首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T Y Fang  M Zou  V Simplaceanu  N T Ho  C Ho 《Biochemistry》1999,38(40):13423-13432
Site-directed mutagenesis has been used to construct two mutant recombinant hemoglobins (rHbs), rHb(betaH116Q) and rHb(betaH143S). Purified rHbs were used to assign the C2 proton resonances of beta116His and beta143His and to resolve the ambiguous assignments made over the past years. In the present work, we have identified the C2 proton resonances of two surface histidyl residues of the beta chain, beta116His and beta143His, in both the carbonmonoxy and deoxy forms, by comparing the proton nuclear magnetic resonance (NMR) spectra of human normal adult hemoglobin (Hb A) with those of rHbs. Current assignments plus other previous assignments complete the assignments for all 24 surface histidyl residues of human normal adult hemoglobin. The individual pK values of 24 histidyl residues of Hb A were also measured in deuterium oxide (D(2)O) in 0.1 M N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid (HEPES) buffer in the presence of 0.1 M chloride at 29 degrees C by monitoring the shifts of the C2 proton resonances of the histidyl residues as a function of pH. Among those surface histidyl residues, beta146His has the biggest contribution to the alkaline Bohr effect (63% at pH 7.4), and beta143His has the biggest contribution to the acid Bohr effect (71% at pH 5.1). alpha20His, alpha112His, and beta117His have essentially no contribution; alpha50His, alpha72His, alpha89His, beta97His, and beta116His have moderate positive contributions; and beta2His and beta77His have a moderate negative contribution to the Bohr effect. The sum of the contributions from 24 surface histidyl residues accounted for 86% of the alkaline Bohr effect at pH 7.4 and about 55% of the acid Bohr effect at pH 5.1. Although beta143His is located in the binding site for 2,3-bisphosphoglycerate (2,3-BPG) according to the crystal structure of deoxy-Hb A complexed with 2, 3-BPG, beta143His is not essential for the binding of 2,3-BPG in the neutral pH range according to the proton NMR and oxygen affinity studies presented here. With the accurately measured and assigned individual pK values for all surface histidyl residues, it is now possible to evaluate the Bohr effect microscopically for novel recombinant Hbs with important functional properties, such as low oxygen affinity and high cooperativity. The present study further confirms the importance of a global electrostatic network in regulating the Bohr effect of the hemoglobin molecule.  相似文献   

2.
The crystal structure of a high oxygen affinity species of hemoglobin, bar-headed goose hemoglobin in deoxy form, has been determined to a resolution of 2.8 A. The R and R(free) factor of the model are 0.197 and 0.243, respectively. The structure reported here is a special deoxy state of hemoglobin and indicates the differences in allosteric mechanisms between the goose and human hemoglobins. The quaternary structure of the goose deoxy hemoglobin shows obvious differences from that of human deoxy hemoglobin. The rotation angle of one alphabeta dimer relative to its partner in a tetramer molecule from the goose oxy to deoxy hemoglobin is only 4.6 degrees, and the translation is only 0.3 A, which are much smaller than those in human hemoglobin. In the alpha(1)beta(2) switch region of the goose deoxy hemoglobin, the imidazole ring of His beta(2)97 does not span the side-chain of Thr alpha(1)41 relative to the oxy hemoglobin as in human hemoglobin. And the tertiary structure changes of heme pocket and FG corner are also smaller than that in human hemoglobin. A unique mutation among avian and mammalian Hbs of alpha119 from proline to alanine at the alpha(1)beta(1 )interface in bar-headed goose hemoglobin brings a gap between Ala alpha119 and Leu beta55, the minimum distance between the two residues is 4.66 A. At the entrance to the central cavity around the molecular dyad, some residues of two beta chains form a positively charged groove where the inositol pentaphosphate binds to the hemoglobin. The His beta146 is at the inositol pentaphosphate binding site and the salt-bridge between His beta146 and Asp beta94 does not exist in the deoxy hemoglobin, which brings the weak chloride-independent Bohr effect to bar-headed goose hemoglobin.  相似文献   

3.
The hydrogen exchange kinetics of the N delta H proton in His F8 of iodoacetamide- and N-ethylmaleimide-treated human deoxyhemoglobins were studied using a NMR method. Comparison with unmodified hemoglobin shows that the reagents, covalently bound to Cys beta 93, significantly increase (about one order of magnitude) the exchange kinetics in beta chains only. This effect was partially reversed by the strong allosteric effector inositol hexaphosphate. Study of the high resolution 400-MHz NMR spectra of modified oxy- and deoxy-hemoglobins permitted localization of the extent of chemically induced structural perturbations. The resonances corresponding to hydrogen bonds specific to the deoxy conformation are not changed, in accord with the preserved cooperativity. Under the experimental conditions (0.1 M bis-Tris, 10 mM Cl-, pH 7.2), the salt bridge at the C terminus of the beta chain in the deoxy state (His beta 146-Asp beta 94) is perturbed by both modifications. The His beta 146 appears to be rendered more immobilized by the reagents in the oxy conformation. From the resonances corresponding to heme pocket protons of oxyhemoglobin it is deduced that the perturbations do not extend over the distal side of the heme pocket but are limited to the FG, F, and HC segments of the beta chain.  相似文献   

4.
The high-resolution proton nuclear magnetic resonance spectra of carp hemoglobin have been compared to those of human normal adult hemoglobin. Carp deoxy and carbonmonoxy hemoglobins in the deoxy-type quaternary state exhibit two downfield exchangeable proton resonances as compared to four seen in human normal adult deoxyhemoglobin. This suggests that two of the hydrogen bonds present in human normal adult deoxyhemoglobin are absent or occur in very different environments in carp hemoglobin. One of the exchangeable proton resonances of carp hemoglobin, while present in the deoxy-type quaternary state of the carbonmonoxy and deoxy derivatives, is absent in the oxy-type quaternary state of both, in agreement with the assignments of these quaternary structures by other methods. The ring-current-shifted proton resonances (sensitive tertiary structural markers) of carp carbonmonoxyhemoglobin are substantially different from those of human normal adult hemoglobin. The aromatic proton resonance region of carp hemoglobin has fewer resonances than that of human normal adult hemoglobin, consistent with its much reduced histidine content. The hyperfine-shifted proximal histidyl NH-exchangeable proton resonances of carp hemoglobin suggest that during the transition from the oxy to the deoxy quaternary structure, there is a greater alteration in the heme pocket of one type of subunits (presumably the beta chain) than that in the other subunit. The present results suggest that there are differences in both tertiary and quaternary structures between carp and human normal adult hemoglobins which could contribute to the great differences in the functional properties between these two proteins.  相似文献   

5.
Li R  Nagai Y  Nagai M 《Chirality》2000,12(4):216-220
The CD band of human adult hemoglobin (Hb A) at 280 approximately 290 nm shows a pronounced change from a small positive band to a definite negative band on the oxy (R) to deoxy (T) structural transition. This change has been suggested to be due to environmental alteration of Tyrs (alpha42, alpha140, and beta145) or beta37 Trp residues located at the alpha1beta2 subunit interface by deoxygenation. In order to evaluate contributions of alpha140Tyr and beta37Trp to this change of CD band, we compared the CD spectra of two mutant Hbs, Hb Rouen (alpha140Tyr-->His) and Hb Hirose (beta37Trp-->Ser) with those of Hb A. Both mutant Hbs gave a distinct, but smaller negative CD band at 287nm in the deoxy form than that of deoxyHb A. Contributions of alpha140Tyr and beta37Trp to the negative band at the 280 approximately 290 nm region were estimated from difference spectra to be 30% and 26%, respectively. These results indicate that the other aromatic amino acid residues, alpha42Tyr and beta145Tyr, at the alpha1beta2 interface, are also responsible for the change of the CD band upon the R-->T transition of Hb A.  相似文献   

6.
The effect of pressure on the tertiary and quaternary structures of human oxy, carbonmonoxy, and deoxyhemoglobin was examined by high pressure NMR spectroscopy at 300 MHz. The increased pressure displaced the ring current-shifted gamma 1-methyl resonance of beta E11 valine for oxy- and carbonmonoxyhemoglobin to the upfield side, whereas that of the alpha subunit was insensitive to pressure. Such a preferential pressure-induced upfield shift for the beta E11 valine gamma 1-methyl signal was also encountered for the isolated carbonmonoxy beta chain. For deoxyhemoglobin, hyperfine shifted resonances of the heme peripheral proton groups and the proximal histidyl NH proton for the beta subunit were pressure-dependent, in contrast to the pressure-insensitive responses for these resonances of the alpha subunit. These results indicate the structural nonequivalence of the pressure-induced structural changes in the alpha and beta subunits of hemoglobin. The exchangeable proton resonances due to the intra- and intersubunit hydrogen bonds which have been used as the oxy and deoxy quaternary structural probes were not changed upon pressurization. From all of above results, it was concluded that pressure induces the tertiary structural change preferentially at the beta heme pocket of the ferrous hemoglobin derivatives with the quaternary structure retained.  相似文献   

7.
High-resolution proton nuclear magnetic resonance spectroscopy and nuclear Overhauser effects for the low-field exchangeable proton resonances of human normal adult hemoglobin in aqueous solvents are being used to confirm and extend the assignments of these resonances to specific protons at the intersubunit interfaces of the molecule. Most of these exchangeable proton resonances of human normal adult hemoglobin have been found to be absent in the spectra of isolated alpha or beta subunits. This finding indicates that they are specific spectral markers for the quaternary structure of the hemoglobin tetramer. Based on the nuclear Overhauser effect results, we have assigned the exchangeable proton resonance at +7.4 ppm downfield from H2O to the hydrogen-bonded proton between alpha 103(G10)His and beta 108(G10)Asn at the alpha 1 beta 1 interface. The nuclear Overhauser effect results have also confirmed the assignments of the exchangeable proton resonances at +9.4 and +8.2 ppm downfield from H2O previously proposed by workers in this laboratory based on a comparison of human normal adult hemoglobin and appropriate mutant hemoglobins. This independent confirmation of previously proposed assignments is necessary in view of the possible long-range conformational effects of single amino-acid substitutions in mutant hemoglobin molecules.  相似文献   

8.
Human hemoglobin containing cobalt protoporphyrin IX or cobalt hemoglobin has been separated into two functionally active alpha and beta subunits using a new method of subunit separation, in which the -SH groups of the isolated subunits were successfully regenerated by treatment with dithiothreitol in the presence of catalase. Oxygen equilibria of the isolated subunit chains were examined over a wide range of temperature using Imai's polarographic method (Imai, K., Morimoto, H., Kotani, M., Watari, H., and Kuroda, M. (1970) Biochim. Biophys. Acta 200, 189-196). Kinetic properties of their reversible oxygenation were investigated by the temperature jump relaxation method at 16 degrees. Electron paramagnetic resonance characteristics of the molecules in both deoxy and oxy states were studies at 77K. The oxygen affinity of the individual regenerated chains was higher than that of the tetrameric cobalt hemoglobin and was independent of pH. The enthalpy changes of the oxygenation have been determined as -13.8 kcal/mol and -16.8 kcal/mol for the alpha and beta chains, respectively. The rates of oxygenation were similar to those reported for iron hemoglobin chains, whereas those of deoxygenation were about 10(2) times larger. The effects of metal substitution on oxygenation properties of the isolated chains were correlated with the results obtained previously on cobalt hemoglobin and cobalt myoglobin. The EPR spectrum of the oxy alpha chain showed a distinctly narrowed hyperfine structure in comparison with that of the oxy beta chain, indicating that the environment around the paramagnetic center (the bound oxygen) is different between these chains. In the deoxy form, EPR spectra of alpha and beta chains were indistinguishable. These observations suggest that one of the inequivalences between alpha and beta chains might exist near the distal histidine group.  相似文献   

9.
Two-dimensional nuclear magnetic resonance techniques were used to assign resonances corresponding to heme pocket residues of the isolated alpha(CO) subunits of the human adult hemoglobin (HbA). The assignment procedure was based on the partial identification of the amino acid spin system from the J-correlated (COSY) spectrum and on the nuclear Overhauser effect connectivities (from NOSEY spectra) with the heme substituents. We present here partial assignments corresponding to five amino acid residues: Leu86, Leu-91, Val-93, Leu-101 and Leu-136. Starting from the known crystallographic structure of the alpha subunit in the hemoglobin tetramer, we applied a dipolar model to compute the ring-current shift of the protons from fifteen amino acid residues in the heme pocket. Comparison of the predicted and observed chemical shifts suggests that there is a very close similarity between the heme pocket tertiary structure of the alpha(CO) subunits in crystals of HbA(CO) and of the free alpha(CO) chains. The one-dimensional NMR spectra were used to monitor the pH-induced structural changes, the effects of chemical modification and of ligand substitution. Upon increasing the pH from 5.6 to 9.0 the structure of the heme environment appears to be invariant with the exception of some residues in the CD corner. The structure is also largely conserved when p-chloromercuribenzoate is bound to Cys-104. In contrast, the substitution of CO by O2 as ligand induces many large changes in the heme cavity which can be partially characterized by NMR spectroscopy.  相似文献   

10.
In this paper we report proton two-dimensional NMR experiments on isolated alpha chains from human hemoglobin A (HbA) in the monocarboxylated state. Several J-correlated and NOE spectra in water or deuterium water and phosphate buffer (100 mM) at 310 K and pH 5.6 were acquired and analysed for the sequential assignment of the proton resonances. In addition, we used the topological data obtained from the crystal structure of alpha subunits in the monocarboxylated HbA tetramer. The assigned resonances correspond to 70% of the amino acid residues. The present results provide information on the tertiary structure of isolated alpha chains in solution, particularly in the heme region. This structure may be compared with that of the a subunits in the tetrameric HbA(CO) in crystal by comparison of observed chemical shifts and those calculated from the X-ray atomic coordinates. Overall, the global folding of the two forms are highly similar. However, this analysis points out several local conformational differences in the heme pocket and the neighboring of the unique Trp residue. Possible explanations of these differences are discussed.  相似文献   

11.
Multidimensional, multinuclear NMR has the potential to elucidate the mechanisms of allostery and cooperativity in multimeric proteins under near-physiological conditions. However, NMR studies of proteins made up of non-equivalent subunits face the problem of severe resonance overlap, which can prevent the unambiguous assignment of resonances, a necessary step in interpreting the spectra. We report the application of a chain-selective labeling technique, in which one type of subunit is labeled at a time, to carbonmonoxy-hemoglobin A (HbCO A). This labeling method can be used to extend previous resonance assignments of key amino acid residues, which are important to the physiological function of hemoglobin. Among these amino acid residues are the surface histidyls, which account for the majority of the Bohr effect. In the present work, we report the results of two-dimensional heteronuclear multiple quantum coherence (HMQC) experiments performed on recombinant (15)N-labeled HbCO A. In addition to the C2-proton (H epsilon(1)) chemical shifts, these spectra also reveal the corresponding C4-proton (H delta(2)) resonances, correlated with the N epsilon(2) and N delta(1) chemical shifts of all 13 surface histidines per alpha beta dimer. The HMQC spectrum also allows the assignment of the H delta(1), H epsilon(1), and N epsilon(1) resonances of all three tryptophan residues per alpha beta dimer in HbCO A. These results indicate that heteronuclear NMR, used with chain-selective isotopic labeling, can provide resonance assignments of key regions in large, multimeric proteins, suggesting an approach to elucidating the solution structure of hemoglobin, a protein with molecular weight 64.5 kDa.  相似文献   

12.
Oxygen-linked effects of inositol hexaphosphate occur in heme-containing non-alpha chains isolated from normal human hemoglobin, fetal hemoglobin, and the abnormal human hemoglobin Abruzzo, beta143(H21) His leads to Arg. The occurrence of these effects implies that the chains undergo ligand-linked conformational changes. Inositol hexaphosphate lowers the oxygen affinity of isolated beta and gamma chains by differential binding to their deoxy conformations. Neither 2,3-diphosphoglycerate nor inorganic phosphate produces such an effect. In the case of Abruzzo beta chains, the binding of inorganic phosphate and 2,3-diphosphoglycerate is also oxygen-linked. Stripped beta chains isolated from hemoglobin Abruzzo have much higher oxygen affinity than beta chains isolated from HbA. Their higher oxygen affinity and enhanced allosteric interactions with phosphates account, in large part, for the abnormal functional behavior of the hemoglobin Abruzzo tetramer. In this hemoglobin variant the substitution of arginine for histidine at beta143 involves a residue known to interact with anionic allosteric effectors of hemoglobin. It is of interest that the effect of inositol hexaphosphate observed with isolated gamma chains is comparable to the effect observed with isolated beta chains, even though the gamma143 position is occupied by an uncharged serine residue.  相似文献   

13.
Hemoglobin A, cross-linked between Lys 99 alpha 1 and Lys 99 alpha 2, was used to obtain a partially oxidized tetramer in which only one of the four hemes remains reduced. Because of the absence of dimerization, asymmetric, partially oxidized derivatives are stable. This is evidenced by the fact that eight of the ten possible oxidation states could be resolved by analytical isoelectric focusing. A triply oxidized hemoglobin population HbXL+3 was isolated whose predominant component was (alpha + alpha +, beta + beta 0). This triferric preparation was examined as a possible model for the triliganded state of ferrous HbA. The aquomet and cyanomet derivatives were characterized by their CD spectra and their kinetic reactions with carbon monoxide. CD spectra in the region of 287 nm showed no apparent change in quaternary structure upon binding ligand to the fourth, ferrous heme. The spectra of the oxy and deoxy forms of the cyanomet and aquomet derivatives of HbXL+3 differed insignificantly and were characteristic of the normal liganded state. Upon addition of inositol hexaphosphate (IHP), both the oxy and deoxy derivatives of the high-spin triaquomet species converted to the native deoxy conformation. In contrast, IHP had no such effect on the conformation of the low-spin cyanomet derivatives of HbXL+3. The kinetics of CO combination as measured by stopped-flow and flash photolysis techniques present a more complex picture. In the presence of IHP the triaquomet derivative does bind CO with rate constants indicative of the T state whether these are measured by the stopped-flow technique or by flash photolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Bis(3,5-dibromosalicyl) fumarate was used to crosslink hemoglobin both in the oxy and deoxy states. This double headed diaspirin was known to crosslink oxy Hb A selectively between Lys 82 beta 1 and Lys 82 beta 2 (Walder, J. A., et al. (1979) Biochemistry 18, 4265) and deoxy Hb A between Lys 99 alpha 1 and Lys 99 alpha 2 (Chatterjee R. Y., et al. (1986) J. Biol. Chem. 261, 9929). The autoxidation at 37 degrees C of oxy alpha 99 crosslinked hemoglobin was found to be 1.8 times as fast as that of Hb A while that of the oxy beta 82 crosslinked hemoglobin was only 1.2 times as fast. After 5 hours the formation of methemoglobin in the alpha crosslinked Hb A is 21.3% compared to 10.8% in beta crosslinked Hb A and 6.4% in Hb A. These results may effect the proposed use of alpha 99 crosslinked hemoglobin as a blood substitute by demonstrating the need for protection from autoxidation during storage.  相似文献   

15.
Hydrogen exchange experiments using functional labeling and fragment separation methods were performed to study interactions at the C terminus of the hemoglobin beta subunit that contribute to the phosphate effect and the Bohr effect. The results show that the H-exchange behavior of several peptide NH at the beta chain C terminus is determined by a transient, concerted unfolding reaction involving five or more residues, from the C-terminal His146 beta through at least Ala142 beta, and that H-exchange rate can be used to measure the stabilization free energy of interactions, both individually and collectively, at this locus. In deoxy hemoglobin at pH 7.4 and 0 degrees C, the removal of 2,3-diphosphoglycerate (DPG) or pyrophosphate (loss of a salt to His143 beta) speeds the exchange of the beta chain C-terminal peptide NH protons by 2.5-fold (at high salt), indicating a destabilization of the C-terminal segment by 0.5 kcal of free energy. Loss of the His146 beta 1 to Asp94 beta 1 salt link speeds all these protons by 6.3-fold, indicating a bond stabilization free energy of 1.0 kcal. When both these salt links are removed together, the effect is found to be strictly additive; all the protons exchange faster by 16-fold indicating a loss of 1.5 kcal in stabilization free energy. Added salt is slightly destabilizing when DPG is present but provides some increased stability, in the 0.2 kcal range, when DPG is absent. The total allosteric stabilization energy at each beta chain C terminus in deoxy hemoglobin under these conditions is measured to be 3.8 kcal (pH 7.4, 0 degrees C, with DPG). In oxy hemoglobin at pH 7.4 and 0 degrees C, stability at the beta chain C terminus is essentially independent of salt concentration, and the NES modification, which in deoxy hemoglobin blocks the His146 beta to Asp94 beta salt link, has no destabilizing effect, either at high or low salt. These results appear to show that the His146 beta salt link, which participates importantly in the alkaline Bohr effect, does not reform to Asp94 beta or to any other salt link acceptor in a stable way in oxy hemoglobin at low or high salt conditions.  相似文献   

16.
Temperature dependent absolute and difference spectra for deoxy and oxy human hemoglobin, alpha and beta subunits, NiHbA, carboxypeptidase A treated deoxy HbA and NiHbA have been investigated. It is shown for the first time that the alpha subunits are mainly responsible for the temperature dependent spectral changes in the absorption spectra of Hb in the range from 0 degrees C to 40 degrees C. It has also been found that in the R state the spectral alterations caused by temperature variation are about 85% of those found for the T state of Hb. The value of following the temperature dependence of the porphyrin bands of hemoproteins, as a sensitive probe for subtle changes in the region of the heme, is demonstrated.  相似文献   

17.
L W Fung  C Ho 《Biochemistry》1975,14(11):2526-2535
Proton nuclear magnetic resonance spectra of human hemoglobins in water reveal several exchangeable protons which are indicators of the quaternary structures of both the liganded and unliganded molecules. A comparison of the spectra of normal human adult hemoglobin with those of mutant hemoglobins Chesapeake (FG4alpha92 Arg yields Leu), Titusville (G1alpha94 Asp yields Asn), M Milwaukee (E11beta67 Val yields Glu), Malmo (FG4beta97 His yields Gln), Kempsey (G1beta99 Asp yields Asn), Yakima (G1beta99 Asp yields His), and New York (G15beta113 Val yields Glu), as well as with those of chemically modified hemoglobins Des-Arg(alpha141), Des-His(beta146), NES (on Cys-beta93)-Des-Arg(alpha141), and spin-labeled hemoglobin [Cys-beta93 reacted with N-(1-oxyl-2,2,6,6-tetramethyl-4-piperidinyl)iodoacetamide], suggests that the proton in the important hydrogen bond between the tyrosine at C7alpha42 and the aspartic acid at G1beta99, which anchors the alpha1beta2 subunits of deoxyhemoglobin (a characteristic feature of the deoxy quaternary structure), is responsible for the resonance at -9.4 ppm from water at 27 degrees. Another exchangeable proton resonance which occurs at -6.4 ppm from H2O is a spectroscopic indicator of the deoxy structure. A resonance at -5.8 ppm from H2O, which is an indicator of the oxy conformation, is believed to originate from the hydrogen bond between the aspartic acid at G1alpha94 and the asparagine at G4beta102 in the alpha1beta2 subunit interface (a characteristic feature of the oxy quaternary structure). In the spectrum of methemoglobin at pH 6.2 both the -6.4- and the -5.8ppm resonances are present but not the -9.4-ppm resonance. Upon the addition of inositol hexaphosphate to methemoglobin at pH 6.2, the usual resonance at -9.4 ppm is shifted to -10 ppm and the resonance at 6.4 ppm is not observed. In the spectrum of methemoglobin at pH greater than or equal to 7.6 with or without inositol hexaphosphate, the resonance at -5.8 ppm is present, but not those at -10 and -6.4 ppm, suggesting that methemoglobin at high pH has an oxy-like structure. Two resonances (at -8.2 and -7.3 ppm) which remain invariant in the two quaternary structures could come from exchangeable protons in the alpha1beta1 subunit interface and/or other exchangeable protons in the hemoglobin molecule which undergo no conformational changes during the oxygenation process. These exchangeable proton resonances serve as excellent spectroscopic probes of the quaternary structures of the subunit interfaces in studies of the molecular mechanism of cooperative ligand binding to hemoglobin.  相似文献   

18.
In this work, we corrected the resonance Raman (RR) results presented earlier for deoxy mesoheme IX-reconstituted hemoglobin (mesoHb) alpha and beta subunits implied that mesohemes in these subunits undergo substantial structural changes upon formation of a hemoglobin tetramer (Biochemistry 29 (1990) 5087). We show that these data were probably due to the improper handling of the deoxy mesoheme subunit preparation. Additionally, we discuss the RR spectra of deoxy, oxy, and CO species of mesoheme IX-reconstituted myoglobin (mesoMb) and alpha and beta deoxy meso hemoglobin subunits, including their analogues with deuterium-substituted mesoheme IX in all methyl groups (d(12)). Based on the obtained data, we propose a complete RR band assignment for all of the investigated molecules. The most pronounced changes are observed for the gamma(7) mode (out-of-plane movement of methane carbon atoms) associated with the interaction of the ethyl groups with the globin. We also show that in mesoheme IX-reconstituted proteins, the O(2) molecule binds stronger than in the case of native species. This is manifested by the up-shift of nu(Fe-O(2)).  相似文献   

19.
L W Fung  K L Lin  C Ho 《Biochemistry》1975,14(15):3424-3430
High-resoluiton proton nuclear magnetic resonance spectroscopy at 250 MHz has been used to investigate sickle cell hemoglobin. The hyperfine shifted, the ring-current shifted, and the exchangeable proton resonances suggest that the heme environment and the subunit interfaces of the sickle cell hemoglobin molecule are normal. These results suggest that the low oxygen affinity in sickle cell blood is not due to conformational alterations in the heme environment or the subunit interfaces. The C-2 proton resonances of certain histidyl residues can serve as structural probes for the surface conformation of the hemoglobin molecule. Several sharp resonances in sickle cell hemoglobin are shifted upfield from their positions in normal adult hemoglobin. These upfield shifts, which are observed in both oxy and deoxy forms of the molecule under various experimental conditions, suggest that some of the surface residues of sickle cell hemoglobin are altered and they may be in a more hydrophobic environment as compared with that of normal human adult hemoglobin. These differences in surface conformation are pH and ionic strength specific. In particular, upon the addition of organic phosphates to normal and sickle cell hemoglobin samples, the differences in their aromatic proton resonances diminish. These changes in the surface conformation may, in part, be responsible for the abnormal properties of sickle cell hemoglobin.  相似文献   

20.
Isolated beta chains from human adult hemoglobin at millimolar concentration are mainly associated to form beta 4 tetramers. We were able to obtain relevant two-dimensional proton nuclear magnetic resonance (NMR) spectra of such supermolecular complexes (Mr approximately 66,000) in the carboxylated state. Analysis of the spectra enabled us to assign the major part of the proton resonances corresponding to the heme substituents. We also report assignments of proton resonances originating from 12 amino acid side chains mainly situated in the heme pocket. These results provide a basis for a comparative analysis of the tertiary heme structure in isolated beta(CO) chains in solution and in beta(CO) subunits of hemoglobin crystals. The two structures are generally similar. A significantly different position, closer to the heme center, is predicted by the NMR for Leu-141 (H19) in isolated beta chains. Comparison of the assigned resonances of conserved amino acids in alpha chains, beta chains and sperm whale myoglobin indicates a close similarity of the tertiary heme pocket structure in the three homologous proteins. Significant differences were noted on the distal heme side, at the position of Val-E11, and on Leu-H19 and Phe-G5 position on the proximal side.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号