首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Three quarters of the eye anlage in Xenopus embryos of stage 33/34 were eliminated in three different sets of experiments. The remaining quadrant originated from the nasoventral part of the retina, from its ventral portion, or from the temporo-ventral area of the retina. All the fragments developed into small eyes of normal shape. The retinotectal connections did not deviate from those found in the control groups, even though mirror-image duplication was fairly frequent. For all fragments the tectal projection fields were rather limited. There was some indication of fragments retaining their original specificity. Irrespective, however, of their different origins, the optic projections always occupied the rostrolateral area of the tectum.  相似文献   

2.
Kulkarni RN  Kahn CR 《Cell》2007,129(2):241-243
How insulin-secreting beta cells of the pancreas communicate with each other is largely unknown. In this issue of Cell, Konstantinova et al. (2007) show that the signaling proteins EphA and ephrin-A modulate insulin secretion, providing fresh insights into the functional significance of the clustering of beta cells, which occurs in islets.  相似文献   

3.
Eph receptors have been the subject of intense research since their discovery. Their widespread pattern of expression, involvement in a variety of important cellular phenomena and unique mode of action have stimulated interest in their role in health and disease across biological and medical domains. However, the function of Ephs in nervous system development and plasticity remains the best characterised. Recent advances suggest that Ephs play an important role in the development of brain pathologies. This review focuses on their basic structure and function and discusses the latest research on their role in neurological diseases.  相似文献   

4.
Expression of ribosomal-protein genes in Xenopus laevis development   总被引:27,自引:0,他引:27  
Using probes to Xenopus laevis ribosomal-protein (r-protein) mRNAs, we have found that in the oocyte the accumulation of r-protein mRNAs proceeds to a maximum level, which is attained at the onset of vitellogenesis and remains stable thereafter. In the embryo, r-protein mRNA sequences are present at low levels in the cytoplasm during early cleavage (stages 2-5), become undetectable until gastrulation (stage 10) and accumulate progressively afterwards. Normalization of the amount of mRNA to cell number suggests an activation of r-protein genes around stage 10; however, a variation in mRNA turnover cannot be excluded. Newly synthesized ribosomal proteins cannot be found from early cleavage up to stage 26, with the exception of S3, L17 and L31, which are constantly made, and protein L5, which starts to be synthesized around stage 7. A complete set of ribosomal proteins is actively produced only in tailbud embryos (stages 28-32), several hours after the appearance of their mRNAs. Before stage 26 these mRNA sequences are found on subpolysomal fractions, whereas more than 50% of them are associated with polysomes at stage 31. Anucleolate mutants do not synthesize ribosomal proteins at the time when normal embryos do it very actively; nevertheless, they accumulate r-protein mRNAs.  相似文献   

5.
Ephrin-A1 and its primary receptor, EphA2, are involved in numerous physiological processes and have been intensely studied for their roles in malignancy. Ephrin-Eph signalling is complex on its own and is also cell-type dependent, making elucidation of the exact role of ephrin-A1 in neoplasia challenging. Multiple oncogenic signalling pathways, such as MAP/ERK and PI3K are affected by ephrin-A1, and in some cases evidence suggests the promotion of a specific pathway in one cell or cancer type and inhibition of the same pathway in another type of cell or cancer. Ephrin-A1 also plays an integral role in angiogenesis and tumor neovascularization. Until recently, studies investigating ephrins focused on the ligands as GPI-anchored proteins that required membrane anchoring or artificial clustering for Eph receptor activation. However, recent studies have demonstrated a functional role for soluble, monomeric ephrin-A1. This review will focus on various forms of ephrin-A1-specific signalling in human malignancy.  相似文献   

6.
The topographic projection pattern formed by the retinal ganglion cell axons in the tectum of the lower vertebrate appears to require positional cues that guide the optic nerve fibers to their appropriate targets. One approach to understanding these positional cues or "positional information" has been to investigate changes in the pattern of the retinotectal projection after surgical manipulation of the embryonic eyebud. Analysis of these apparent changes in the patterns of positional information in the eye, termed "pattern regulation," may provide clues to both the nature of positional information and the mechanisms by which it is assigned to cells in the eyebud. Here we examine pattern regulation in the Xenopus visual system following the replacement of the temporal half of a right eyebud with the temporal half of a left eyebud. This manipulation requires that the left half-eyebud be inverted along its dorsoventral axis. Electrophysiological maps of these compound eyes in postmetamorphic frogs reveal regulated maps; the cells in the temporal half of the NrTl eye project to the tectum with a dorsoventral polarity appropriate for their position in the host eye and not appropriate for the original positions of the grafted cells in the donor eyebud. Paradoxically, the regulated patterns are not apparent in the projections of the original grafted eyebud cells during early larval development. Using fiber-tracing and electrophysiological mapping techniques, we now show that the regulated patterns appear gradually in the projections made by peripheral retinal cells added during mid-larval development. Because the regulation occurs relatively late in development and probably only in the peripheral retinal cells, simple models of epimorphic or morphallactic regulation do not appear to fit this system. Thus, new or more complex models must be invoked to explain the phenomenon of pattern regulation in the developing visual system of Xenopus.  相似文献   

7.
We have isolated the Xenopus homologue of Muscle LIM protein (MLP, CRP3) and examined its expression during early embryonic development. MLP is only expressed in the differentiated heart during early development and is expressed in a subset of other striated muscles during later stages. There is no MLP expression during primary myogenesis in the somites, although it is found in adult skeletal muscle.  相似文献   

8.
9.
10.
11.
12.
13.
The N-myc proto-oncogene is expressed in a wide range of tissues during mammalian embryogenesis. This observation, along with the oncogenic capacity of this gene, has led to the suggestion that N-myc plays an important role in early development. However, due to the complexity of the expression pattern and the difficulty of manipulating mammalian embryos, little progress has been made towards understanding the developmental function of this gene. To enable a more detailed analysis of the role of this gene in early development, a study of the Xenopus homologue of N-myc was undertaken. Xenopus N-myc cDNA clones were isolated from a neurula library using a murine N-myc probe. Analysis of the timing of expression of N-myc mRNA and of the distribution of N-myc protein during Xenopus development indicate that this gene may be playing an important role in the formation of a number of embryonic structures, including the nervous system. N-myc is initially expressed as a maternal RNA, but this mRNA is degraded by the gastrula stage of development. Zygotic expression does not commence until late neurula. Examination of the distribution of the N-myc protein by whole-mount immunohistochemistry indicates that the early embryonic expression occurs in the central nervous system, the neural crest, the somites and the epidermis. Later expression is mostly within the head and somites. Specific structures within the head that express the protein include the eye, otic vesicle, fore and hindbrain and a number of cranial nerves. The results demonstrate that while N-myc is expressed in the developing nervous system of Xenopus, the timing of expression indicates that it is unlikely to be involved in regulation of the very first stages of neurogenesis.  相似文献   

14.
Development in the frog, Xenopus laevis, requires the utilization of yolk glyco-lipo-proteins in a temporally- and spatially-dependent manner. The metabolism of the yolk produces hydrogen peroxide (H2O2), a potent reactive oxygen species (ROS). Peroxiredoxins (prdxs) are a family of six anti-oxidant enzymes that, amongst other roles, reduce H2O2. Prdxs reduce H2O2 through a thiol-redox reaction at conserved cysteine residues which results in the creation of disulfide bonds. Recently the thiol-redox reaction of Prdxs has also been implicated in several cell signaling systems. Here we report the cloning and expression patterns during development of six peroxiredoxin homologs from the frog X. laevis. Sequence analysis confirmed their identity as well as their evolutionary relationship with peroxiredoxins from several other species. Using RT-PCR and in situ hybridization analysis we have shown that there is early and robust expression of all six homologs during development. All six X. laevis peroxiredoxins are expressed in neural regions including the brain, eyes, as well as the somites. Different expression patterns for each peroxiredoxin are also observed in the pronephric region, including the proximal and distal tubules. Expression of several peroxiredoxins was also observed in the blood precursors and the olfactory placode. These results suggest important roles for all six peroxiredoxins during early development. These roles may be restricted to their functions as anti-oxidant enzymes, but may also be related to their emerging roles in redox signaling.  相似文献   

15.
Glycine, a major inhibitory neurotransmitter in the vertebrate nervous system, not only functions in synaptic signaling, but has also been implicated in regulating neuronal differentiation, neuronal proliferation, synaptic modeling, and neural network stability. Elements of the glycinergic phenotype include the membrane-bound glycine transporters (GLYT1 and GLYT2), which remove glycine from the synaptic cleft, and the vesicular inhibitory amino acid transporter (VIAAT or VGAT), which sequesters both glycine and GABA into synaptic vesicles. Here, we describe the spatial and temporal expression patterns of xGlyT1, xGlyT2, and xVIAAT during early developmental stages of Xenopus laevis. In situ hybridization reveals that xGlyT1 is first expressed in early tailbud stages in the midbrain, hindbrain, and anterior spinal cord; it extends posteriorly through the spinal cord and appears in the forebrain, retina, between the somites, and in the blood islands by swimming tadpole stages. xGlyT2 and xVIAAT initially appear in late neurula stages in the anterior spinal cord. By swimming tadpole stages, the expression of these genes appears in the forebrain, midbrain, and hindbrain and extends posteriorly through the spinal cord; xVIAAT is also expressed in the retina. Confocal analysis of multiplex fluorescent in situ hybridization signal in the spinal cord reveals that xGlyT1 and xGlyT2 share little cellular colocalization. While there is significant coexpression between xVIAAT and xGlyT2, xVIAAT and the GABAergic marker glutamic acid decarboxylase (xGAD67), and xGlyT2 and xGAD67, each gene also appears to have discrete, non-colocalized areas of expression.  相似文献   

16.
17.
Several in vitro systems exist for the induction of animal caps using growth factors such as activin. In this paper, we compared the competence of activin-treated animal cap cells dissected from the late blastulae of Xenopus tropicalis and Xenopus laevis. The resultant tissue explants from both species differentiated into mesodermal and endodermal tissues in a dose-dependent manner. In addition, RT-PCR analysis revealed that organizer and mesoderm markers were expressed in a similar temporal and dose-dependent manner in tissues from both organisms. These results indicate that animal cap cells from Xenopus tropicalis have the same competence in response to activin as those from Xenopus laevis.  相似文献   

18.
Molecular anatomy of placode development in Xenopus laevis   总被引:1,自引:0,他引:1  
  相似文献   

19.
20.
Emerin is an integral protein of the inner nuclear membrane in the majority of differentiated vertebrate cells. In humans, deficiency of emerin causes a progressive muscular dystrophy of the Emery-Dreifuss type. The physiological role of emerin is poorly understood. By screening and sequencing of EST clones we have identified two emerin homologues in Xenopus laevis, Xemerin1 and Xemerin2. Xemerins share with mammalian emerins the N-terminal LEM domain and a single transmembrane domain at the C-terminus. As shown by immunoblot analysis with Xemerin-specific antibodies, both proteins have an apparent molecular mass of 24 kDa but differ in their isoelectric points. Xemerin1 and Xemerin2 proteins are not detectable in oocytes nor during early embryogenesis. Protein expression is first found at stage 43 and persists in somatic cells. However, RT-PCR and Northern blot analysis show Xemerin mRNAs of approximately 4.0 kb to be present in oocytes and throughout embryogenesis. During embryogenesis the level of Xemerin mRNAs increases at stage 22 and is particularly abundant in mesodermal and neuro-ectodermal regions of the embryo. These data provide the necessary background to further investigate the role of emerin in nuclear envelope assembly, gene expression and organ development of X. laevis as a model organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号