首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In a survey of class 1 integrons from human stools, an unusual class 1 integron from a strain of Enterobacter cloacae was isolated and characterized in detail. Sequence analysis of a fosmid containing the class 1 integron revealed a complex set of transposons which included two Tn402-like transposons. One of these transposons, Tn6007, included a class 1 integron with two non-antibiotic-resistance-type gene cassettes and a complete transposition module. This tni module is a hybrid with a boundary within the res site compared to Tn402, implying that a site-specific recombination event generated either Tn6007 or Tn402. The second Tn402-like transposon, Tn6008, possesses neither a mer operon nor an integron, and most of its tni module has been deleted. Tn6007, Tn6008, and the 2,478 bases between them, collectively designated Tn6006, have transposed into a Tn5036/Tn3926-like transposon as a single unit. Tn6006, Tn6007, and Tn6008 could all transpose as discrete entities. Database analysis also revealed that a version of Tn6008 was present in the genome of Xanthomonas campestris pv. vesicatoria. Overall, the E. cloacae isolate further demonstrated that functional class 1 integrons/transposons are probably common in bacterial communities and have the potential to add substantially to the problem of multidrug-resistant nosocomial infections.  相似文献   

2.
To analyse the significance of conjugative broad-host-range IncP-1alpha plasmids for the spread of antibiotic resistance determinants in waste-water treatment plants we isolated and characterised five different IncP-1alpha plasmids from bacteria of activated sludge and the final effluents of a municipal waste-water treatment plant. These plasmids mediate resistance to ampicillin, cefaclor, cefuroxime, gentamicin, kanamycin, spectinomycin, streptomycin, tetracycline, tobramycin, and trimethoprim. The complete 68,869 bp DNA-sequence of the IncP-1alpha plasmid pTB11 was determined. The pTB11 backbone modules for replication (Rep), mating pair formation (Trb), multimer resolution (Mrs), post-segregational killing (Psk), conjugative DNA-transfer (Tra), plasmid control (Ctl), and stable maintenance and inheritance (KilA, KilE, and KilC) are highly conserved as compared to the 'Birmingham' IncP-1alpha plasmids. In contrast to the 'Birmingham' plasmids pTB11 carries an insert of a Tn402-derivative integrating a class 1 integron in the intergenic region between the multimer resolution operon parCBA and the post-segregational killing operon parDE. The integron comprises the resistance gene cassettes oxa2 (beta-lactamase), aacA4 (aminoglycoside-6'N-acetyltransferase), and aadA1 (aminoglycoside-3'-adenylyltransferase) and a complete tniABQR transposition module. Integron-specific sequences were also identified on other IncP-1alpha plasmids analysed in this work. In contrast to the 'Birmingham' plasmids the pTB11 tetracycline resistance module carries a pecM- and a pncA-like gene downstream of the tetracycline resistance gene tetA and contains an insertion of the new insertion sequence element ISTB11. The transposable elements IS21 and Tn1 which disrupted, respectively, orf7 and klcB on the 'Birmingham' plasmids are not present on pTB11. Identification of IncP-1alpha plasmids in bacteria of the waste-water treatment plant's final effluents indicates that bacteria carrying these kind of plasmids are released into the environment.  相似文献   

3.
Integrons are genetic elements that contribute to lateral gene transfer in bacteria as a consequence of possessing a site-specific recombination system. This system facilitates the spread of genes when they are part of mobile cassettes. Most integrons are contained within chromosomes and are confined to specific bacterial lineages. However, this is not the case for class 1 integrons, which were the first to be identified and are one of the single biggest contributors to multidrug-resistant nosocomial infections, carrying resistance to many antibiotics in diverse pathogens on a global scale. The rapid spread of class 1 integrons in the last 60 years is partly a result of their association with a specific suite of transposition functions, which has facilitated their recruitment by plasmids and other transposons. The widespread use of antibiotics has acted as a positive selection pressure for bacteria, especially pathogens, which harbor class 1 integrons and their associated antibiotic resistance genes. Here, we have isolated bacteria from soil and sediment in the absence of antibiotic selection. Class 1 integrons were recovered from four different bacterial species not known to be human pathogens or commensals. All four integrons lacked the transposition genes previously considered to be a characteristic of this class. At least two of these integrons were located on a chromosome, and none of them possessed antibiotic resistance genes. We conclude that novel class 1 integrons are present in a sediment environment in various bacteria of the beta-proteobacterial class. These data suggest that the dispersal of this class may have begun before the "antibiotic era."  相似文献   

4.
Summary A system for the direct selection of intra- and inter-molecular transposition events has been used to show that intra-molecular transposition of Tn1 generates deletions and inversions and requires the tnpA but not the tnpR gene product, as predicted by current models of transposition. Intra-molecular Tn1 transposition is much less limited by transposition immunity than inter-molecular transposition, and occurs at frequencies comparable to those for inter-molecular transposition. The selection system, which uses the bacteriophage cI-PR region as a target can be used to select, quantify, and characterize any spontaneous or induced mutations.  相似文献   

5.
The transposing elements Tn7, Tn1824, controlling the resistance to trimethoprim and Tn1925, Tn1826, carrying the streptothricin resistance genes were classified as a new transposon family on the basis of their physical structure. The comparative genetic analysis of the frequency, specificity and insertion orientation in different replicons, obtained in independent research systems in this study, demonstrated the identity of transposition characteristics of the transposons. The latter makes it possible to classify them as an independent transposon family. The peculiar feature of the Tn7-like elements family is their RecA-dependent transposition into the chromosome of Escherichia coli stimulated by bacteriophage Plkc transduction of the transposons.  相似文献   

6.
Absence of cis-acting transposition immunity with Tn7   总被引:2,自引:0,他引:2  
D M Hassan  J Brevet 《Plasmid》1983,10(1):31-44
It is possible in two steps to insert into the plasmid RP4 two copies of the transposon Tn7. This was demonstrated using a wild-type Tn7 in the first step, and a Tn7 derivative (carrying an additional marker), in the second step. The two successive transpositions occurred with the same polarity and frequency. The genetic structures of the resulting plasmids, predicted from the phenotypes of the bacterial host, were confirmed by direct analysis of the plasmid DNAs. Thus, the phenomenon of cis-acting transposition immunity, described with Tn1 or Tn3, does not take place in the case of Tn7.  相似文献   

7.
The 6645-bp mercury resistance transposon of the chemolithotrophic bacterium Thiobacillus ferrooxidanswas cloned and sequenced. This transposon, named Tn5037, belongs to the Tn21branch of the Tn21subgroup, many members of which have been isolated from clinical sources. Having the minimum set of the genes (merRTPA), the mercury resistance operon of Tn5037is organized similarly to most of the Gram-negative bacteria meroperons and is closest to that of ThiobacillusT3.2. The operator-promoter region of the meroperon of Tn5037also has the common (Tn21/Tn501-like) structure. However, its inverted, presumably MerR protein binding repeats in the operator/promoter element are two base pairs shorter than in Tn21/Tn501. In the merA region, this transposon shares 77.4, 79.1, 83.2 and 87.8% identical bases with Tn21, Tn501, T. ferrooxidansE-15, and ThiobacillusT3.2, respectively. No inducibility of the Tn5037 meroperon was detected in the in vivo experiments. The transposition system (terminal repeats plus gene tnpA) of Tn5037was inactive in Escherichia coliK12, in contrast to its resolution system (ressite plus gene tnpR). However, transposition of Tn5037in this host was provided by the tnpAgene of Tn5036, a member of the Tn21subgroup. Sequence analysis of the Tn5037 ressite suggested its recombinant nature.  相似文献   

8.
Dissecting Tn5 transposition using HIV-1 integrase diketoacid inhibitors   总被引:1,自引:0,他引:1  
Czyz A  Stillmock KA  Hazuda DJ  Reznikoff WS 《Biochemistry》2007,46(38):10776-10789
Diketoacid (DKA) compounds have been shown to inhibit HIV-1 integrase by a mechanism that involves sequestration of the active site metals. Because HIV-1 integrase and Tn5 transposase have similar active site architectures and catalytic mechanisms, we investigated whether DKA analogues would inhibit Tn5 transposase activity and provide a model system to explore the mechanisms of action of these inhibitors. A screen of several hundred DKA analogues identified several with activity against Tn5 Tnp. Six DKA inhibitors used in this study manifested a variety of effects on different transposition steps suggesting that different analogues may have different binding contacts with transposase. All DKA compounds inhibited paired end complex (PEC) formation in which the nucleoprotein complex required for catalysis is assembled. Dissociation of PECs by some DKA compounds indicates that these inhibitors can decrease PEC stability. Four DKA compounds inhibited the two cleavage steps releasing transposon DNA from flanking DNA, and one of these four compounds preferentially inhibited the second cleavage step. The differential effect of this inhibitor on the second cleavage event indicates that cleavage of the two transposon-donor DNA boundaries is a sequential process requiring a conformational change. The requirement for a conformational change between cleavage events was also demonstrated by the inability of transposase to perform second cleavage at 25 degrees C. Finally, all six compounds inhibit strand transfer, the final step of Tn5 transposition. Two of the compounds that inhibited strand transfer have no effect on DNA cleavage. The strand transfer inhibition properties of various DKA compounds was sensitive to the structure of the 5'-non-transferred strand, suggesting that these compounds bind in or near the transposase active site. Other results that probe compound binding sites include the effects of active site mutations and donor DNA on DKA compound inhibition activities. Thus, DKA inhibitors will provide an important set of tools to investigate the mechanism of action of transposases and integrases.  相似文献   

9.
Tn5 is an excellent model system for understanding the molecular basis of DNA-mediated transposition. Mechanistic information has come from genetic and biochemical investigations of the transposase and its interactions with the recognition DNA sequences at the ends of the transposon. More recently, molecular structure analyses of catalytically active transposase; transposon DNA complexes have provided us with unprecedented insights into this transposition system. Transposase initiates transposition by forming a dimeric transposase, transposon DNA complex. In the context of this complex, the transposase then catalyses four phosphoryl transfer reactions (DNA nicking, DNA hairpin formation, hairpin resolution and strand transfer into target DNA) resulting in the integration of the transposon into its new DNA site. The studies that elucidated these steps also provided important insights into the integration of retroviral genomes into host DNA and the immune system V(D)J joining process. This review will describe the structures and steps involved in Tn5 transposition and point out a biologically important although surprising characteristic of the wild-type Tn5 transposase. Transposase is a very inactive protein. An inactive transposase protein ensures the survival of the host and thus the survival of Tn5.  相似文献   

10.
11.
The class 1 integron integrase, IntI1, recognizes two distinct types of recombination sites, attI sites, found in integrons, and members of the 59-be family, found in gene cassettes. The efficiencies of the integrative version of the three possible reactions, i.e., between two 59-be, between attI1 and a 59-be, or between two attI1 sites, were compared. Recombination events involving two attI1 sites were significantly less efficient than the reactions in which a 59-be participated, and the attI1 x 59-be reaction was generally preferred over the 59-be x 59-be reaction. Recombination of attI1 with secondary sites was less efficient than the 59-be x secondary site reaction.  相似文献   

12.
Escherichia coli K-12 minicells were employed to examine polypeptides encoded by plasmids carrying wild-type and mutant Tn1 or Tn3 transposition elements. Tn1- and Tn3-containing minicells express high levels of four transposon-specified polypeptides. Three, of molecular weights 30,000, 28,000, and 25,000, are related immunologically to beta-lactamase, the enzyme responsible for ampicillin hydrolysis. A fourth polypeptide of molecular weight 19,000 is encoded by the Tn1 or Tn3 region which spans the BamHI cleavage site. Mutant transposons which no longer produce this polypeptide transpose at higher than wild-type frequencies to give aberrant transposition products (Gill et al., J. Bacteriol. 136: 742--756, 1978; Heffron et al., Proc. Natl. Acad. Sci U.S.A. 72:3632--3627, 1975). No expression could be detected from a region of the transposons extending from the inverted repeat sequence distal to the beta-lactamase gene to more than half the distance into the Tn1 or Tn3 sequence.  相似文献   

13.
We describe Tn5386, a novel ca.-29-kb Tn916-like mobile element discovered to occur in ampicillin-resistant, Tn916-containing Enterococcus faecium D344R. PCR amplification experiments after overnight growth with or without tetracycline revealed "joint" regions of circularized Tn5386 composed of 6-bp sequences linking different transposon termini. In one case (no tetracycline), the termini were consistent with those derived by target site analysis of the integrated element. In the other case, the termini were virtually identical in distance from the integrase binding regions, as seen with Tn916. These data are consistent with a model in which one PCR product results from the action of Tn5386 integrase, whereas the other results from the action of the Tn916 integrase on Tn5386. Spontaneous conversion of D344R to an ampicillin-susceptible phenotype (D344SRF) was associated with a 178-kb deletion extending from the left end of Tn5386 to the left end of Tn916. Examination of the Tn5386 junction after the large deletion event suggests that the deletion resulted from an interaction between the nonintegrase ends of Tn5386 and Tn916. The terminus of Tn5386 identified in this reaction suggested that it may have resulted from the activity of the Tn916 integrase (Int(Tn916)). The "joint" of the circular element resulting from this excision was amplifiable from D344R, the sequence of which revealed a heteroduplex consistent with Int(Tn916)-mediated excision. In contrast, Tn5386 joints amplified from ampicillin-susceptible D344SRF revealed ends consistent with Tn5386 integrase activity, reflecting the absence of Tn916 from this strain. Tn5386 represents a new member of the Tn916 transposon family. Our data suggest that excision of Tn5386 can be catalyzed by the Tn916 integrase and that large genomic deletions may result from the interaction between these heterologous elements.  相似文献   

14.
15.
The bacterial transposon Tn7 utilizes four Tn7-encoded proteins, TnsA, TnsB, TnsC and TnsD, to make insertions at a specific site termed attTn7. This target is selected by the binding of TnsD to attTn7 in a sequence-specific manner, followed by the binding of TnsC and activation of the transposase. We show that TnsD binding to attTn7 induces a distortion at the 5' end of the binding site and TnsC contacts the region of attTn7 distorted by TnsD. Previous work has shown that a target site containing triplex DNA, instead of TnsD-attTn7, can recruit TnsABC and effect site- specific insertion of Tn7. We propose that the DNA distortion imposed by TnsD on attTn7, like the altered DNA structure via triplex formation, serves as a signal to recruit TnsC. We also show that TnsD primarily contacts the major groove of DNA, whereas TnsC is a minor groove binding protein. The footprint of the TnsC-TnsD-attTn7 nucleoprotein complex includes and extends beyond the Tn7 insertion site, where TnsC forms a platform to receive and activate the transposase to carry out recombination.  相似文献   

16.
A total of 12 VanA-type vancomycin-resistant enterococci, consisting of 10 Enterococcus faecium isolates and two Enterococcus avium isolates, were examined in detail. The vancomycin resistance conjugative plasmids pHTalpha (65.9 kbp), pHTbeta (63.7 kbp), and pHTgamma (66.5 kbp) were isolated from each of three different E. faecium strains. The plasmids transferred highly efficiently between enterococcus strains during broth mating and were homologous with pMG1 (Gm(r); 65.1 kb).  相似文献   

17.
The Fis (factor for inversion stimulation) protein of Escherichia coli was found to influence the frequency of transposon Tn5 and insertion sequence IS50 transposition. Fis stimulated both Tn5 and IS50 transposition events and also inhibited IS50 transposition in Dam-bacteria. This influence was not due to regulation by Fis of the expression of the Tn5 transposition proteins. We localized, by DNase I footprinting, one Fis site overlapping the inside end of IS50 and give evidence to strongly suggest that when Fis binds to this site, IS50 transposition is inhibited. The Fis site at the inside end overlaps three Dam GATC sites, and Fis bound efficiently only to the unmethylated substrate. Using a mobility shift assay, we also identified another potential Fis site within IS50. Given the growth phase-dependent expression of Fis and its differential effect on Tn5 versus IS50 transposition in Dam-bacteria, we propose that the high levels of Fis present during exponential growth stimulate transposition events and might bias those events toward Tn5 and away from IS50 transposition.  相似文献   

18.
pTV1Ts, a temperature-sensitive plasmid coding for chloramphenicol (Cm) resistance and carrying the macrolide-lincosamide-steptogramin B (MLS) resistance transposon Tn917, was introduced into strains of Lactobacillus plantarum by electroporation. After two passages in broth medium selecting for MLS resistance at 40 degrees C and subsequent plating on solid medium, two strains, L. plantarum NC4Ts1 and L. plantarum NC7Ts5, lost chloramphenicol resistance but retained MLS resistance, indicative of Tn917 transposition into host DNA. Analysis of DNA from MLSrCms isolates from both strains revealed Tn917 insertions into resident plasmids. Restriction analysis of plasmid DNA from four MLSrCms isolates from NC7Ts5 indicated four different insertion sites.  相似文献   

19.
20.
Superintegrons (SIs) and multiresistant integrons (MRIs) have two main structural differences: (i) the SI platform is sedentary, while the MRI platform is commonly associated with mobile DNA elements and (ii) the recombination sites (attC) of SI gene cassette clusters are highly homogeneous, while those of MRI cassette arrays are highly variable in length and sequence. In order to determine if the latter difference was correlated with a dissimilarity in the recombination activities, we conducted a comparative study of the integron integrases of the class 1 MRI (IntI1) and the Vibrio cholerae SI (VchIntIA). We developed two assays that allowed us to independently measure the frequencies of cassette deletion and integration at the cognate attI sites. We demonstrated that the range of attC sites efficiently recombined by VchIntIA is narrower than the range of attC sites efficiently recombined by IntI1. Introduction of mutations into the V. cholerae repeats (VCRs), the attC sites of the V. cholerae SI cassettes, allowed us to map positions that affected the VchIntIA and IntI1 activities to different extents. Using a cointegration assay, we established that in E. coli, attI1-x-VCR recombination catalyzed by IntI1 was 2,600-fold more efficient than attIVch-x-VCR recombination catalyzed by VchIntIA. We performed the same experiments in V. cholerae and established that the attIVch-x-VCR recombination catalyzed by VchIntIA was 2,000-fold greater than the recombination measured in E. coli. Taken together, our results indicate that in the V. cholerae SI, the substrate recognition and recombination reactions mediated by VchIntIA might differ from the class 1 MRI paradigm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号