首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Benzylisoquinoline alkaloids (BIAs) consist of more than 2500 diverse structures largely restricted to the order Ranunculales and the eumagnoliids. However, BIAs also occur in the Rutaceae, Lauraceae, Cornaceae and Nelumbonaceae, and sporadically throughout the order Piperales. Several of these alkaloids function in the defense of plants against herbivores and pathogens - thus, the capacity for BIA biosynthesis is expected to play an important role in the reproductive fitness of certain plants. Biochemical and molecular phylogenetic approaches were used to investigate the evolution of BIA biosynthesis in basal angiosperms. The occurrence of (S)-norcoclaurine synthase (NCS; EC 4.2.1.78) activity in 90 diverse plant species was compared to the distribution of BIAs superimposed onto a molecular phylogeny. These results support the monophyletic origin of BIA biosynthesis prior to the emergence of the eudicots. Phylogenetic analyses of NCS, berberine bridge enzyme and several O-methyltransferases suggest a latent molecular fingerprint for BIA biosynthesis in angiosperms not known to accumulate such alkaloids. The limited occurrence of BIAs outside the Ranunculales and eumagnoliids suggests the requirement for a highly specialized, yet evolutionarily unstable cellular platform to accommodate or reactivate the pathway in divergent taxa. The molecular cloning and functional characterization of NCS from opium poppy (Papaver somniferum L.) is also reported. Pathogenesis-related (PR)10 and Bet v 1 major allergen proteins share homology with NCS, but recombinant polypeptides were devoid of NCS activity.  相似文献   

3.
Benzylisoquinoline alkaloids (BIAs) consist of more than 2500 diverse structures largely restricted to the order Ranunculales and the eumagnoliids. However, BIAs also occur in the Rutaceae, Lauraceae, Cornaceae and Nelumbonaceae, and sporadically throughout the order Piperales. Several of these alkaloids function in the defense of plants against herbivores and pathogens--thus the capacity for BIA biosynthesis is expected to play an important role in the reproductive fitness of certain plants. Biochemical and molecular phylogenetic approaches were used to investigate the evolution of BIA biosynthesis in basal angiosperms. The occurrence of (S)-norcoclaurine synthase (NCS; EC 4.2.1.78) activity in 90 diverse plant species was compared to the distribution of BIAs superimposed onto a molecular phylogeny. These results support the monophyletic origin of BIA biosynthesis prior to the emergence of the eudicots. Phylogenetic analysis of NCS, berberine bridge enzyme and several O-methyltransferases suggest a latent molecular fingerprint for BIA biosynthesis in angiosperms not known to accumulate such alkaloids. The limited occurrence of BIAs outside the Ranunculales and eumagnoliids suggests the requirement for a highly specialized, yet evolutionarily unstable cellular platform to accommodate or reactivate the pathway in divergent taxa. The molecular cloning and functional characterization of NCS from opium poppy (Papaver somniferum L.) is also reported. Pathogenesis--related (PR)10 and Bet v 1 major allergen proteins share homology with NCS, but recombinant polypeptides were devoid of NCS activity.  相似文献   

4.
The enzyme NCS [(S)-norcoclaurine synthase; EC 4.2.1.78] found in the common meadow rue, Thalictrum flavum, and other plant species, is involved in the biosynthesis of BIAs (benzylisoquinoline alkaloids). This group of plant secondary metabolites comprises pharmacologically-active compounds such as morphine and codeine. NCS catalyses the condensation of 4-HPAA (4-hydroxyphenylacetaldehyde) and dopamine to (S)-norcoclaurine, the common precursor of all plant BIAs. Although enzymatic properties of NCS and mechanistic aspects of the reaction have been studied in detail, no structural information on NCS was available so far. The enzyme shows significant sequence homology to members of the PR10 proteins (class 10 of pathogenesis-related proteins) such as the major birch pollen allergen Bet v 1. Our CD and NMR spectroscopic data indicated high similarity of the NCS and the Bet v 1 fold and allowed us to model NCS using Bet v 1 as a template. Virtually complete backbone assignment of the NCS sequence was used to study substrate binding by NMR titration experiments. Although binding of 4-HPAA seems to induce side-chain rearrangements in an extensive part of the protein, the putative distinct interaction site for dopamine could be clearly identified. The oligomerization state of NCS that reportedly plays an important role in enzyme functionality was determined to be concentration-dependent by SEC (size-exclusion chromatography) as well as NMR relaxation measurements, and the enzyme was found to be predominantly a monomer at the low micromolar concentrations used for activity assays.  相似文献   

5.
Norcoclaurine synthase (NCS) catalyzes the condensation of dopamine and 4-hydroxyphenylacetaldehyde (4-HPAA) to yield norcoclaurine, the common precursor to all benzylisoquinoline alkaloids produced in plants. In opium poppy (Papaver somniferum L.), NCS activity was detected in germinating seeds, young seedlings, and all mature plant organs, especially stems and roots. However, the highest levels of activity were found in cell-suspension cultures treated with a fungal elicitor. NCS activity was induced more than 20-fold over an 80-h period in response to elicitor treatment. Compared to opium poppy. basal NCS activity was 3-and 5-fold higher in benzylisoquinoline alkaloid-producing cell cultures of Eschscholzia californica and Thalictrum flavum ssp. glaucum, respectively. In contrast, NCS activity was not detected in cultured cells of Nicotiana tabacum and Catharanthus roseus, which do not produce benzylisoquinoline alkaloids. NCS displayed maximum activity between pH 6.5 and 7.0, and a broad temperature optimum between 42 and 55 degrees C. Enzyme activity was not affected by Ca2+ or Mg2+, and was not inhibited by a variety of benzylisoquinoline alkaloids. NCS showed hyperbolic saturation kinetics for 4-HPAA, with an apparent Km of 1.0 mM. However, the enzyme exhibited sigmoidal saturation kinetics for dopamine with a Hill coefficient of 1.84. NCS enzymes from E. californica and T. flavum displayed similar properties. These data indicate that NCS exhibits positive cooperativity between substrate-binding sites. Enzymes of this type catalyze regulatory, or rate-limiting, steps in metabolism, suggesting that NCS plays a role in controlling the rate of pathway flux in benzylisoquinoline alkaloid biosynthesis.  相似文献   

6.
(S)-Norcoclaurine is the entry compound in benzylisoquinoline alkaloid biosynthesis and is produced by the condensation of dopamine and 4-hydroxyphenylacetaldehyde (4-HPAA) by norcoclaurine synthase (NCS) (EC 4.2.1.78). Although cDNA of the pathogenesis-related (PR) 10 family, the translation product of which catalyzes NCS reaction, has been isolated from Thalictrum flavum, its detailed enzymological properties have not yet been characterized. We report here that a distinct cDNA isolated from Coptis japonica (CjNCS1) also catalyzed NCS reaction as well as a PR10 homologue of C. japonica (CjPR10A). Both recombinant proteins stereo-specifically produced (S)-norcoclaurine by the condensation of dopamine and 4-HPAA. Because a CjNCS1 cDNA that encoded 352 amino acids showed sequence similarity to 2-oxoglutarate-dependent dioxygenases of plant origin, we characterized the properties of the native enzyme. Sequence analysis indicated that CjNCS1 only contained a Fe(2+)-binding site and lacked the 2-oxoglutarate-binding domain. In fact, NCS reaction of native NCS isolated from cultured C. japonica cells did not depend on 2-oxoglutarate or oxygen, but did require ferrous ion. On the other hand, CjPR10A showed no specific motif. The addition of o-phenanthroline inhibited NCS reaction of both native NCS and recombinant CjNCS1, but not that of CjPR10A. In addition, native NCS and recombinant CjNCS1 accepted phenylacetaldehyde and 3,4-dihydroxyphenylacetaldehyde, as well as 4-HPAA, for condensation with dopamine, whereas recombinant CjPR10A could use 4-hydroxyphenylpyruvate and pyruvate in addition to the above aldehydes. These results suggested that CjNCS1 is the major NCS in C. japonica, whereas native NCS extracted from cultured C. japonica cells was more active and formed a larger complex compared with recombinant CjNCS1.  相似文献   

7.
8.
The enzyme norcoclaurine synthase (NCS) found in the common meadow rue, Thalictrum flavum, and other plants shows sequence homology to members of the class 10 of pathogenesis related (PR 10) proteins that contains allergens such as the major birch pollen allergen Bet v 1, the major cherry allergen Pru av 1, and the major apple allergen Mal d 1. The enzyme is involved in the plant's secondary metabolism and is required for the production of bioactive secondary metabolites like morphine. Whereas the physiological function of PR 10 class allergens is still unknown, NCS activity has been studied in detail. Investigation of the structural properties of NCS by NMR spectroscopy can thus not only provide new information concerning the reaction mechanism of the enzyme, but is also expected to help clarify the long standing and heavily debated question on the physiological function as well as the reasons for the allergenic potential of members of this protein family. As the first important step towards the three-dimensional solution structure, we optimized expression of recombinant NCS in Escherichia coli and established an efficient purification protocol yielding high amounts of pure isotopically labeled active enzyme. The identity of NCS was confirmed by electrospray ionization mass spectrometry, and activity of the purified enzyme was determined by an assay detecting the radiolabeled reaction product. Spectroscopic analysis by NMR spectroscopy showed that the protein was properly folded with well defined tertiary structure.  相似文献   

9.
The intracellular pathogenesis-related proteins have been identified in a broad range of flowering plants. Some display quite different patterns of expression, in many cases unrelated to the pathogenic response. Nevertheless, these proteins are all very similar and in most cases share more than 35% sequence identity. In this report we investigate the significance of a rather weak similarity between the intracellular pathogenesis-related (IPR or PR-10) proteins and a group of proteins identified in the latex of opium poppy and in Arabidopsis, among others. A sequence analysis held together with the recently published three-dimensional structure of Bet v 1, an IPR protein from birch pollen, strongly suggests sequential and structural homology between the two protein families.  相似文献   

10.
11.

Background

Birch pollen-allergic subjects produce polyclonal cross-reactive IgE antibodies that mediate pollen-associated food allergies. The major allergen Bet v 1 and its homologs in plant foods bind IgE in their native protein conformation. Information on location, number and clinical relevance of IgE epitopes is limited. We addressed the use of an allergen-related protein model to identify amino acids critical for IgE binding of PR-10 allergens.

Method

Norcoclaurine synthase (NCS) from meadow rue is structurally homologous to Bet v 1 but does not bind Bet v 1-reactive IgE. NCS was used as the template for epitope grafting. NCS variants were tested with sera from 70 birch pollen allergic subjects and with monoclonal antibody BV16 reported to compete with IgE binding to Bet v 1.

Results

We generated an NCS variant (Δ29NCSN57/I58E/D60N/V63P/D68K) harboring an IgE epitope of Bet v 1. Bet v 1-type protein folding of the NCS variant was evaluated by 1H-15N-HSQC NMR spectroscopy. BV16 bound the NCS variant and 71% (50/70 sera) of our study population showed significant IgE binding. We observed IgE and BV16 cross-reactivity to the epitope presented by the NCS variant in a subgroup of Bet v 1-related allergens. Moreover BV16 blocked IgE binding to the NCS variant. Antibody cross-reactivity depended on a defined orientation of amino acids within the Bet v 1-type conformation.

Conclusion

Our system allows the evaluation of patient-specific epitope profiles and will facilitate both the identification of clinically relevant epitopes as biomarkers and the monitoring of therapeutic outcomes to improve diagnosis, prognosis, and therapy of allergies caused by PR-10 proteins.  相似文献   

12.
The Bet v. 1 gene family of birch encodes the major pollen allergens as well as pathogenesis-related (PR) proteins that are induced by microbes in somatic tissues. These PR proteins belong to a group of conserved intracellular defense-related proteins that have been termed 'ribonuclease-like' PR proteins, on the basis of the partial sequence homology observed between PR1, a Bet v 1-homologue from parsley, and a recently characterized ginseng ribonuclease. However, this enzymatic activity has not yet been demonstrated, not for any of the members of this family of PR proteins, nor for the related pollen allergens. We have investigated the possible nuclease activity of Bet v 1 using apparently homogeneous preparations of natural Bet v 1 purified from birch pollen, and a recombinant non-fusion protein purified from E. coli extracts. We report here that Bet v 1 proteins indeed possess an intrinsic ribonucleolytic activity as they can digest different RNA substrates in vitro, but show no activity on single or double-stranded DNA.  相似文献   

13.
14.
Benzylisoquinoline alkaloids (BIAs) are a group of specialized metabolites found predominantly in the plant order Ranunculales. Approximately 2500 naturally occurring BIAs have been identified, many of which possess a variety of potent biological and pharmacological properties. The initial BIA skeleton is formed via condensation by a unique enzyme, norcoclaurine synthase, of the l-tyrosine derivatives dopamine and 4-hydroxyphenylacetaldehyde, yielding (S)-norcoclaurine as a central intermediate. The vast diversity of BIA structures is subsequently derived from (1) transformation of the basic BIA backbone by oxidative enzymes, particularly cytochromes P450 and FAD-linked oxidases, and (2) further structural and functional group modification by tailoring enzymes, which also include various reductases, dioxygenases, acetyltransferases, and carboxylesterases. Most of the biosynthetic enzymes responsible for the biosynthesis of major BIAs (i.e. morphine, noscapine, papaverine, and sanguinarine) in opium poppy (Papaver somniferum), and other compounds (e.g. berberine) in related plants, have been isolated and partially characterized. Diversity in BIA metabolism is driven by the modular and repetitive recruitment, and subsequent neo-functionalization, of a limited number of ancestral enzymes. In this review, BIA biosynthetic enzymes are discussed in the context of their respective families, facilitating exploration of common phylogeny and biochemical mechanisms.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号