首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethylene biosynthesis in peach fruitlet abscission   总被引:5,自引:0,他引:5  
  相似文献   

2.
Signaling pathways mediating melanogenesis.   总被引:7,自引:0,他引:7  
Pigmentation of the skin, due to the synthesis and dispersion of melanin in the epidermis, is of great cosmetic and societal significance. It is also the key physiologic defense against sun-induced injuries such as sunburn, photocarcinogenesis and photoaging. During recent decades, there has been a dramatic increase in skin cancers, including melanoma, due to habitual sun exposure (Rigel, 1992; Weinstock, 1989). At present, in the United States, about one in 75 individuals is projected to develop malignant melanoma during his or her lifetime (Rigel, 1992). Unfortunately, progress in preventing sun-related injuries has been slow, in part due to lack of understanding of the molecular mechanisms involved in pigmentation. This article reviews recent progress in identifying signal transduction pathways that mediate melanogenesis.  相似文献   

3.
4.
5.
Signaling pathways mediating gastrin's growth-promoting effects.   总被引:2,自引:0,他引:2  
R R Yassin 《Peptides》1999,20(7):885-898
In addition to its fundamental role in stimulating gastric acid secretion, the peptide hormone gastrin induces growth-promoting effects on diversity of target cells. Various mechanisms, including endocrine, paracrine, and autocrine, have been proposed for gastrin's growth-promoting actions. The mitogenic effects of gastrin are mediated by specific cell surface receptors activated after gastrin binding. The functionally defined receptors for gastrin include cholecystokinin A (CCKA) receptor, which is discriminating for sulfated CCK8; cholecystokinin B (CCKB)/gastrin receptor, which binds gastrin17 sulfated, and nonsulfated CCK8 with nearly equal affinities; cholecystokinin C (CCKC), which is a low-affinity gastrin binding protein; and novel, high-affinity receptors selective for amidated gastrin, processing intermediates of gastrin, or both. The signaling pathways mediating gastrin's stimulation of the CCKB/gastrin receptor have been progressively outlined, and the pathways mediating other receptors have been slowly emerging. Engagement of the gastrin receptor initiates various biochemical and molecular events, including recruitment and activation of tyrosine kinases, activation of the phospholipase C signaling pathway leading to phosphoinositide breakdown, intracellular calcium mobilization and protein kinase C stimulation, activation of the mitogen-activated protein kinase pathway, and induction of early response genes. Current emphasis is on understanding the functional significance of processing intermediate forms of gastrin, and the receptor subtypes and pathways that promote the trophic/mitogenic effects of the different molecular forms of gastrin.  相似文献   

6.
7.
 The hormonal signals controlling fruitlet abscission induced by sugar shortage in citrus were identified in Satsuma mandarin, Citrus unshiu (Mak.) Marc, cv. Clausellina and cv. Okitsu. Sugar supply, hormonal responses and fruitlet abscission were manipulated through full, partial or selective leaf removals at anthesis and thereafter. In developing fruitlets, defoliations reduced soluble sugars (up to 98%), but did not induce nitrogen and water deficiencies. Defoliation-induced abscission was preceded by rises (up to 20-fold) in the levels of abscisic acid (ABA) and 1-aminocyclopropane-1-carboxylic acid (ACC) in fruitlets. Applications to defoliated plants showed that ABA increased ACC levels (2-fold) and accelerated fruitlet abscission, whereas norflurazon and 2-aminoethoxyvinyl glycine reduced ACC (up to 65%) and fruitlet abscission (up to 40%). Only the full defoliation treatment reduced endogenous gibberellin A1 (4-fold), whereas exogenous gibberellins had no effect on abscission. The data indicate that fruitlet abscission induced by carbon shortage in citrus is regulated by ABA and ACC originating in the fruits, while gibberellins are apparently implicated in the maintenance of growth. In this system, ABA may act as a sensor of the intensity of the nutrient shortage that modulates the levels of ACC and ethylene, the activator of abscission. This proposal identifies ABA and ACC as components of the self-regulatory mechanism that adjusts fruit load to carbon supply, and offers a physiological basis for the photoassimilate competition-induced abscission occurring under natural conditions. Received: 19 February 1999 / Accepted: 14 August 1999  相似文献   

8.
Chemotaxis, or cell migration guided by chemical cues, is critical for a multitude of biological processes in a diverse array of organisms. Dictyostelium discoideum amoebae rely on chemotaxis to find food and to survive starvation conditions, and we have taken advantage of this system to study the molecular regulation of this vital cell behavior. Previous work has identified phosphoinositide signaling as one mechanism which may contribute to directional sensing and actin polymerization during chemotaxis; a mechanism which is conserved in mammalian neutrophils. In this review, we will discuss recent data on genes and pathways governing directional sensing and actin polymerization, with a particular emphasis on contributions from our laboratory.  相似文献   

9.
10.
The potential contribution of polyamines (PAs) in the regulation of physiologically induced fruitlet abscission was investigated in cuttings from two cultivars of Vitis vinifera L., Pinot noir (PN) and Merlot (MRT). Abscission was higher in MRT than in PN and was preceded by a decrease in free PA levels. This decline was more pronounced in inflorescences than in leaves of the sensitive cultivar. Soluble conjugated PA showed an opposite trend in both cultivars. This suggests a cause-effect relationship between free and/or conjugated PA levels in floral organs and susceptibility to abscission. Spermidine (Spd), but not putrescine (Put) or diaminopropane, supplied at 0.5–1 m M to the nutritive medium prior to the anthesis, increased free and conjugated PA levels in the inflorescences and markedly inhibited abscission. α -Difluoromethylarginine, an inhibitor of arginine decarboxylase, but not α -difluoromethylornithine, an inhibitor of ornithine decarboxylase, lowered PA levels and increased abscission. Treatment with cyclohexylamine or β -hydroxyethylhydrazine as potent inhibitors of Spd synthase and PA oxidases, respectively, reduced the Spd and/or spermine levels and enhanced free Put in the inflorescences, inducing an increased abscission of floral organs shortly after anthesis. These data suggest that PAs, particularly Spd, could be involved in the regulation of grapevine fruitlet physiological abscission.  相似文献   

11.
Citrus fruits have two abscission zones (AZ), named A (in the pedicel) and C (in the calyx). Early fruitlet abscission takes place exclusively through AZ A, while at June drop it is progressively inactivated and AZ C begins to operate. In previous work, it has been demonstrated that carbohydrate and ethylene regulate fruit drop through abscission zone C. In this paper, we have analysed the effect of these two factors in developing fruitlets of Satsuma mandarins (Citrus unshiu [Mak.] Marc.) cv. Okitsu to elucidate their involvement on abscission through AZ A. The data indicated that ACC content and ethylene production of fruitlets paralleled abscission rates. Sucrose supplementation increased fruit set, although did not counteract the abscising effect induced by ACC. Branch girdling of terminal fruitlets carrying several leaves significatively reduced ethylene production and abscission rates, and increased sugar content. Pedicel girdling showed the opposite. Taken together, the results revealed that the carbohydrate content may be a biochemical signal involved in the mechanisms controlling abscission through AZ A. The evidence also showed parallelisms between ethylene and its activation. As the induction of higher ethylene levels after the period of AZ A activity, however, was not able to promote fruit drop, it is also concluded that solely ethylene is not sufficient to activate abscission.  相似文献   

12.
The signaling cascades initiated by motilin receptors in gastric and intestinal smooth muscle cells were characterized. Motilin bound with high affinity (IC(50) 0.7 +/- 0.2 nM) to receptors on smooth muscle cells; the receptors were rapidly internalized via G protein-coupled receptor kinase 2 (GRK2). Motilin selectively activated G(q) and G(13), stimulated G alpha(q)-dependent phosphoinositide (PI) hydrolysis and 1,4,5-trisphosphate (IP(3))-dependent Ca(2+) release, and increased cytosolic free Ca(2+). PI hydrolysis was blocked by expression of G alpha(q) minigene and augmented by overexpression of dominant negative RGS4(N88S) or GRK2(K220R). Motilin induced a biphasic, concentration-dependent contraction (EC(50) = 1.0 +/- 0.2 nM), consisting of an initial peak followed by a sustained contraction. The initial Ca(2+)-dependent contraction and myosin light-chain (MLC)(20) phosphorylation were inhibited by the PLC inhibitor U-73122 and the MLC kinase inhibitor ML-9 but were not affected by the Rho kinase inhibitor Y27632 or the PKC inhibitor bisindolylmaleimide. Sustained contraction and MLC(20) phosphorylation were RhoA dependent and mediated by two downstream messengers: PKC and Rho kinase. The latter was partly inhibited by expression of G alpha(q) or G alpha(13) minigene and abolished by coexpression of both minigenes. Sustained contraction and MLC(20) phosphorylation were partly inhibited by Y27632 and bisindolylmaleimide and abolished by a combination of both inhibitors. The inhibition reflected phosphorylation of two MLC phosphatase inhibitors: CPI-17 via PKC and MYPT1 via Rho kinase. We conclude that motilin initiates a G alpha(q)-mediated cascade involving Ca(2+)/calmodulin activation of MLC kinase and transient MLC(20) phosphorylation and contraction as well as a sustained G alpha(q)- and G alpha(13)-mediated, RhoA-dependent cascade involving phosphorylation of CPI-17 by PKC and MYPT1 by Rho kinase, leading to inhibition of MLC phosphatase and sustained MLC(20) phosphorylation and contraction.  相似文献   

13.
14.
Recent experiments have begun to decipher the molecular dialog that mediates differentiation at sites of synaptic between neurons and their targets. It had been hypothesized that the protein agrin is released by axon terminals at embryonic neuromuscular junctions and binds to a receptor on the myofiber surface to trigger postsynaptic differentiation. Now a genetic ‘Knockout’ experiment has confirmed the essential role of agrin in signaling between developing nerve and muscle(1). A second ‘knockout’ has shown that the muscle-specific receptor tyrosine kinase MuSK is a critical element in the agrin-induced signaling cascade(2). Additional results suggest that MuSK may comprise a portion of the agrin receptor(3).  相似文献   

15.
16.
Current evidence in citrus indicates that gibberellins (GAs) are main determinants of early fruit set while subsequent growth of developing fruits is mostly dependent upon carbohydrate availability. In this work, branch girdling performed at anthesis in Satsuma mandarin (Citrus unshiu (Mak.) Marc.) cv. Okitsu transitorily reduced early abscission rates (12–32 days after anthesis, DAA) delaying initially the process of natural fruitlet drop. The effects of girdling on growth, gibberellin (GA) and carbohydrate concentrations in developing ovaries and fruitlets were assessed during this initial growth stage (0–69 DAA). In girdled branches, abscission rate reduction was preceded by elevated concentrations of carbohydrate and GA in developing ovaries and fruitlets. Girdling at anthesis stimulated higher hexose (21 DAA) and starch (6–20 DAA) concentrations and also higher GA1 (6 DAA), GA19 (13–20 DAA) and GA20 (6–20 DAA). The results established a relationship between the reduction of early abscission rates and higher concentrations of carbohydrates and GAs induced by girdling in developing fruitlets. These findings revealed that girdling certainly increased GA concentration and strongly suggested that its effect on early fruitlet abscission delay is likely mediated by both GA and carbohydrates.  相似文献   

17.
18.
19.
The astrocytomas represent the most common primary tumors of the brain. Despite efforts to improve the treatment of astrocytomas, these tumors and in particular the high-grade astrocytoma termed glioblastoma multiforme still carry a poor prognosis. In recent years, there has been an intensive effort to gain an understanding of the cellular and molecular mechanisms that contribute to the pathogenesis of astrocytomas as a first step toward the development of better treatments for these devastating tumors. Here, we will review our current understanding of the signaling pathways that underlie glial transformation. Studies of astrocytomas have led to the identification of two major groups of signaling proteins whose abnormalities contribute to gliomagenesis: the cell cycle pathways and the growth factor-regulated signaling pathways. Among the cell cycle proteins, the p16-cdk4-pRb and ARF-MDM2-p53 cell cycle arrest pathways play a prominent role in glial transformation. In addition, deregulation of polypeptide growth factors acting via receptor tyrosine kinases (RTKs) and of intracellular signals, including the lipid phosphatase PTEN, that regulate cellular responses to RTKs plays a critical role in gliomagenesis. In addition to the identification of the signaling proteins targeted in glial transformation, the cell-of-origin of astrocytomas has been investigated. Genetic modeling of astrocytomas in mice suggests that neuroepithelial precursor cells represent preferred cellular substrates of gliomas or that either astrocytes or precursor cells constitute potential cells-of-origin of astrocytomas. During normal brain development, neuroepithelial precursor cells, including neural stem cells, differentiate into astrocytes. As the mechanisms that control gliogenesis during normal brain development become better understood, it will be important to determine if deregulation of these mechanisms might contribute to the pathogenesis of astrocytomas. The elucidation of the molecular underpinnings of astrocytomas holds the promise of improved treatment options for patients with these devastating brain tumors.  相似文献   

20.
Although prefrontal cortex has been implicated in the cognitive regulation of emotion, the cortical-subcortical interactions that mediate this ability remain poorly understood. To address this issue, we identified a right ventrolateral prefrontal region (vlPFC) whose activity correlated with reduced negative emotional experience during cognitive reappraisal of aversive images. We then applied a pathway-mapping analysis on subcortical regions to locate mediators of the association between vlPFC activity and reappraisal success (i.e., reductions in reported emotion). Results identified two separable pathways that together explained approximately 50% of the reported variance in self-reported emotion: (1) a path through nucleus accumbens that predicted greater reappraisal success, and (2) a path through ventral amygdala that predicted reduced reappraisal success (i.e., more negative emotion). These results provide direct evidence that vlPFC is involved in both the generation and regulation of emotion through different subcortical pathways, suggesting a general role for this region in appraisal processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号