首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurosteroids in rodents can originate from peripheral tissues or be locally synthesized in specific brain areas. There is, as yet, no information about the synthesis and regulation of neurosteroids in human brain. We examined the ability of human brain cells to synthesize steroids from a radiolabeled precursor and the mRNA and protein expression of key components of peripheral steroidogenic machinery. Oligodendrocytes are the source of pregnenolone in human brain. Human astrocytes do not synthesize radiolabeled pregnenolone, nor do human neurons. There is potential for all three cell types to metabolize pregnenolone to other neurosteroids, including dehydroepiandrosterone. mRNA and protein for cytochrome P450 17alpha-hydroxylase were found in all cell types, although no activity could be demonstrated. We examined the ability of the cells to make dehydroepiandrosterone via an alternative pathway induced by treatment with Fe2+. Oligodendrocytes and astrocytes make dehydroepiandrosterone via this pathway, but neurons do not. In searching for a natural regulator of dehydroepiandrosterone formation, we observed that treating oligodendrocytes with beta-amyloid, which increases reactive oxygen species, also increased dehydroepiandrosterone formation. These effects of beta-amyloid were blocked by vitamin E. These results indicate that human brain makes steroids in a cell-specific manner and suggest that dehydroepiandrosterone synthesis can be regulated by intracellular free radicals.  相似文献   

2.
Astrocytes, ependymal cells, and oligodendrocytes have been shown to develop on the same schedule in dissociated cell cultures of early embryonic rat brain as in vivo. Subsequent studies showed that there are two major types of astrocyte (type-1 and type-2), which, in cultures of perinatal optic nerve, develop as two distinct lineages. In such cultures, type-2 astrocytes and oligodendrocytes develop from the same, bipotential, (O-2A) progenitor cells, which differentiate into type-2 astrocytes in 10% fetal calf serum (FCS) and into oligodendrocytes in less than or equal to 0.5% FCS. In light of these findings, we now have extended our studies on macroglial cell development in rat brain and show the following: (i) The first astrocytes to develop have a type-1 phenotype, while astrocytes with a type-2 phenotype do not develop until almost 2 weeks later, just as in the optic nerve. (ii) Most importantly, type-2 astrocytes, like the other macroglial cells, develop on the same schedule in cultures of early embryonic (less than or equal to E15) brain as they do in vivo. (iii) By contrast, both oligodendrocytes and type-2 astrocytes develop prematurely in cultures of E17 brain, and FCS influences this development in the same way it does in perinatal optic nerve cultures. (iv) Type-2 astrocyte precursors are labeled by the A2B5 monoclonal antibody, as shown previously for oligodendrocyte precursors in brain and for O-2A progenitor cells in optic nerve. Taken together with our previous findings, these results suggest that oligodendrocytes and type-2 astrocytes in brain develop from bipotential O-2A progenitor cells, whose choice of developmental pathway and timing of differentiation depend on mechanisms that operate independently of brain morphogenesis.  相似文献   

3.
C57 BL/6N mice injected intracranially with the A59 strain of mouse hepatitis virus exhibit extensive viral replication in glial cells of the spinal cord and develop demyelinating lesions followed by virus clearing and remyelination. To study how different glial cell types are affected by the disease process, we combine three-color immunofluorescence labeling with tritiated thymidine autoradiography on 1-micron frozen sections of spinal cord. We use three different glial cell specific antibodies (a) to 2',3' cyclic-nucleotide 3' phosphohydrolase (CNP) expressed by oligodendrocytes, (b) to glial fibrillary acidic protein (GFAP) expressed by astrocytes, and (c) the O4 antibody which binds to O-2A progenitor cells in the rat. These progenitor cells, which give rise to oligodendrocytes and type 2 astrocytes and react with the O4 antibody in the adult central nervous system, were present but rare in the spinal cord of uninfected mice. In contrast, cells with the O-2A progenitor phenotype (O4 + only) were increased in number at one week post viral inoculation (1 WPI) and were the only immunostained cells labeled at that time by a 2-h in vivo pulse of tritiated thymidine. Both GFAP+ only and GFAP+, O4+ astrocytes were also increased in the spinal cord at 1 WPI. Between two and four WPI, the infected spinal cord was characterized by the loss of (CNP+, O4+) oligodendrocytes within demyelinating lesions and the presence of O-2A progenitor cells and O4+, GFAP+ astrocytes, both of which could be labeled with thymidine. As remyelination proceeded, CNP immunostaining returned to near normal and tritiated thymidine injected previously during the demyelinating phase now appeared in CNP+ oligodendrocytes. Thus O4 positive O-2A progenitor cells proliferate early in the course of the demyelinating disease, while CNP positive oligodendrocytes do not. The timing of events suggests that the O-2A progenitors may give rise to new oligodendrocytes and to type 2 astrocytes, both of which are likely to be instrumental in the remyelination process.  相似文献   

4.
M C Raff  E R Abney  J Fok-Seang 《Cell》1985,42(1):61-69
The rat optic nerve contains three types of macroglial cells: type 1 astrocytes first appear at embryonic day 16 (E16), oligodendrocytes at birth (E21), and type 2 astrocytes between postnatal days 7 and 10. The oligodendrocytes and type 2 astrocytes develop from a common, bipotential O-2A progenitor cell. We show here that although O-2A progenitor cells in E17 optic nerve prematurely stop dividing and differentiate into oligodendrocytes within 2 days in culture, when cultured on a monolayer of type 1 astrocytes, they continue to proliferate; moreover, the first cells differentiate into oligodendrocytes after 4 days in vitro, which is equivalent to the time that oligodendrocytes first appear in vivo. Our findings suggest that the timing of oligodendrocyte differentiation depends on an intrinsic clock in the O-2A progenitor cell that counts cell divisions that are driven by a growth factor (or factors) produced by type 1 astrocytes.  相似文献   

5.
The bipotential progenitor cells (O-2A progenitors) that produce oligodendrocytes and type-2 astrocytes in the developing rat optic nerve are induced to proliferate in culture by type-1 astrocytes. Here, we show that the astrocyte-derived mitogen is platelet-derived growth factor (PDGF). PDGF is a potent mitogen for O-2A progenitor cells in vitro. Mitogenic activity in astrocyte-conditioned medium comigrates with PDGF on a size-exclusion column, competes with PDGF for receptors, and is neutralized by antibodies to PDGF. PDGF dimers can be immunoprecipitated from astrocyte-conditioned medium, and mRNA encoding PDGF is present in rat brain throughout gliogenesis. We propose that astrocyte-derived PDGF is crucial for the control of myelination in the developing central nervous system.  相似文献   

6.
7.
The bipotential glial progenitor cells (O-2A progenitors), which during development of the rat optic nerve give rise to oligodendrocytes and type 2 astrocytes, are stimulated to divide in culture by platelet-derived growth factor (PDGF), and there is evidence that PDGF is important for development of the O-2A cell lineage in vivo. We have visualized PDGF mRNA in the rat optic nerve by in situ hybridization, and its spatial distribution is compatible with the idea that type 1 astrocytes are the major source of PDGF in the nerve. We can detect mRNA encoding the A chain, but not the B chain of PDGF in the brain and optic nerve, suggesting that the major form of PDGF in the central nervous system is a homodimer of A chains (PDGF-AA). PDGF-AA is a more potent mitogen for O-2A progenitor cells than is PDGF-BB, while the reverse is true for human or rat fibroblasts. Fibroblasts display two types of PDGF receptors, type A receptors which bind to all three dimeric isoforms of PDGF, and type B receptors which bind PDGF-BB and PDGF-AB, but have low affinity for PDGF-AA. Our results suggest that O-2A progenitor cells possess predominantly type A receptors, and proliferate during development in response to PDGF-AA secreted by type 1 astrocytes.  相似文献   

8.
In rat optic nerve, oligodendrocytes and type-2 astrocytes develop from a common (O-2A) progenitor cell. The first oligodendrocytes differentiate at birth, while the first type-2 astrocytes differentiate in the second postnatal week. We previously showed that the timing of oligodendrocyte differentiation depends on an intrinsic clock in the O-2A progenitor cell. Here we provide evidence that the timing of type-2 astrocyte differentiation, by contrast, may depend on an inducing protein that appears late in the developing nerve. We show that extracts of 3- to 4-week-old, but not 1-week-old, rat optic nerve contain a protein (apparent Mr approximately 25,000) that induces O-2A progenitor cells in culture to express glial fibrillary acidic protein (GFAP), an astrocyte-specific marker in the rat central nervous system.  相似文献   

9.
10.
Ueyama T  Shirasawa N  Ito T  Tsuruo Y 《Life sciences》2004,74(18):2327-2337
Recently we demonstrated the presence of aromatase (P450(arom)), estrogen synthetase, and the active production of estrogen in parietal cells of the rat stomach. We therefore investigated the steroidogenic pathways of estrogen and also other steroid metabolites in the gastric mucosa of male rats, by showing the mRNA expression of steroidogenic enzymes using RT-PCR and in situ hybridization histochemistry, and by measuring the blood concentration of steroids in the artery and the portal vein. RT-PCR analysis showed the strong mRNA expression of 17alpha-hydroxylase/17,20-lyase (P450(17alpha)), 17beta-hydroxysteroid dehydrogenase (HSD) type III and P450(arom), and the weak mRNA expression of 17beta-HSD type II, 5alpha-reductase type I and 3alpha-HSD. The other mRNAs of steroidogenic enzymes examined were not detected. In situ hybridization histochemistry demonstrated the localization of mRNAs for P450(17alpha), 17beta-HSD type III and P450(arom) in the parietal cells. Higher levels of progesterone and testosterone were found in the artery compared with the portal vein. Higher amounts of estrone and 17beta-estradiol, by contrast, were present in the portal vein compared with the artery. These results indicate that parietal cells of rat stomach convert circulating progesterone and/through androstenedione and testosterone to synthesize both estrone and 17beta-estradiol, which then enter the liver via the portal vein.  相似文献   

11.
12.
13.
Sterol carrier protein 2 (SCP2) is believed to play an important role in the intracellular movement of cholesterol in steroidogenic cells. We examined the distribution of SCP2 gene expression in the rat ovary and the role of gonadotropins and cyclic AMP in the regulation of SCP2 mRNA levels. In situ hybridization revealed that the most steroidogenically active ovarian compartments (e.g., corpora lutea and theca cells) contain significant amounts of SCP2 mRNA whereas granulosa cells have modest levels. Gonadotropins, which promote follicular growth and luteinization, increased the ovarian content of SCP2 mRNA as assessed by Northern blotting along with increases in cytochrome P450scc mRNA. Using steroidogenic transformed rat granulosa cells (Grs-21), a cyclic AMP analogue (8-Br-cAMP) was found to increase SCP2 mRNA and protein levels within 24 h of treatment. P450scc mRNA was also induced whereas actin mRNA levels were not affected. The 8-Br-cAMP stimulation of SCP2 mRNA accumulation was completely inhibited by actinomycin D and cycloheximide. The cyclic AMP analogue also increased SCP2 mRNA levels in a non-steroid hormone producing transformed rat granulosa cell line Gs-8. We conclude that SCP2 gene expression in the ovary is correlated with the state of differentiation of granulosa cells. Gonadotropic hormones which stimulate luteinization of the cells increase SCP2 gene expression. These actions of gonadotropins appear to be mediated at least in part by cyclic AMP through a mechanism requiring ongoing RNA and protein synthesis. However, SCP2 gene expression is not obligatorily coupled to steroidogenic activity, as cyclic AMP analogues can increase SCP2 mRNA in a line of transformed ovarian granulosa cells incapable of synthesizing hormones.  相似文献   

14.
We have devised a technique that enables one to localize hyaluronate in cultured cells. Cells were probed with the glial hyaluronate binding protein (GHAP) which was itself then visualized by conventional indirect immunofluorescence. The hyaluronate binding properties of this protein have been established. This technique was applied to the study of hyaluronate synthesis in glial cells. These cells do not themselves produce GHAP. O-2A progenitor cells were obtained from the cerebral hemispheres of newborn rats. These cells are bipotential in that they are able to differentiate into either oligodendrocytes or type 2 astrocytes depending on the composition of the culture medium. In cultures of O-2A progenitor cells maintained in the absence of serum, in which large numbers of oligodendrocytes appeared, very little hyaluronate was produced. The galC+ cells were invariably hyaluronate negative. Cultures of the same cells, maintained in the presence of 10% FCS, contained large numbers of hyaluronate producing cells. The hyaluronate producing cells were typically small, process-bearing, and GFAP+. Some, but not all, were A2B5+ and could, therefore, be identified as type 2 (GFAP+, A2B5+) astrocytes. Type 1 (GFAP+, A2B5-) astrocytes were also active in the synthesis of hyaluronate, to the extent that they were able to coat their substrate with hyaluronate. Among cells of the O-2A lineage, then, hyaluronate production would appear to be restricted to astrocytes. This may have some bearing on the origin of hyaluronate in the extracellular matrix of CNS white matter.  相似文献   

15.
We used our model system for agonism and antagonism of the androgen receptor (AR), in which the porcine ovarian follicles were exposed on the excessive concentration of an AR agonist- testosterone (T) or an AR antagonist- 2-hydroxyflutamide (2-Hf) to: (1) analyze the spatiotemporal expression of ovarian 3β-hydroxysteroid dehydrogenase (3β-HSD), cytochrome P450 17α-hydroxylase/c17,20-lyase (P450c17) and cytochrome P450 aromatase (P450arom); (2) to determine the contribution of AR-mediated action during steroidogenesis and (3) to establish some correlations between the onset and expression pattern of the investigated proteins. Whole follicles (6–8 mm in diameter) isolated from mature porcine ovaries have been incubated (for 24 h) in an organ culture system in the presence of T (10?7 M), 2-Hf (1.7 × 10?4 M) or both T and 2-hydroxyflutamide (T+2-Hf, at the same concentrations as when added separately). Thereafter, sections obtained from cultured follicles were processed for main steroidogenic enzymes detection by immunohistochemistry. Moreover, expression of their mRNA and protein was determined by real-time PCR and Western blot analysis. Progesterone, androgens and estradiol concentrations in the culture media were measured by radioimmunoassays (RIA). Our results demonstrated that 2-Hf can influence the steroidogenic activity of porcine follicles in vitro through the blockade of AR. It was shown that follicular 2-Hf treatment brought about dramatic decline in the production of the investigated steroids. What is more the addition of 2-Hf separately caused a negative effect on 3β-HSD and P450c17 mRNA and protein expression by ovarian follicles, while it was without effect on P450arom mRNA level. Quite opposite effect was observed in case of the simultaneous addition of 2-Hf and T. It caused high increase, in both P450arom mRNA and its protein. What was interesting, addition T+2-Hf evoked 3β-HSD and P450c17 increase on mRNA level, but decreased their protein expression. This was against our expectations but the reason for that finding remains undiscovered, intriguing and worth reporting. These results suggest that alike, steroidogenic enzymes activity and their expression is associated with the presence of androgens and AR in the porcine ovary.  相似文献   

16.
O-2A progenitor cells are bipotential glial precursors that give rise to both oligodendrocytes and type-2 astrocytes on a precise schedule in the rat CNS. Studies in culture suggest that oligodendrocyte differentiation occurs constitutively, while type-2 astrocyte differentiation requires an exogenous inducer such as fetal calf serum. Here we describe a rat brain cell culture system in which type-2 astrocytes develop on schedule in the absence of exogenous inducers. Coincident with type-2-astrocyte development, the cultures produce an approximately 20 kd type-2-astrocyte-inducing factor(s). Purified cultures of type-1 astrocytes can produce a similar factor(s). Under conditions where they produce type-2-astrocyte-inducing factor(s), both brain and type-1 astrocyte cultures produce a factor(s) with ciliary neurotrophic (CNTF)-like activity. Purified CNTF, like the inducers from brain and type-1 astrocyte cultures, prematurely induces type-2 astrocyte differentiation in brain cultures. These findings suggest that type-2 astrocyte development is initiated by a CNTF-like protein produced by type-1 astrocytes.  相似文献   

17.
In order to elucidate the steroidogenesis of clinically nonfunctioning adrenocortical adenoma, we studied the aldosterone, cortisol (F) and dehydroepiandrosterone (DHEA) content and the expression of mRNA of cytochrome P450 for side chain cleavage (P450scc), 17 alpha-hydroxylase (P450c17). 21-hydroxylase (P450c21) and 11 beta-hydroxylase (P450c11) in four clinically nonfunctioning adrenocortical adenomas discovered incidentally in asymptomatic patients (Cases 1, 2, 3 and 4). The results were compared with those in normal adrenal glands. In the adenomas from cases 1 and 2, the abundance of steroidogenic P450s mRNA were similar to those in normal adrenal glands, except P450c11 mRNA expression in the adenoma from case 1 which was slightly higher than normal. The steroid content was normal level, except for higher F in the adenoma from case 1 and lower aldosterone in case 2 adenoma than normal. The adenoma from case 3 contained much less P450scc, P450c17 and P450c21 mRNA, while the amount of P450c11 mRNA was slightly greater than in normal adrenals. The adenoma showed normal aldosterone, high F and low DHEA content compared with normal adrenal glands. In the adenoma from case 4, the accumulation of all four P450 mRNAs decreased, whereas aldosterone, F and DHEA content in the adenoma was similar to that of normal adrenal glands. These data indicated that nonfunctioning adrenocortical adenoma showed similar or decreased expression of steroidogenic P450 mRNAs that the normal adrenal gland. This decreased expression of steroidogenic P450 mRNAs may be at least partly concerned with the absence of clinical symptoms in patients with nonfunctioning adenoma.  相似文献   

18.
《The Journal of cell biology》1989,109(6):3411-3417
In the rat optic nerve, bipotential O-2A progenitor cells give rise to oligodendrocytes and type 2 astrocytes on a precise schedule. Previous studies suggest that PDGF plays an important part in timing oligodendrocyte development by stimulating O-2A progenitor cells to proliferate until they become mitotically unresponsive to PDGF, stop dividing, and differentiate automatically into oligodendrocytes. Since the loss of mitotic responsiveness to PDGF has been shown not to be due to a loss of PDGF receptors, we have now examined the possibility that the unresponsiveness results from an uncoupling of these receptors from early intracellular signaling pathways. We show that (a) although PDGF does not stimulate newly formed oligodendrocytes to synthesize DNA, it induces an increase in cytosolic Ca2+ in these cells; (b) a combination of a Ca2+ ionophore plus a phorbol ester mimics the effect of PDGF, both in stimulating O-2A progenitor cell division and in reconstituting the normal timing of oligodendrocyte differentiation in culture; and (c) the same combination of drugs does not stimulate newly formed oligodendrocytes to proliferate, even in the presence of PDGF or dibutyryl cAMP. The most parsimonious explanation for these results is that O-2A progenitor cells become mitotically unresponsive to PDGF because the intracellular signaling pathways from the PDGF receptor to the nucleus are blocked downstream from the receptor and some of the early events that are triggered by receptor activation.  相似文献   

19.
20.
Oligodendrocytes differentiate in primary cultures of rat brain cells on a specific schedule similar to that observed in vivo. We show that the pace of this developmental schedule is accelerated by the addition of the cyclic AMP analogs dibutyryl cAMP (dbcAMP) or 8-bromo cAMP. Dibutyryl cAMP also inhibits DNA synthesis in A2B5-positive oligodendrocyte-type 2 astrocyte (O-2A) progenitor cells, consistent with the relationship between cessation of proliferation and onset of differentiation observed in vivo and in vitro. Treatment of cultures with dbcAMP has no effect on the proportion of O-2A progenitors that become oligodendrocytes rather than type 2 astrocytes and thus does not affect progenitor lineage decisions. Thus, cyclic AMP analogs accelerate the differentiation of cells apparently already determined to become oligodendrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号