首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The ectodomain of matrix protein 2 (M2e) of influenza A virus is an attractive target for a universal influenza A vaccine: the M2e sequence is highly conserved across influenza virus subtypes, and induced humoral anti-M2e immunity protects against a lethal influenza virus challenge in animal models. Clinical phase I studies with M2e vaccine candidates have been completed. However, the in vivo mechanism of immune protection induced by M2e-carrier vaccination is unclear. Using passive immunization experiments in wild-type, FcRγ(-/-), FcγRI(-/-), FcγRIII(-/-), and (FcγRI, FcγRIII)(-/-) mice, we report in this study that Fc receptors are essential for anti-M2e IgG-mediated immune protection. M2e-specific IgG1 isotype Abs are shown to require functional FcγRIII for in vivo immune protection but other anti-M2e IgG isotypes can rescue FcγRIII(-/-) mice from a lethal challenge. Using a conditional cell depletion protocol, we also demonstrate that alveolar macrophages (AM) play a crucial role in humoral M2e-specific immune protection. Additionally, we show that adoptive transfer of wild-type AM into (FcγRI, FcγRIII)(-/-) mice restores protection by passively transferred anti-M2e IgG. We conclude that AM and Fc receptor-dependent elimination of influenza A virus-infected cells are essential for protection by anti-M2e IgG.  相似文献   

2.
To determine the role of IL-10 in cutaneous leishmaniasis, we examined lesion development following Leishmania major infection of genetically susceptible BALB/c mice lacking IL-10. Whereas normal BALB/c mice developed progressive nonhealing lesions with numerous parasites within them, IL-10(-/-) BALB/c mice controlled disease progression, and had relatively small lesions with 1000-fold fewer parasites within them by the fifth week of infection. We also examined a mechanism whereby Leishmania induced the production of IL-10 from macrophages. We show that surface IgG on Leishmania amastigotes allows them to ligate Fc gamma receptors on inflammatory macrophages to preferentially induce the production of high amounts of IL-10. The IL-10 produced by infected macrophages prevented macrophage activation and diminished their production of IL-12 and TNF-alpha. In vitro survival assays confirmed the importance of IL-10 in preventing parasite killing by activated macrophages. Pretreatment of monolayers with either rIL-10 or supernatants from amastigote-infected macrophages resulted in a dramatic enhancement in parasite intracellular survival. These studies indicate that amastigotes of Leishmania use an unusual and unexpected virulence factor, host IgG. This IgG allows amastigotes to exploit the antiinflammatory effects of Fc gamma R ligation to induce the production of IL-10, which renders macrophages refractory to the activating effects of IFN-gamma.  相似文献   

3.
《ImmunoMethods》1994,4(1):41-47
Murine low-affinity Fc receptors for IgG (FcγRIIbl, FcγRIIb2, and FcγRIII) bind the same IgG subclasses and are not distinguished by available anti-FcγRII/III mAbs (2.4G2). They trigger various biological activities, among which are the internalization of soluble and particulate immune complexes, cell activation, and its regulation. To determine the biological properties of the three murine receptors, each was expressed by stable transfection of corresponding cDNAs in two model cells: the murine lymphoma B cell IIA1.6 and the rat basophilic leukemia cell RBL-2H3. Biological activities of recombinant receptors were triggered with soluble immune complexes or 2.4G2 IgG in IIA1.6 cells, which express no FcγR, and with 2.4G2 Fab or F(ab′)2, cross-linked with mouse anti-rat F(ab′)2 in RBL, which express rat FcγR. Conditions for studying cell activation and endocytosis in both cell models are described, as are conditions for studying phagocytosis in RBL cells and antigen presentation or regulation of cell activation in IIA1.6 cells. Internalization of immune complexes was triggered by FcγRIIb2 and FcγRIII, but not by FcγRIIb1. Intracytoplasmic sequences required for phagocytosis and endocytosis could be distinguished in FcγRIIb2, but not in FcγRIII. Cell activation was restricted to FcγRIII. FcγRIII-mediated endocytosis, phagocytosis, and cell activation involved the consensus tyrosine-containing activation motif found in the intracytoplasmic domain of the γ subunit. Regulation of cell activation was induced by both FcγRII isoforms and depended on the same sequence as endocytosis. As a consequence, a single motif can determine more than one biological response of the cell, and a given response may be triggered by several motifs, borne by different FcγR.  相似文献   

4.
Type III receptors for the Fc portion of IgG (Fc gamma RIII), initially characterized on macrophages and NK cells, are also expressed on several pre-B cell lines. Surface expression of Fc gamma RIII requires the association of the ligand binding alpha-chain with homodimeric gamma-chains. Type II Fc gamma R is homologous to Fc gamma RIII alpha-chain in the extracellular portion and differs in the transmembrane and cytoplasmic domains. The role of Fc gamma R in cell activation was investigated by expressing Fc gamma RIII and the lymphocyte-specific b1 isoform of Fc gamma RII (Fc gamma RIIb1) in an Fc gamma R-negative, sIgG-positive B-cell line. We found that, in contrast to Fc gamma RIIb1, Fc gamma RIII triggers the same events of cell activation as sIG i.e. Ca2+ mobilization, tyrosine phosphorylation and IL-2 secretion. By expressing cytoplasmic domain-lacking Fc gamma RIII alpha-chain in the absence or in the presence of gamma-chains, we demonstrated that cell activation via Fc gamma RIII requires the co-expression of gamma-chains, and is independent of the cytoplasmic portion of the alpha-chain. Furthermore, the cytoplasmic portion of the gamma-chain, fused to the extracellular and transmembrane domains of Fc gamma RII confers on the chimeric receptor the ability to trigger cell activation. Mutation of one tyrosine residue in the cytoplasmic domain of the gamma-chain prevented triggering of cytoplasmic signals. We therefore demonstrate that a tyrosine-containing motif, present in the cytoplasmic domain of the associated gamma-chain, is necessary and sufficient to trigger cell activation via Fc gamma RIII.  相似文献   

5.
K/BxN serum-induced passive arthritis was reported to depend on the activation of mast cells, triggered by the activating IgG receptor FcγRIIIA, when engaged by IgG1 autoantibodies present in K/BxN serum. This view is challenged by the fact that FcγRIIIA-deficient mice still develop K/BxN arthritis and because FcγRIIIA is the only activating IgG receptor expressed by mast cells. We investigated the contribution of IgG receptors, IgG subclasses, and cells in K/BxN arthritis. We found that the activating IgG2 receptor FcγRIV, expressed only by monocytes/macrophages and neutrophils, was sufficient to induce disease. K/BxN arthritis occurred not only in mast cell-deficient W(sh) mice, but also in mice whose mast cells express no activating IgG receptors. We propose that at least two autoantibody isotypes, IgG1 and IgG2, and two activating IgG receptors, FcγRIIIA and FcγRIV, contribute to K/BxN arthritis, which requires at least two cell types other than mast cells, monocytes/macrophages, and neutrophils.  相似文献   

6.
Neonatal meningitis due to Escherichia coli K1 is a serious illness with unchanged morbidity and mortality rates for the last few decades. The lack of a comprehensive understanding of the mechanisms involved in the development of meningitis contributes to this poor outcome. Here, we demonstrate that depletion of macrophages in newborn mice renders the animals resistant to E. coli K1 induced meningitis. The entry of E. coli K1 into macrophages requires the interaction of outer membrane protein A (OmpA) of E. coli K1 with the alpha chain of Fcγ receptor I (FcγRIa, CD64) for which IgG opsonization is not necessary. Overexpression of full-length but not C-terminal truncated FcγRIa in COS-1 cells permits E. coli K1 to enter the cells. Moreover, OmpA binding to FcγRIa prevents the recruitment of the γ-chain and induces a different pattern of tyrosine phosphorylation of macrophage proteins compared to IgG2a induced phosphorylation. Of note, FcγRIa(-/-) mice are resistant to E. coli infection due to accelerated clearance of bacteria from circulation, which in turn was the result of increased expression of CR3 on macrophages. Reintroduction of human FcγRIa in mouse FcγRIa(-/-) macrophages in vitro increased bacterial survival by suppressing the expression of CR3. Adoptive transfer of wild type macrophages into FcγRIa(-/-) mice restored susceptibility to E. coli infection. Together, these results show that the interaction of FcγRI alpha chain with OmpA plays a key role in the development of neonatal meningitis by E. coli K1.  相似文献   

7.
The antibody response to influenza infection is largely dependent on CD4 T cell help for B cells. Cognate signals and secreted factors provided by CD4 T cells drive B cell activation and regulate antibody isotype switching for optimal antiviral activity. Recently, we analyzed HLA-DR1 transgenic (DR1) mice and C57BL/10 (B10) mice after infection with influenza virus A/New Caledonia/20/99 (NC) and defined epitopes recognized by virus-specific CD4 T cells. Using this information in the current study, we demonstrate that the pattern of secretion of IL-2, IFN-γ, and IL-4 by CD4 T cells activated by NC infection is largely independent of epitope specificity and the magnitude of the epitope-specific response. Interestingly, however, the characteristics of the virus-specific CD4 T cell and the B cell response to NC infection differed in DR1 and B10 mice. The response in B10 mice featured predominantly IFN-γ-secreting CD4 T cells and strong IgG2b/IgG2c production. In contrast, in DR1 mice most CD4 T cells secreted IL-2 and IgG production was IgG1-biased. Infection of DR1 mice with influenza PR8 generated a response that was comparable to that in B10 mice, with predominantly IFN-γ-secreting CD4 T cells and greater numbers of IgG2c than IgG1 antibody-secreting cells. The response to intramuscular vaccination with inactivated NC was similar in DR1 and B10 mice; the majority of CD4 T cells secreted IL-2 and most IgG antibody-secreting cells produced IgG2b or IgG2c. Our findings identify inherent host influences on characteristics of the virus-specific CD4 T cell and B cell responses that are restricted to the lung environment. Furthermore, we show that these host influences are substantially modulated by the type of infecting virus via the early induction of innate factors. Our findings emphasize the importance of immunization strategy for demonstrating inherent host differences in CD4 T cell and B cell responses.  相似文献   

8.
As an ancient disease, tuberculosis (TB) is a major global health threat. Therefore, there is an urgent need for an effective and safe anti-TB vaccine. In the current study, a delivery system of Fc domain of mouse IgG2a and early secreted antigenic target protein 6 (ESAT-6) was evaluated for the selective uptake of antigens by antigen-presenting cells (APCs). Thus, it was based on the immunogenicity of a fusion protein. The study was initiated by the transfer of recombinant expression vectors of pPICZαA-ESAT-6:Fcγ2a and pPICZαA-ESAT-6: His into Pichia pastoris (P. pastoris). Recombinant proteins were assessed for immunogenicity following the immunoblotting analysis. High levels of IFN-γ and IL-12 were produced to induce Th1-type cellular responses through vaccination with both recombinant proteins [ESAT-6:Fcγ2a (EF) and ESAT-6:His (EH)]. The Fc-tagged recombinant protein induced more effective Th1-type cellular responses with a low increment in IL-4 compared to PBS, BCG, and EH groups. Although in all the immunized groups, the ratio of IFN-γ/IL-4 was in favor of Th1 responses, the highest Th1/Th2 balance was observed in EF immunized group. Fc fragment of mouse IgG2a may induce a selective uptake of APCs towards the cross-presentation and formation of Th1 responses in favor of an appropriate protective anti-tuberculosis reaction. Thus, further research on Fc-fusion proteins is required to develop Fc-based TB vaccines.  相似文献   

9.
10.
Fcγ receptors (FcγRs) play critical roles in humoral and cellular immune responses through interactions with the Fc region of immunoglobulin G (IgG). Among them, FcγRI is the only high affinity receptor for IgG and thus is a potential target for immunotherapy. Here we report the first crystal structure of an FcγRI with all three extracellular Ig-like domains (designated as D1, D2, and D3). The structure shows that, first, FcγRI has an acute D1-D2 hinge angle similar to that of FcεRI but much smaller than those observed in the low affinity Fcγ receptors. Second, the D3 domain of FcγRI is positioned away from the putative IgG binding site on the receptor and is thus unlikely to make direct contacts with Fc. Third, the replacement of FcγRIII FG-loop ((171)LVGSKNV(177)) with that of FcγRI ((171)MGKHRY(176)) resulted in a 15-fold increase in IgG(1) binding affinity, whereas a valine insertion in the FcγRI FG-loop ((171)MVGKHRY(177)) abolished the affinity enhancement. Thus, the FcγRI FG-loop with its conserved one-residue deletion is critical to the high affinity IgG binding. The structural results support FcγRI binding to IgG in a similar mode as its low affinity counterparts. Taken together, our study suggests a molecular mechanism for the high affinity IgG recognition by FcγRI and provides a structural basis for understanding its physiological function and its therapeutic implication in treating autoimmune diseases.  相似文献   

11.
The strategies that allow Brucella abortus to persist for years inside macrophages subverting host immune responses are not completely understood. Immunity against this bacterium relies on the capacity of IFN-γ to activate macrophages, endowing them with the ability to destroy intracellular bacteria. We report here that infection with B. abortus down-modulates the expression of the type I receptor for the Fc portion of IgG (FcγRI, CD64) and FcγRI-restricted phagocytosis regulated by IFN-γ in human monocytes/macrophages. Both phenomena were not dependent on bacterial viability, since they were also induced by heat-killed B. abortus (HKBA), suggesting that they were elicited by a structural bacterial component. Accordingly, a prototypical B. abortus lipoprotein (L-Omp19), but not its unlipidated form, inhibited both CD64 expression and FcγRI-restricted phagocytosis regulated by IFN-γ. Moreover, a synthetic lipohexapeptide that mimics the structure of the protein lipid moiety also inhibited CD64 expression, indicating that any Brucella lipoprotein could down-modulate CD64 expression and FcγRI-restricted phagocytosis. Pre-incubation of monocytes/macrophages with anti-TLR2 mAb blocked the inhibition of the CD64 expression mediated by HKBA and L-Omp19. These results, together with our previous observations establish that B. abortus utilizes its lipoproteins to inhibit the monocytes/macrophages activation mediated by IFN-γ and to subvert host immunonological responses.  相似文献   

12.
Exosomes, membrane vesicles released extracellularly from cells, contain nucleic acids, proteins, lipids and other components, allowing the transfer of material information between cells. Recent studies reported the role of exosomes in pathogenic microbial infection and host immune mechanisms. Brucella-invasive bodies can survive in host cells for a long time and cause chronic infection, which causes tissue damage. Whether exosomes are involved in host anti-Brucella congenital immune responses has not been reported. Here, we extracted and identified exosomes secreted by Brucella melitensis M5 (Exo-M5)-infected macrophages, and performed in vivo and in vitro studies to examine the effects of exosomes carrying antigen on the polarization of macrophages and immune activation. Exo-M5 promoted the polarization of M1 macrophages, which induced the significant secretion of M1 cytokines (tumour necrosis factor-α and interferon-γ) through NF-κB signalling pathways and inhibited the secretion of M2 cytokines (IL-10), thereby inhibiting the intracellular survival of Brucella. Exo-M5 activated innate immunity and promoted the release of IgG2a antibodies that protected mice from Brucella infection and reduced the parasitaemia of Brucella in the spleen. Furthermore, Exo-M5 contained Brucella antigen components, including Omp31 and OmpA. These results demonstrated that exosomes have an important role in immune responses against Brucella, which might help elucidate the mechanisms of host immunity against Brucella infection and aid the search for Brucella biomarkers and the development of new vaccine candidates.  相似文献   

13.
《Biophysical journal》2022,121(6):966-976
Innate immune cells detect pathogens through simultaneous stimulation of multiple receptors, but how cells use the receptor crosstalk to elicit context-appropriate responses is unclear. Here, we reveal that the inflammatory response of macrophages from FcγR-TLR2/1 crosstalk inversely depends on the ligand mobility within a model pathogen membrane. The mechanism is that FcγR and TLR2/1 form separate nanoclusters that interact at their interfaces during crosstalk. Less mobile ligands induce stronger interactions and more overlap between the receptor nanoclusters, leading to enhanced signaling. Different from the prevailing view that immune receptors colocalize to synergize their signaling, our results show that FcγR-TLR2/1 crosstalk occurs through interface interactions between non-colocalizing receptor nanoclusters, which are modulated by ligand mobility. This suggests a mechanism by which innate immune cells could use physical properties of ligands to fine-tune host responses.  相似文献   

14.
Interleukin-18 deficient mice on a BALB/c background display increased resistance to cutaneous infection with Leishmania mexicana, with reduced lesion progression and reduced parasite burdens compared with wild-type mice. Infected IL-18-/- mice had lower antigen specific IgG1 levels and total IgE levels and conversely higher antigen specific IgG2a levels than similarly infected wild-type mice. Splenocytes isolated from infected IL-18-/- mice produced significantly lower levels of antigen induced IL-4 and higher levels of IFN-gamma than wild-type animals. Consequently IL-18 during L. mexicana infection of BALB/c mice promotes a Th2 biased response and thereby has a disease exacerbating role.  相似文献   

15.
Fc receptors for IgG expressed on macrophages and NK cells are important mediators of opsonophagocytosis and Ab-dependent cell-mediated cytotoxicity. Phagocyte-mediated opsonophagocytosis is pivotal for protection against bacteria, but its importance in recovery from infection with intracellular pathogens is unclear. We have now investigated the role of opsonophagocytosis in protection against lethal influenza virus infection by using FcR gamma(-/-) mice. Absence of the FcR gamma-chain did not affect the expression of IFN-gamma and IL-10 in the lungs and spleens after intranasal immunization with an influenza subunit vaccine. Titers of serum and respiratory Abs of the IgM, IgG1, IgG2a, and IgA isotypes in FcR gamma(-/-) mice were similar to levels seen in FcR gamma(+/+) mice. Nevertheless, FcR gamma(-/-) mice were highly susceptible to influenza infection, even in the presence of anti-influenza Abs from immune FcR gamma(+/+) mice. NK cells were not necessary for the observed Ab-mediated viral clearance, but macrophages were found to be capable of actively ingesting opsonized virus particles. We conclude that Fc receptor-mediated phagocytosis plays a pivotal role in clearance of respiratory virus infections.  相似文献   

16.
The FcR for IgG on the plasma membrane of cells of the mononuclear phagocyte system mediate a number of different biologic responses such as phagocytosis, pinocytosis, superoxide generation, and antibody-dependent cytotoxicity. In the interest of understanding the pathophysiology of these processes we have begun to characterize the FcR for IgG on two readily available sources of macrophages--the lung and the peritoneum--using antireceptor mAb. We find that all three of the distinct classes of FcR for IgG which have been described in man are present on both pulmonary and peritoneal macrophages. Most monocytes, we suggest, bear low numbers of Fc gamma RIII whereas a small subpopulation of monocytes expresses substantial numbers of Fc gamma RIII. Furthermore, we find that two different forms of Fc gamma RIII differ in their capacity to bind anti-Fc gamma RIII mab 3G8 in the presence of human IgG. Human IgG does not block the binding of mAb 3G8 to neutrophils, but it does block 3G8 binding to macrophages and large granular lymphocytes; this finding correlates with the expression of the two Fc gamma RIII genes, I and II, in man. Studies aimed at illuminating the molecular mechanisms of Fc gamma R-mediated processes in macrophages will require consideration of the receptors of all three classes.  相似文献   

17.
The interaction of Abs with their specific FcRs is of primary importance in host immune effector systems involved in infection and inflammation, and are the target for immune evasion by pathogens. FcγRIIa is a unique and the most widespread activating FcR in humans that through avid binding of immune complexes potently triggers inflammation. Polymorphisms of FcγRIIa (high responder/low responder [HR/LR]) are linked to susceptibility to infections, autoimmune diseases, and the efficacy of therapeutic Abs. In this article, we define the three-dimensional structure of the complex between the HR (arginine, R134) allele of FcγRIIa (FcγRIIa-HR) and the Fc region of a humanized IgG1 Ab, hu3S193. The structure suggests how the HR/LR polymorphism may influence FcγRIIa interactions with different IgG subclasses and glycoforms. In addition, mutagenesis defined the basis of the epitopes detected by FcR blocking mAbs specific for FcγRIIa (IV.3), FcγRIIb (X63-21), and a pan FcγRII Ab (8.7). The epitopes detected by these Abs are distinct, but all overlap with residues defined by crystallography to contact IgG. Finally, crystal structures of LR (histidine, H134) allele of FcγRIIa and FcγRIIa-HR reveal two distinct receptor dimers that may represent quaternary states on the cell surface. A model is presented whereby a dimer of FcγRIIa-HR binds Ag-Ab complexes in an arrangement that possibly occurs on the cell membrane as part of a larger signaling assembly.  相似文献   

18.
Murine Fc gamma RII and Fc gamma RIII have highly homologous extracellular domains, but unrelated transmembrane and intracytoplasmic (IC) domains. Murine Fc gamma RIIb1 and b2 are two isoforms of single-chain receptors which differ only by 47 aa in their IC domain. Murine Fc gamma RIII are composed of an IgG-binding alpha-chain, the intracellular portion of which is unrelated to that of Fc gamma RII, and of a homodimeric gamma-chain which also associates with Fc epsilon RI. Murine mast cells express Fc gamma RII, Fc gamma RIII, and Fc epsilon RI. They can be induced to degranulate by murine IgG immune complexes or by F(ab')2 fragments of the rat anti-murine Fc gamma RII/III mAb 2.4G2, complexed to mouse anti-rat (MAR) F(ab')2. In order to determine which murine Fc gamma R can activate mast cells, cDNA encoding murine Fc gamma RIIb1, Fc gamma RIIb2 or Fc gamma RIII alpha were stably transfected into RBL-2H3 cells. Murine Fc gamma RIII but not Fc gamma RIIb1 or Fc gamma RIIb2 induced serotonin release when aggregated by (2.4G2-MAR) F(ab')2 complexes. The respective roles of the IC domains of murine Fc gamma RIII subunits in signal transduction were investigated by stably transfecting cDNA encoding IC-deleted or chimeric murine Fc gamma R into RBL-2H3 cells. The substitution of the IC domain of murine Fc gamma RII for that of murine Fc gamma RIII gamma, but not that of murine Fc gamma RIII alpha, conferred the ability to trigger serotonin release. The deletion of IC sequences of the alpha subunit did not alter the ability of murine Fc gamma RIII to trigger serotonin release. It follows that 1) murine Fc gamma RIII, but not Fc gamma RII, can induce RBL cells to release serotonin, 2) the aggregation of the IC domain of the murine Fc gamma RIII gamma subunit is sufficient, but 3) the IC domain of the murine Fc gamma RIII alpha subunit is neither sufficient nor necessary for triggering serotonin release.  相似文献   

19.
Membranous nephropathy (MN) is a leading cause of nephrotic syndrome in adults and a significant cause of end-stage renal disease, yet current therapies are nonspecific, toxic, and often ineffective. The development of novel targeted therapies requires a detailed understanding of the pathogenic mechanisms, but progress is hampered by the lack of a robust mouse model of disease. We report that DBA/1 mice as well as congenic FcγRIII(-/-) and FcRγ(-/-) mice immunized with a fragment of α3(IV) collagen developed massive albuminuria and nephrotic syndrome, because of subepithelial deposits of mouse IgG and C3 with corresponding basement membrane reaction and podocyte foot process effacement. The clinical presentation and histopathologic findings were characteristic of MN. Although immunized mice produced genuine anti-α3NC1 autoantibodies that bound to kidney and lung basement membranes, neither crescentic glomerulonephritis nor alveolitis ensued, likely because of the predominance of mouse IgG1 over IgG2a and IgG2b autoantibodies. The ablation of activating IgG Fc receptors did not ameliorate injury, implicating subepithelial deposition of immune complexes and consequent complement activation as a major effector pathway. We have thus established an active model of murine MN. This model, leveraged by the availability of genetically engineered mice and mouse-specific reagents, will be instrumental in studying the pathogenesis of MN and evaluating the efficacy of novel experimental therapies.  相似文献   

20.
Fc gamma RIII (CD16), the type three receptor for the Fc portion of IgG, is expressed on neutrophils, killer (K)/NK lymphocytes and macrophages. K/NK lymphocyte Fc gamma RIII, which plays a role in antibody-dependent cellular cytotoxicity, is an efficient signal transducing molecule, whereas neutrophil Fc gamma RIII, which plays a role in immune-complex clearance, seems less efficient in signal transduction. Neutrophil Fc gamma RIII has been reported to be a glycan-phosphatidylinositol-anchored membrane protein. Our studies suggest that K/NK lymphocyte Fc gamma RIII is protein-anchored rather than glycan-phosphatidylinositol-anchored. That is, K/NK lymphocyte Fc gamma RIII was resistant to phosphatidylinositol-specific phospholipase C and surface expression of Fc gamma RIII was not affected on K/NK lymphocytes from patients with paroxysmal nocturnal hemoglobinuria, a disorder of hemopoietic stem cells resulting in deficient expression of glycan-phosphatidylinositol-anchored proteins. Different membrane anchoring mechanisms of the Fc gamma RIII may account for different consequences of the ligand binding to two cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号