients is characterized by structural damage and altered repair due to oxidative stress. To gain insight into the oxidative stress-related damage in CF, we studied the effects of hyperoxia in CF and normal lung epithelial cell lines. In response to a 95% O2 exposure, both cell lines exhibited increased reactive oxygen species. Unexpectedly, the cyclin-dependent kinase inhibitor p21WAF1/CIP1 protein was undetectable in CF cells under hyperoxia, contrasting with increased levels of p21WAF1/CIP1 in normal cells. In both cell lines, exposure to hyperoxia led to S-phase arrest. Apoptotic features including nuclear condensation, DNA laddering, Annexin V incorporation, and elevated caspase-3 activity were not readily observed in CF cells in contrast to normal cells. Interestingly, treatment of hyperoxia-exposed CF cells with two proteasome inhibitors, MG132 and lactacystin, restored p21WAF1/CIP1 protein and was associated with an increase of caspase-3 activity. Moreover, transfection of p21WAF1/CIP1 protein in CF cells led to increased caspase-3 activity and was associated with increased apoptotic cell death, specifically under hyperoxia. Taken together, our data suggest that modulating p21WAF1/CIP1 degradation may have the therapeutic potential of reducing lung epithelial damage related to oxidative stress in CF patients.  相似文献   

16.
Exposure of newborn mice to high inspired oxygen elicits a distinct phenotype of compromised alveolar and vascular development, although lethality during long-term exposure is lower in newborns compared to adults. As the effects of hyperoxia are mediated by excessive reactive oxygen species (ROS) generation, we hypothesized that newborn mice may exhibit enhanced expression of antioxidant defenses or attenuated ROS generation compared with adults. We measured subcellular oxidant responses to acute hyperoxia in lung slices and alveolar epithelial cells at varying time points during postnatal murine lung development. Oxidant stress was assessed using RoGFP, a ratiometric protein thiol redox sensor, targeted to the cytosol or the mitochondrial matrix. In contrast to newborn resistance to oxygen-induced mortality, cells of lung slices from younger mice demonstrated exaggerated mitochondrial matrix oxidant stress compared to adults, whereas oxidant stress responses in the cytosol were absent. Cell death in lung slices from newborn mice exposed to 48 h of hyperoxia was also greater than for adults. Consistent with these findings, expression of antioxidant enzymes in newborn lungs was lower than in adults, and induction of antioxidant levels and activity during 24 h of in vivo exposure was absent. However, expression of the reactive oxygen species-generating enzyme NADPH oxidase 1 was increased with hyperoxic exposure in the young but not the adult lung. Collectively, these results suggest that the greater lethality in adult animals may be more likely attributed to processes such as inflammation than to differences in antioxidant defenses. Therapies for neonatal and adult oxidative lung injury should therefore consider and address developmental differences in oxidative stress responses.  相似文献   

17.
Physical activity, particularly that, exerted by endurance athletes, impacts the immune status of the human body. Prolonged duration and high-intensity endurance training lead to increased production of reactive oxygen species (ROS) and thereby to oxidative stress. Military combat swimmers (O2-divers) are regularly exposed to hyperbaric hyperoxia (HBO) in addition to intensive endurance training intervals. They are, therefore, exposed to extreme levels of oxidative stress. Several studies support that the intensity of oxidative stress essentially determines the effect on immune status. The aim of this study was to comparatively characterise peripheral blood mononuclear cells (PBMCs) of O2-divers (military combat swimmers), endurance athletes (amateur triathletes), and healthy control volunteers with respect to DNA fragmentation, immune status and signs of inflammation. Furthermore, it was investigated how PBMCs from these groups responded acutely to exposure to HBO. We showed that DNA fragmentation was comparable in PBMCs of all three groups under basal conditions directly after HBO exposure. However, significantly higher DNA fragmentation was observed in O2-divers 18?hours after HBO, possibly indicating a slower recovery. O2-divers also exhibited a proinflammatory immune status exemplified by an elevated number of CD4+CD25+ T cells, elevated expression of proinflammatory cytokine IL-12, and diminished expression of anti-inflammatory TGF-β1 compared to controls. Supported by a decreased basal gene expression and prolonged upregulation of anti-oxidative HO-1, these data suggest that higher oxidative stress levels, as present under intermitted hyperbaric hyperoxia, e.g. through oxygen diving, promote a higher inflammatory immune status than oxidative stress through endurance training alone.  相似文献   

18.
The iron chelators o-phenanthroline and desferrioxamine were tested for their ability to protect Chinese hamster ovary cells against the cytotoxic and genotoxic effects of normobaric hyperoxia. Desferrioxamine added at sub-toxic concentrations (up to 2.5 microM) over a period of several days had no protective effect on hyperoxia-induced clonogenic cell killing and growth inhibition. The clastogenic effect of hyperoxia was strongly potentiated by desferrioxamine, while the induction of sister-chromatid exchanges (SCEs) by hyperoxia was unaffected. Similarly, o-phenanthroline (up to 0.25 microM) had no protective effect on hyperoxia-induced cell killing, growth inhibition, and SCE induction, while also this compound potentiated the clastogenic effect of hyperoxia. These results do not support a critical role for cellular iron in the mechanism of toxicity by normobaric hyperoxia in CHO cells. However, the results may still be consistent with a critical involvement of particular iron fraction(s) not susceptible to the chelators used. Furthermore, our results show that concentrations of iron chelators known to protect against short-term (up to 1 h) toxic exposure to oxidative stress become toxic themselves when applied chronically, i.e., in the order of days.  相似文献   

19.
The effects of oxidative stress on DNA damage and associated reactions, increased polyadenosine diphosphate-ribose polymerase (PARP) activity and decreased nicotinamide adenine dinucleotide (NAD) and adenosine triphosphate (ATP) contents, have been tested in primary cultures of porcine aortic endothelial cells. The cells were treated with 50-500 microM H2O2 for 20 min or 100 microM paraquat for 3 days or were exposed to 95% O2 for 2 and 5 days. The administration of 250-500 microM H2O2 resulted in a marked increase in PARP activity and a profound depletion of ATP and NAD. Although hyperoxia had no effect on PARP activity and reduced only slightly the ATP and NAD stores, it markedly reduced the ability of endothelial cells to increase PARP activity upon exposure to DNase. Paraquat had a similar effect. Human dermal fibroblasts were also exposed to 50-500 microM H2O2 for 20 min or 95% O2 for 5 days. Their response to H2O2 differed from that of endothelial cells by their ability to maintain the ATP content at a normal level. Fibroblasts were also insensitive to the effect of hyperoxia. These results suggest that the oxidant-related DNA damage is a function of the type of oxidative stress used and may be cell-specific.  相似文献   

20.
Early embryonic exposure to maternal glucocorticoids can broadly impact physiology and behaviour across phylogenetically diverse taxa. The transfer of maternal glucocorticoids to offspring may be an inevitable cost associated with poor environmental conditions, or serve as a maternal effect that alters offspring phenotype in preparation for a stressful environment. Regardless, maternal glucocorticoids are likely to have both costs and benefits that are paid and collected over different developmental time periods. We manipulated yolk corticosterone (cort) in domestic chickens (Gallus domesticus) to examine the potential impacts of embryonic exposure to maternal stress on the juvenile stress response and cellular ageing. Here, we report that juveniles exposed to experimentally increased cort in ovo had a protracted decline in cort during the recovery phase of the stress response. All birds, regardless of treatment group, shifted to oxidative stress during an acute stress response. In addition, embryonic exposure to cort resulted in higher levels of reactive oxygen metabolites and an over-representation of short telomeres compared with the control birds. In many species, individuals with higher levels of oxidative stress and shorter telomeres have the poorest survival prospects. Given this, long-term costs of glucocorticoid-induced phenotypes may include accelerated ageing and increased mortality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号