首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Regulation of the mitogen-activated protein kinase (MAPK) family by gonadotropin-releasing hormone (GnRH) in the gonadotrope cell line LbetaT2 was investigated. Treatment with gonadotropin-releasing hormone agonist (GnRHa) activates extracellular signal-regulated kinase (ERK) and c-Jun NH(2)-terminal kinase (JNK). Activation of ERK by GnRHa occurred within 5 min, and declined thereafter, whereas activation of JNK by GnRHa occurred with a different time frame, i.e. it was detectable at 5 min, reached a plateau at 30 min, and declined thereafter. GnRHa-induced ERK activation was dependent on protein kinase C or extracellular and intracellular Ca(2+), whereas GnRHa-induced JNK activation was not dependent on protein kinase C or on extracellular or intracellular Ca(2+). To determine whether a mitogen-activated protein kinase family cascade regulates rat luteinizing hormone beta (LHbeta) promoter activity, we transfected the rat LHbeta (-156 to +7)-luciferase construct into LbetaT2 cells. GnRH activated the rat LHbeta promoter activity in a time-dependent manner. Neither treatment with a mitogen-activated protein kinase/ERK kinase (MEK) inhibitor, PD98059, nor cotransfection with a catalytically inactive form of a mitogen-activated protein kinase construct inhibited the induction of the rat LHbeta promoter by GnRH. Furthermore, cotransfection with a dominant negative Ets had no effect on the response of the rat LHbeta promoter to GnRH. On the other hand, cotransfection with either dominant negative JNK or dominant negative c-Jun significantly inhibited the induction of the rat LHbeta promoter by GnRH. In addition, GnRH did not induce either the rat LHbeta promoter activity in LbetaT2 cells transfected stably with dominant negative c-Jun. These results suggest that GnRHa differentially activates ERK and JNK, and a JNK cascade is necessary to elicit the rat LHbeta promoter activity in a c-Jun-dependent mechanism in LbetaT2 cells.  相似文献   

10.
11.
促黄体素β基因表达中的转导通路及转录因子   总被引:1,自引:0,他引:1  
Li L  Wang GL 《生理科学进展》2004,35(3):215-218
促性腺激素释放激素 (GnRH)为下丘脑促垂体激素 ,其脉冲式地释放调节垂体促卵泡素(FSH)和促黄体素 (LH)的合成与释放 ,进而调节动物的生殖活动。LH是由α亚基和 β亚基组成的异二聚体糖蛋白激素 ,其中 β亚基决定激素的特异性。LHβ基因的表达是由GnRH诱发的 ,此过程主要依靠PKC和Ca2 两类信号通路 ,并调节LHβ基因的表达。目前已经发现 ,多种转录因子 ,如早期生长反应基因 (Egr 1)、核受体SF 1基因、Ptx1基因和Sp1基因等 ,通过与LHβ亚基基因的启动子区直接结合 ,而对该基因的表达进行调控。  相似文献   

12.
13.
The requirements for basal expression of the LH beta-subunit promoter in pituitary gonadotropes are largely unknown. We have used the equine (e) LHbeta subunit promoter as a model to unravel the combinatorial code required for gonadotrope expression. Through the use of 5'-deletion mutagenesis, a region between -185 and -100 of the eLHbeta promoter was shown to play a critical role in maintaining basal promoter activity in alphaT3-1 and LbetaT2 cells. This region encompasses the steroidogenic factor-1 (SF-1) binding site that has been reported to have a functional role in expression of the LHbeta promoter in other species. We have also identified an additional SF-1 site at -55 to -48. Binding of SF-1 to both sites was confirmed by electrophoretic mobility shift assays. Mutations within these sites, either individually or in combination, did not attenuate basal activity of the eLHbeta promoter in alphaT3-1 cells, but did diminish promoter activity in LbetaT2 cells. Interestingly, cotransfection with an expression vector encoding SF-1 induced eLHbeta promoter activity, and this induction was abrogated by mutations within the SF-1 sites in alphaT3-1 cells. Block replacement mutagenesis was performed on the -185/-100 region of the eLHbeta promoter to identify DNA response elements responsible for maintaining basal promoter activity. From this analysis, two regions emerged as being important: a distal 31-bp segment (-181 to -150) and an element located immediately 3' to the distal SF-1 site (-119 to -106). It is hypothesized that these two regions as well as the SF-1 sites represent regulatory elements that contribute to a combinatorial code involved in targeting expression of the eLHbeta promoter to gonadotropes.  相似文献   

14.
The hypothalamic neuropeptide hormone GnRH is the central regulator of reproductive function. GnRH stimulates the synthesis and release of the gonadotropins LH and FSH by the gonadotropes of the anterior pituitary through activation of the G-protein-coupled GnRH receptor. In this study, we investigated the role of translational control of hormone synthesis by the GnRH receptor in the novel gonadotrope cell line LbetaT2. Using immunohistochemical and RIA studies with this model, we show that acute GnRH-induced synthesis and secretion of LH are dependent upon new protein synthesis but not new mRNA synthesis. We examined the response to GnRH and found that activation of cap-dependent translation occurs within 4 h. LHbeta promoter activity was also examined, and we found no increases in LHbeta promoter activity after 6 h of GnRH stimulation. Additionally, we show that increased phosphorylation of translation initiation proteins, 4E-binding protein 1, eukaryotic initiation factor 4E, and eukaryotic initiation factor 4G, occur in a dose- and time-dependent manner in response to GnRH stimulation. Quantitative luminescent image analysis of Western blots shows that 10 nm GnRH is sufficient to cause a maximal increase in factor phosphorylation, and maximal responses occur within 30 min of stimulation. Further, we demonstrate that the MAPK kinase inhibitor, PD 98059, abolishes the GnRH-mediated stimulation of a cap-dependent translation reporter. More specifically, we demonstrate that PD 98059 abolishes the GnRH-mediated stimulation of a downstream target of the ERK pathway, MAPK-interacting kinase. Based on these findings, we conclude that acute GnRH stimulation of LbetaT2 cells increases translation initiation through ERK signaling. This may contribute to the acute increases in LHbeta subunit production.  相似文献   

15.
16.
17.
18.
The hypothalamic-pituitary-gonadal endocrine axis regulates reproduction through estrous phase-dependent release of the heterodimeric gonadotropic glycoprotein hormones, LH and FSH, from the gonadotropes of the anterior pituitary. Gonadotropin synthesis and release is dependent upon pulsatile stimulation by the hypothalamic neuropeptide GnRH. Alterations in pulse frequency and amplitude alter the relative levels of gonadotropin synthesis and release. The mechanism of interpretation of GnRH pulse frequency and amplitude by gonadotropes is not understood. We have examined gene expression in LbetaT2 gonadotropes under various pulse regimes in a cell perifusion system by microarray and identified 1127 genes activated by tonic or pulsatile GnRH. Distinct patterns of expression are associated with each pulse frequency, but the greatest changes occur at a 60-min or less interpulse interval. The immediate early gene mRNAs encoding early growth response (Egr)1 and Egr2, which activate the gonadotropin LH beta-subunit gene promoter, are stably induced at high pulse frequency. In contrast, mRNAs for the Egr corepressor genes Ngfi-A binding protein Nab1 and Nab2 are stably induced at low pulse frequency. We show that Ngfi-A binding protein members inhibit Egr-mediated frequency-dependent induction of the LH beta-subunit promoter. This pattern of expression suggests a model of pulse frequency detection that acts by suppressing activation by Egr family members at low frequency and allowing activation at sustained high-frequency pulses.  相似文献   

19.
20.
GnRH acts on pituitary gonadotropes to stimulate the synthesis and release of LH and FSH. However, the signaling pathways downstream of the GnRH receptor that mediate these effects are not fully understood. In this paper, we demonstrate that GnRH activates ERK, c-Jun N-terminal kinase, and p38MAPK in the LbetaT2 gonadotrope cell line. Phosphorylation of both ERK and p38MAPK are stimulated rapidly, 30- to 50-fold in 5 min, but activation of c-Jun N-terminal kinase has slower kinetics, reaching only 10-fold after 30 min. Activation of ERK by GnRH is blocked by inhibition of MAPK kinase (MEK) and partially blocked by inhibition of PKC and calcium, but not PI3K or p38MAPK signaling. We demonstrate that phosphorylated ERK accumulates in the nucleus in a PKC-dependent manner. We also show that GnRH induces c-fos and LHbeta subunit protein expression in LbetaT2 cells via MEK. Experiments with EGTA or calcium channel antagonists indicated that calcium influx is important for the induction of both genes by GnRH. In conclusion, these results show that GnRH activates all three MAPK subfamilies in LbetaT2 cells and induces c-fos and LHbeta protein expression through calcium and MEK-dependent mechanisms. These results also demonstrate that the nuclear translocation of ERK by GnRH requires PKC signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号