首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study addressed the influence of the rate of shear stress application on aortic smooth muscle cell (SMC) contraction and the role of specific glycosaminoglycans in this mechanotransduction. Rat aortic SMCs were exposed to either a step increase in shear stress (0 to 25 dyn/cm(2)) or a ramp increase in shear stress (0 to 25 dyn/cm(2) over 5 min) in a parallel plate flow chamber, and cell contraction was characterized by cell area reduction. SMCs contracted at levels similar to those reported previously and equally in response to both a step and ramp increase in shear stress. When the cells were pretreated with heparinase III or chondroitinase ABC to remove the glycosaminoglycans heparan sulfate and chondroitin sulfate, respectively, from the glycocalyx, the contraction response to increases in shear stress was significantly inhibited. These studies indicate that specific components of the SMC glycocalyx play an important role in the mechanotransduction of shear stress into a contractile response and that the rate of application of shear stress does not affect the SMC contraction.  相似文献   

2.
The Notch signaling pathway plays vital roles in vascular development and homeostasis. However, the functional role of HRT1, a primary downstream effector of Notch signaling in VSMC, is poorly characterized. In the present study, we postulated that HRT1 plays fundamental roles in modulating VSMC fate. To test the hypothesis that HRT1 is coupled to growth regulation, we generated VSMC lines constitutively overexpressing HRT1 (HRT1SMC) and demonstrated an exaggerated growth behavior compared to its control cell line. The lack of cell cycle arrest at confluence in HRT1SMC was associated with an attenuated up-regulation of the cell cycle inhibitor, p21(WAF1/CIP1). We further established that both transient and constitutive HRT1 signaling promoted VSMC survival in response to serum deprivation and pro-apoptotic Fas ligand. Resistance to apoptosis was associated with the induction of Akt expression/activity, a well-described anti-apoptotic mediator. Overall, these findings provide initial evidence that HRT1 functions as a critical determinant of VSMC proliferation and survival.  相似文献   

3.
The migration and proliferation of vascular smooth muscle cells (VSMCs) are essential elements during the development of atherosclerosis and restenosis. An increasing number of studies have reported that extracellular matrix (ECM) proteins, including the CCN protein family, play a significant role in VSMC migration and proliferation. CCN4 is a member of the CCN protein family, which controls cell development and survival in multiple systems of the body. Here, we sought to determine whether CCN4 is involved in VSMC migration and proliferation. We examined the effect of CCN4 using rat cultured VSMCs. In cultured VSMCs, CCN4 stimulated the adhesion and migration of VSMCs in a dose-dependent manner, and this effect was blocked by an antibody for integrin α5β1. CCN4 expression was enhanced by the pro-inflammatory cytokine tumor necrosis factor α (TNF-α). Furthermore, knockdown of CCN4 by siRNA significantly inhibited the VSMC proliferation. CCN4 also could up-regulate the expression level of marker proteins of the VSMCs phenotype. Taken together, these results suggest that CCN4 is involved in the migration and proliferation of VSMCs. Inhibition of CCN4 may provide a promising strategy for the prevention of restenosis after vascular interventions.  相似文献   

4.
5.
The authors evaluated the migratory and proliferative properties and the chromosome number of cultivated male and female smooth muscle cells (SMC) obtained by the explanation method from the thoracic aorta of rats of a conventional and a specific pathogen-free (SPF) breed. It was found that male SMC, in most cases, began to migrate from the explants sooner than female SMC and that they migrated from a higher total number of explants. The time needed for the number of cells in the culture to double (doubling time) was practically the same for male and female SMC, but male SMC attained a higher maximum population density. Male SMC cultures (2nd passage) contained cells with a hyperploid chromosome number, whereas female SMC were diploid. It was also found that SMC from conventional rats, in which the presence of pathogens could be presumed, displayed higher migratory and proliferative capacity than the SMC of SPF rats. The capacity of the SMC of male rats for migration and proliferation could have been potentiated by the effect of a different composition of the intercellular matrix and a different chromosome number, and in conventional rats by the presence of pathogens.  相似文献   

6.
Summary The actin-binding protein caldesmon (CaD) exists both in smooth muscle (the heavy isoform, h-CaD) and non-muscle cells (the light isoform, l-CaD). In smooth muscles h-CaD binds to myosin and actin simultaneously and modulates the actomyosin interaction. In non-muscle cells l-CaD binds to actin and stabilizes␣the actin stress fibers; it may also mediate the interaction between actin and non-muscle myosins. Both h- and l-CaD are phosphorylated in vivo upon stimulation. The major phosphorylation sites of h-CaD when activated by phorbol ester are the Erk-specific sites, modification of which is attenuated by the MEK inhibitor PD98059. The same sites in l-CaD are also phosphorylated when cells are stimulated to migrate, whereas in dividing cells l-CaD is phosphorylated more extensively, presumably by cdc2 kinase. Both Erk and cdc2 are members of the MAPK family. Thus it appears that CaD is a downstream effector of the Ras signaling pathways. Significantly, the phosphorylatable serine residues shared by both CaD isoforms are in the C-terminal region that also contains the actin-binding sites. Biochemical and structural studies indicated that phosphorylation of CaD at the Erk sites is accompanied by a conformational change that partially dissociates CaD from actin. Such a structural change in h-CaD exposes the myosin-binding sites on the actin surface and allows actomyosin interactions in smooth muscles. In the case of non-muscle cells, the change in l-CaD weakens the stability of the actin filament and facilitates its disassembly. Indeed, the level of l-CaD modification correlates very well in a reciprocal manner with the level of actin stress fibers. Since both cell migration and cell division require dynamic remodeling of actin cytoskeleton that leads to cell shape changes, phosphorylation of CaD may therefore serve as a plausible means to regulate these processes. Thus CaD not only links the smooth muscle contractility and non-muscle motility, but also provides a common mechanism for the regulation of cell migration and cell proliferation.  相似文献   

7.
Vasculogenesis, angiogenesis, and maturation are three major phases of the development of blood vessels. Although many receptors required for blood vessel formation have been defined, the intracellular signal transduction pathways involved in vascular maturation remain unclear. KLF2(-/-) embryos fail to develop beyond 13.5 days because of a lack of blood vessel stabilization. The molecular mechanism of KLF2 function in embryonic vascular vessels is still largely unknown. Here we show a normal development pattern of endothelial cells in KLF2(-/-) embryos but a defect of smooth muscle cells at the dorsal side of the aorta. This phenotype results from arrested vascular maturation characterized by the failure of mural cells to migrate around endothelial cells. This migration defect is also observed when platelet-derived growth factor-B (PDGF) controlled migration is studied in murine embryonic fibroblast (MEF) cells from KLF2(-/-) animals. In addition, KLF2(-/-) MEFs exhibit a significant growth defect, indicating that KLF2 is required to maintain the viability of MEF cells. The PDGF signal is mediated through the Src signaling pathway, and a downstream target of KLF2 is sphingosine 1-phosphate receptor 1. These studies demonstrate that KLF2 is required for smooth muscle cell migration and elucidate a novel mechanism involving communication between PDGF and KLF2 in vascular maturation.  相似文献   

8.
Much evidence highlights the importance of polyamines for VSMC (vascular smooth muscle cell) proliferation and migration. Cav-1 (caveolin-1) was recently reported to regulate polyamine uptake in intestinal epithelial cells. The aim of the present study was to assess the importance of Cav-1 for VSMC polyamine uptake and its impact on cell proliferation and migration. Cav-1 KO (knockout) mouse aortic cells showed increased polyamine uptake and elevated proliferation and migration compared with WT (wild-type) cells. Both Cav-1 KO and WT cells expressed the smooth muscle differentiation markers SM22 and calponin. Cell-cycle phase distribution analysis revealed a higher proportion of Cav-1 KO than WT cells in the S phase. Cav-1 KO cells were hyper-proliferative in the presence but not in the absence of extracellular polyamines, and, moreover, supplementation with exogenous polyamines promoted proliferation in Cav-1 KO but not in WT cells. Expression of the solute carrier transporters Slc7a1 and Slc43a1 was higher in Cav-1 KO than in WT cells. ODC (ornithine decarboxylase) protein and mRNA expression as well as ODC activity were similar in Cav-1 KO and WT cells showing unaltered synthesis of polyamines in Cav-1 KO cells. Cav-1 was reduced in migrating cells in vitro and in carotid lesions in vivo. Our data show that Cav-1 negatively regulates VSMC polyamine uptake and that the proliferative advantage of Cav-1 KO cells is critically dependent on polyamine uptake. We provide proof-of-principle for targeting Cav-1-regulated polyamine uptake as a strategy to fight unwanted VSMC proliferation as observed in restenosis.  相似文献   

9.
Atherosclerosis is the principal cause of myocardial infarction, stroke, and peripheral vascular disease, accounting for nearly half of all mortality in developed countries. For example, it has been estimated that atherosclerosis leads to approximately 500,000 deaths from coronary artery disease and 150,000 deaths from stroke every year in the United States (American Heart Association, 1996). Percutaneous transluminal angioplasty has become a well-established technique for revascularization of occluded arteries. However, the long-term efficacy of the procedure remains limited by progressive vessel renarrowing (restenosis) within the following few months after angioplasty. Abnormal vascular smooth muscle cell (VSMC) proliferation is thought to play an important role in the pathogenesis of both atherosclerosis and restenosis. Accordingly, considerable effort has been devoted to elucidate the mechanisms that regulate cell cycle progression in VSMCs. In the present article, we will review the different factors that are involved in the control of VSMC proliferation, especially in the context of cardiovascular disease. Ultimately, a thorough understanding of these regulatory networks may lead to the development of novel drug and gene therapies for the treatment of cardiovascular diseases. Therapeutic approaches that targeted specific cell-cycle control genes or growth regulatory molecules which effectively inhibited neointimal lesion formation will be also discussed.  相似文献   

10.
The biological actions of LIGHT, a member of the tumor necrosis factor superfamily, are mediated by the interaction with lymphotoxin-beta receptor (LTbetaR) and/or herpes virus entry mediator (HVEM). Previous study demonstrated high-level expressions of LIGHT and HVEM receptors in atherosclerotic plaques. To investigate the role of LIGHT in the functioning of macrophages and vascular smooth muscle cells (VSMC) in relation to atherogenesis, we determined the effects of LIGHT on macrophage migration and VSMC proliferation. We found LIGHT through HVEM activation can induce both events. LIGHT-induced macrophage migration was associated with activation of signaling kinases, including MAPKs, PI3K/Akt, NF-kappaB, Src members, and FAK. Proliferation of VSMC was also shown relating to the activation of MAPKs, PI3K/Akt, and NF-kappaB, which consequently led to alter the expression of cell cycle regulatory molecules. Down-regulation of p21, p27, and p53, and inversely up-regulation of cyclin D and RB hyper-phosphorylation were demonstrated. In conclusion, LIGHT acts as a novel mediator for macrophage migration and VSMC proliferation, suggesting its involvement in the atherogenesis.  相似文献   

11.
To investigate the role of insulin signaling pathways in migration, proliferation, and inflammation of vascular smooth muscle cells (VSMCs), we examined the expression of active components of the phosphatidyl inositol 3 (PI-3) kinase (p-Akt) and mitogen-activated protein kinase (MAPK) (p-Erk) in primary cultures of VSMCs from human coronary arteries. VSMCs were treated in a dose-response manner with insulin (0, 1, 10, and 100 nM) for 20 min, and Akt and Erk phosphorylation were measured by Western blot analysis. In separate experiments, we evaluated the effect of 200 μM palmitate, in the presence and absence of 8 μM pioglitazone, on insulin-stimulated (100 nM for 20 min) Akt and Erk phosphorylation. The phosphorylation of Akt and Erk in VSMCs exhibited a dose dependency with a three- to fourfold increase, respectively, at the highest dose (100 nM). In the presence of palmitate, insulin-induced Akt phosphorylation was completely abolished, and there was a threefold increase in p-Erk. With addition of pioglitazone, the phosphorylation of Akt by insulin remained unchanged, whereas insulin-stimulated Erk phosphorylation was reduced by pioglitazone. These data in VSMCs indicate that high palmitate decreases insulin-stimulated Akt phosphorylation and stimulates MAPK, whereas preexposure peroxisome proliferator-activated receptor-γ agonist pioglitazone preserves Akt phosphorylation and simultaneously attenuates MAPK signaling. Our results suggest that metabolic and mitogenic insulin signals have different sensitivity, are independently regulated, and may play a role in arterial smooth muscle cells migration, proliferation, and inflammation in conditions of acute hyperinsulinemia.  相似文献   

12.
13.
The current study compared the effectiveness of the various human apolipoprotein E (apoE) isoforms in inhibiting platelet-derived growth factor- (PDGF-) stimulated smooth muscle cell proliferation and migration. The incubation of primary mouse aortic smooth muscle cells with apoE3 resulted in dose-dependent inhibition of smooth muscle cells stimulated by 10 ng/mL PDGF. Greater than 50% inhibition of smooth muscle cell proliferation was observed at 15 microg/mL of human apoE3. Human apoE2 was less effective, requiring a higher concentration to achieve inhibition comparable to that of apoE3. Human apoE4 was the least effective of the apoE isoforms with no significant inhibition of cell proliferation observed at concentrations up to 15 microg/mL. Interestingly, apoE inhibition of PDGF-directed smooth muscle cell migration did not show preference for any apoE isoforms. Human apoE2, apoE3, and apoE4 were equally effective in inhibiting smooth muscle cell migration toward PDGF. These results are consistent with previous data showing that apoE inhibition of smooth muscle cell proliferation is mediated through its binding to heparan sulfate proteoglycans, whereas its inhibition of cell migration is mediated via binding to the low-density lipoprotein receptor related protein. The low efficiency of apoE4 to inhibit smooth muscle cell proliferation also suggested another mechanism to explain the association between the apolipoprotein epsilon4 allele with increased risk of coronary artery disease.  相似文献   

14.
CeReS-18, a cell regulatory sialoglycopeptide, has been shown to inhibit proliferation of a wide array of target cells. In the present study, the effect of CeReS-18 on vascular smooth muscle cell (SMC) proliferation was characterized in cultured rat aorta SMCs (A7r5). More extensively, the effect of CeReS-18 on platelet-derived growth factor (PDGF)-induced SMC migration was examined using a modified Boyden's chamber assay. CeReS-18 inhibits both SMC proliferation and migration in a concentration-dependent, calcium-sensitive, and reversible manner. Furthermore, cells preincubated with the inhibitor had an increased sensitivity to CeReS-18-mediated inhibition of SMC migration. Immunoprecipitation and in vitro phosphorylation assays demonstrated that MAP kinase activity was inhibited in the CeReS-18-treated cells and pretreatment with CeReS-18 suppressed the activation of MAP kinase stimulated by PDGF. However, it is not likely that the suppression of the MAP kinase pathway was directly responsible for the ability of CeReS-18 to inhibit migration of the rat aorta smooth muscle cells since a MEK-specific inhibitor, PD98059, did not influence A7r5 cell migration.  相似文献   

15.
Migration, proliferation and death of vascular smooth muscle cells (VSMC) are important events in vascular pathology regulated by heparan sulfate proteoglycans and hence potentially by cell surface HS 6-O-endosulfatase1 (sulf1). Sulf1 mRNA expression was increased in cultured VSMC compared to rat aorta. Furthermore, adenovirus mediated overexpression of quail sulf1 decreased adhesion, and increased proliferation and apoptosis of VSMC. Overexpression of a dominant negative variant also decreased adhesion of VSMC and increased proliferation, apoptosis, migration and chemotaxis of VSMC. Our results imply that only normal levels of 6-O-sulfation maintained by sulf1 are optimal for several functions of VSMC.  相似文献   

16.
S-nitrosothiols (RSNOs) are important mediators of nitric oxide (NO) biology. The two mechanisms that appear to dominate in their biological effects are metabolism leading to the formation of NO and S-nitrosation of protein thiols. In this study we demonstrate that RSNOs inhibit uterine smooth muscle cell proliferation independent of NO. The antiproliferative effects of NO on vascular smooth muscle are well defined, with the classic NO-dependent production of cGMP being demonstrated as the active pathway. However, less is known on the role of NO in mediating uterine smooth muscle cell function, a process that is important during menstruation and pregnancy. The RSNOs S-nitrosoglutathione and S-nitroso-N-acetyl pencillamine inhibited growth factor-dependent proliferation of human and rat uterine smooth muscle cells (ELT-3). Interestingly, these cells reduced RSNOs to generate NO. However, use of NO donors and other activators of the cGMP pathway failed to inhibit proliferation. These findings demonstrate the tissue-specific nature of responses to NO and demonstrate the presence of a RSNO-dependent but NO-independent pathway of inhibiting DNA synthesis in uterine smooth muscle cells.  相似文献   

17.
Many natural products have been so far tested regarding their potency to inhibit vascular smooth muscle cell proliferation, a process involved in atherosclerosis, pulmonary hypertension and restenosis. Compounds studied in vitro and in vivo as VSMC proliferation inhibitors include, for example indirubin-3′-monoxime, resveratrol, hyperoside, plumericin, pelargonidin, zerumbone and apamin. Moreover, taxol and rapamycin, the most prominent compounds applied in drug-eluting stents to counteract restenosis, are natural products. Numerous studies show that natural products have proven to yield effective inhibitors of vascular smooth muscle cell proliferation and ongoing research effort might result in the discovery of further clinically relevant compounds.  相似文献   

18.
We hypothesized that diabetes and glucose-induced reactive oxygen species lead to depletion of cAMP response element-binding protein (CREB) content in the vasculature. In primary cultures of smooth muscle cells (SMC) high medium glucose decreased CREB function but increased SMC chemokinesis and entry into the cell cycle. These effects were blocked by pretreatment with the antioxidants. High glucose increased intracellular reactive oxygen species detected by CM-H(2)DCFA. SMC exposed to oxidative stress (H(2)O(2)) demonstrated a 3.5-fold increase in chemokinesis (p < 0.05) and accelerated entry into cell cycle, accompanied by a significant decrease in CREB content. Chronic oxidative challenge similar to the microenvironment in diabetes (glucose oxidase treatment) decreases CREB content (40-50%). Adenoviral-mediated expression of constitutively active CREB abolished the increase in chemokinesis and cell cycle progression induced by either high glucose or oxidative stress. Analysis of vessels from insulin resistant or diabetic animals indicates that CREB content is decreased in the vascular stroma. Treatment of insulin-resistant animals with the insulin sensitizer rosiglitazone restores vessel wall CREB content toward that observed in normal animals. In summary, high glucose and oxidative stress decrease SMC CREB content increase chemokinesis and entry into the cell cycle, which is blocked by antioxidants or restoration of CREB content. Thus, decreased vascular CREB content could be one of the molecular mechanisms leading to increased atherosclerosis in diabetes.  相似文献   

19.
20.
Ouabain-induced signaling and vascular smooth muscle cell proliferation   总被引:11,自引:0,他引:11  
The hypothesis of this study is that the sodium pump complex acts as an intracellular signal-transducing molecule in canine vascular smooth muscle cells through its interaction with other membrane and cytoskeletal proteins. We have demonstrated that 1 nm ouabain induced transactivation of the epidermal growth factor receptor (EGFR), resulting in increased proliferation and bromodeoxyuridine (BrdUrd) uptake. Immunoprecipitation and Western blotting showed that the EGFR and Src were phosphorylated within 5 min of 10(-9) m ouabain stimulation. Both ouabain-induced DNA synthesis (BrdUrd uptake) and MAPK42/44 phosphorylation were inhibited by the Src inhibitor PP2, the EGFR kinase inhibitor AG1478, the tyrosine kinase inhibitor genistein, and the MEK1 inhibitor PD98059. Ouabain concentrations higher than 1 nm had little or no stimulating effect on proliferation or BrdUrd uptake but did minimally activate ERK1/2. Thus, low concentrations of ouabain, which do not inhibit the sodium pump sufficiently to perturb the resting cellular ionic milieu, initiate a transactivational signaling cascade leading to vascular smooth muscle cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号