首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Environmental stresses (soil compaction, drought, waterlogging) cause changes in plants’ root system structure, also affecting the growth of above-ground parts. The aim of this study was to estimate phenotypic variation among maize and triticale genotypes in root penetration ability through petrolatum-wax-layer (RPA). Also, the effect of shortage or excess of soil water on dry matter of shoots and roots and morphological changes in root system structure in sensitive and resistant maize and triticale genotypes grown in low or high soil compaction level was evaluated. To estimate RPA index, the petrolatum-wax-layer method (PWL) was used. The strength of three petrolatum-wax concentrations 60, 50 and 40 % was 0.52, 1.07 and 1.58 MPa, respectively. High coefficients of variation (CV) were observed in 0.52 and 1.07 MPa and for maize were 19.2 and 21.7 %, and for triticale, 12.5 and 18.3 %, respectively. The data indicate that the use of PWL technique is an effective screening method, and makes it possible to divide the genotypes into resistant and sensitive groups. The second part of this study investigated a multistress effect of soil compaction combined with drought or waterlogging on root and shoot growth and morphological changes in root system structure of maize and triticale genotypes differing in susceptibility to environmental stresses. Seedlings were grown for 4 weeks in root-boxes under conditions of low (LSC 1.1 g cm?3) or severe (SSC 1.6 g cm?3) soil compaction. Drought or waterlogging stresses were applied for 2 weeks from 14th to 28th day. In comparison to LSC treatment, in SSC treatment the decrease in dry matter of shoots and roots was greater for sensitive genotypes of maize and triticale (Ancora, CHD-147). Soil drought or waterlogging caused greater decrease of dry matter of shoots and roots in seedlings grown in SSC in comparison to LSC. The root penetration index (RPI) was estimated as a ratio of root dry matter in 15–40 cm root-box layer to total root dry matter. On the basis of RPI it was possible to group the genotypes according to their ability to distribute roots in soil profile. In comparison to LSC, SSC exerted a strong influence on the length of seminal and seminal adventitious roots, as well as the number and length of L- and S-type lateral roots developed on seminal and nodal roots. In both species the restriction effect of soil compaction on number and length of roots was more severe in sensitive (Ankora, CHD-147) than in resistant (Tina, CHD-247) genotypes. The restriction in roots propagation was greater in triticale than in maize. Exposure to drought or waterlogging in the case of genotypes grown in LSC and SSC treatments caused a decrease in number and length of particular components of root system structure. In both species the decrease of root number and length in plants grown under waterlogging was greater than under drought. The observed changes in root system were greater in sensitive (Ankora, CHD147) than in resistant (Tina, CHD-247) genotypes. Statistically significant correlations were found between RPA and RPI and also between these indexes and soil compaction, drought and waterlogging susceptibility indexes. This indicates that genotypes resistant to soil compaction were resistant to drought or waterlogging and also that genotypes resistant to drought were resistant to waterlogging.  相似文献   

2.
Effects of soil drought or waterlogging on the morphological traits of the root system and internal root anatomy were studied in maize hybrids of different drought tolerance. The investigations comprised quantitative and qualitative analyses of a developed plant root system through determining the number, length and dry matter of the particular components of the root system and some traits of the anatomical structure of the seminal root. Obtained results have demonstrated a relatively broad variation in the habit of the root system. This mainly refers, to the number, length and dry matter of lateral roots, developed by seminal root, seminal adventitious and nodal roots as well as to some anatomical properties of the stele, cortex and metaxylem elements. Plants grown under waterlogging or drought conditions showed a smaller number and less dry matter of lateral branching than plants grown in control conditions. The harmful effect of waterlogging conditions on the growth of roots was greater when compared with that of plants exposed to drought. In the measurements of the root morphological traits, the effect of soil drought on the internal root anatomical characteristic was weaker than the effect of soil waterlogging. The observed effects of both treatments were more distinct in a drought sensitive hybrid Pioneer D than in drought resistant Pioneer C one. The drought resistant hybrid Pioneer C distinguished by a more extensive rooting and by smaller alterations in the root morphology caused by the stress conditions than drought sensitive hybrid Pioneer D one. Also the differences between the resistant and the sensitive maize hybrids were apparent for examined root anatomical traits. Results confirm that the hybrid Pioneer D of a high drought susceptibility was found to be also more sensitive to periodieal soil water excess. A more efficient water use and a lower shoot to root (S:R) ratio were found to be major reasons for a higher stress resistance of the hybrid Pioneer C. The reasons for a different response of the examined hybrids to the conditions of drought or waterlogging may be a more economical water balance and more favourable relations between the shoot and root dimensions in the drought resistant genotype. The observed modifications of the internal root structure caused by water deficit in plant tissues may partly influence on water conductivity and transport within roots. The results suggest that the morphological and anatomical traits of the maize root system may be used in practice as direct or indirect selection criteria in maize breeding.  相似文献   

3.
Differences between two maize and two triticale genotypes grown in low soil compaction (LSC), moderate soil compaction (MSC) and severe soil compaction (SSC) and with a limited (D) or excess (W) soil water content were observed as a decrease in shoot (S) and root (R) biomass, leaf greening (SPAD) and increase in membrane injury (LI), root and leaf water potential (ψ), photosynthesis (Pn), transpiration (E) and stomata conductance (gS). Close correlations between ψL and ψR, and between differences ψL and ψRψ) were found. Drought or waterlogging with LSC conditions in both maize genotypes resulted in higher WUE than in control plants (LSC C), but under the SSC WUE declined. However, for triticale differences in WUE, between treatments were small and insignificant. In general, changes in markers were greater for genotypes sensitive to the soil compaction (Ankora, CHD-12) than in resistant ones (Tina, CHD-247) and were higher in seedlings grown under SSC conditions.

Abbreviations: ψR, ψL: root and leaf water potential; C: control; D: drought; E: transpiration rate; FWC: field water capacity; gS: stomatal conductance; LSC, MSC, SSC: low, moderate and severe soil compaction; Pn: photosynthesis rate; W: waterlogging  相似文献   


4.
通过对两个品种白三叶Trifolium repens cv.Haifa(海发)和Trifolium repens cv.Rivendel(瑞文德)盆栽试验,模拟3种不同的土壤水分状况(无水分胁迫:保持植株良好的水分供应;轻度胁迫:表层0~20cm土壤处于干旱状态;重度胁迫:表层0~20cm土壤处于极干旱状态,20~40cm土壤处于干旱状态)对白三叶光合作用和根系生长的影响.结果表明,当植株未遭受水分胁迫时,两个品种白三叶的光合作用和根系生长状况没有明显差异;当表层0~20cm处于干旱状态时,'海发'在处理后期的净光合速率和水分利用效率升高,根系生长量增大,表现出促进作用,'瑞文德'受到的影响不显著;当表层0~20cm处于极干旱、20~40cm处于干旱状态时,'海发'在处理前期受到轻微影响,随后恢复正常状态,'瑞文德'则受到较严重的影响.随着干旱程度的加深和时间的延长,白三叶的根冠比逐渐增大.与'瑞文德'相比,在相同时期相同胁迫程度下,'海发'的根冠比没有显著差异,但深根数量大大超过'瑞文德',因而,'海发'的耐旱能力强于'瑞文德'.  相似文献   

5.
Summary Stomatal conductance of unstrossed, soil drought, and previously drought (predrought) Gmelina arborea seedlings increased in the morning and decreased before or immediately after midday. In the unstressed and predrought seedlings, leaf water potential decreased with increases in transpiration. In soil drought seedlings, there was some evidence of decreased hydraulic conductivity from soil to the plant, as indicated by the shape in the slope of the water potential/transpiration relationship. Root growth of drought plants was greater than in their unstressed counterparts at the lowest soil segment of a pot. The partial recovery of predrought seedlings was attributed to this subtantial root growth in the lowest soil segment.In the second experiment, Gmelina arborea seedlings were partially waterlogged, by flooding the polyethylene bag to half its length, for a period of 23 days. Waterlogging induced stomatal closure and reduction in leaf water potential but there was some evidence of tolerance to waterlogging towards the end of treatment. Root growth, shoot and root dry weights were slightly reduced below those of controls. After 9 days of waterlogging, adventitious roots began to form which correlated with depletion of soluble sugars in the shoot but with an increase in the roots.It is suggested that the tolerance of Gmelina plants to either soil drought or waterlogging may partly be due to partitioning of the soluble sugars from shoot to roots for production of roots and formation of adventitious roots respectively which are likely to enhance the flow of water from the soils to the plant. Therefore the plant response is very similar under conditions of increased deficits and surplus of soil water.  相似文献   

6.
The effects of soil water regime and wheat cultivar, differing in drought tolerance with respect to root respiration and grain yield, were investigated in a greenhouse experiment. Two spring wheat (Triticum aestivum) cultivars, a drought sensitive (Longchun 8139-2) and drought tolerant (Dingxi 24) were grown in PVC tubes (120 cm in length and 10 cm in diameter) under an automatic rain-shelter. Plants were subjected to three soil moisture regimes: (1) well-watered control (85% field water capacity, FWC); (2) moderate drought stress (50% FWC) and (3) severe drought stress (30% FWC). The aim was to study the influence of root respiration on grain yield under soil drying conditions. In the experiment, severe drought stress significantly (p < 0.05) reduced shoot and root biomass, photosynthesis and root respiration rate for both cultivars, but the extent of the decreases was greater for Dingxi 24 compared to that for Longchun 8139-2. Compared with Dingxi 24, 0.04 and 0.07 mg glucose m−2 s−1 of additional energy, equivalent to 0.78 and 1.43 J m−2 s−1, was used for water absorption by Longchun 8139-2 under moderate and severe drought stress, respectively. Although the grain yield of both cultivars decreased with declining soil moisture, loss was greater in Longchun 8139-2 than in Dingxi 24, especially under severe drought stress. The drought tolerance cultivar (Dingxi 24), had a higher biomass and metabolic activity under severe drought stress compared to the sensitive cultivar (Longchun 8139-2), which resulted in further limitation of grain yield. Results show that root respiration, carbohydrates allocation (root:shoot ratio) and grain yield were closely related to soil water status and wheat cultivar. Reductions in root respiration and root biomass under severe soil drying can improve drought tolerant wheat growth and physiological activity during soil drying and improve grain yield, and hence should be advantageous over a drought sensitive cultivar in arid regions.  相似文献   

7.
Soils under field conditions may experience fluctuating soil water regimes ranging from drought to waterlogging. The inability of roots to acclimate to such changes in soil water regimes may result in reduced growth and function thereby, dry matter production. This study compared the root and shoot growth, root aerenchyma development, and associated root oxygen transport of aerobic and irrigated lowland rice genotypes grown under well-watered (control), waterlogged, and droughted soil conditions for 30 days. The aerobic genotypes were as tolerant as the irrigated lowland genotypes under waterlogging because of their comparable abilities to enhance aerenchyma that effectively facilitated O2 diffusion to the roots for maintaining root growth and dry matter production. Under drought, aerobic genotypes were more tolerant than the irrigated lowland genotypes due to their higher ability to maintain nodal root production, elongation, and branching, thus, less reduction in dry matter production. Aerenchyma was also formed in droughted roots regardless of genotypes, but was resistant to internal O2 transport under O2 deficiency. The ability of roots to resist temporal variations in drought and waterlogging stresses might have strong implications for the adaptation of rice growing in environments with fluctuating soil water regimes.  相似文献   

8.
Application of silicon enhanced drought tolerance in Sorghum bicolor   总被引:5,自引:0,他引:5  
The effects of silicon application on the drought tolerance of sorghum ( Sorghum bicolor (L.) Moench) were investigated for two cultivars differing in drought susceptibility. Silicon application ameliorated the decrease in dry weight under drought stress conditions, but had no effect on dry matter production under wet conditions. Under dry conditions, silicon-applied sorghum had a lower shoot to root (S/R) ratio, indicating the facilitation of root growth and the maintenance of the photosynthetic rate and stomatal conductance at a higher level compared with plants grown without silicon application. The diurnal determination of the transpiration rate indicated that the silicon-applied sorghum could extract a larger amount of water from drier soil and maintain a higher stomatal conductance. Very similar effects of silicon application were observed for both cultivars regardless of their drought susceptibility. These results suggest that silicon application may be useful to improve the drought tolerance of sorghum via the enhancement of water uptake ability.  相似文献   

9.
Roots play an important role in rice adaptation to drought conditions. This study aimed to identify the key root traits that contribute to plant adaptation to drought stress. We used chromosome segment substitution lines (CSSLs) derived from Nipponbare and Kasalath crosses, which were grown in the field and hydroponics. In field experiments, the plants were grown under soil moisture gradients with line source sprinkler system up to around heading. Among the 54 CSSLs, only CSSL50 consistently showed significantly higher shoot dry matter production than its parent Nipponbare as the drought intensified for 3?years while most of the CSSLs reduced dry matter production to similar extents with Nipponbare under the same conditions. CSSL50 showed significantly greater total root length through promoted lateral root branching and elongation than Nipponbare, especially under mild stress conditions (15?30% w/w of soil moisture contents), which is considered as phenotypic plasticity. Such plastic root development was the key trait that effectively contributed to plant dry matter production through increased total root length and thus water uptake. However, there was no relationship between root plasticity and plant growth under the stress conditions induced by polyethylene glycol in hydroponics.  相似文献   

10.
Effects of soil drought on crop yield of 4 strains and 7 cultivars of spring triticale was investigated under field condition. The Drought Susceptibility Index (DSI) was evaluated in a two year experiment by the determination of grain loss in conditions of two soil moisture levels (drought-D and irrigated-IR). In the experiment response to drought was evaluated by different screening tests (leaf gaseous exchange, leaf water potential, chlorophyll content and fluorescence, leaf injury by drought and by simulated drought and heat temperature and water loss by excited leaf. The DSI values and the results of screening tests showed the genetic variation in the degree of drought tolerance. The values of DSI enabled the ranking of the tested triticale genotypes with respect to their drought tolerance and allow to divide them into three groups of drought susceptibility. Large differences among studied forms were observed also in changes of leaf water potential, fluorescence and leaf injury. For plants in vegetative stage of growth the tested breeding forms were easily separated into groups of different drought tolerance. Changes of ψ, Fv/Fm and LI as a screening tests were the most suitable techniques for estimation of degree of drought tolerance for triticale. Laboratory screening tests (leaf injury by simulated drought (LIDS) and high temperature (LIHT) and water loss (WL) of excited leaf conducted for nonstressed plants in most cases were significantly correlated with DSI. The statistically significant correlation between leaf water potential (ψ) was observed only with leaf fluorescence (Fv/Fm). Changes of Fv/Fm were significantly correlated with ψ, LI and LIHT for 50 °C. Index of leaf injury (LI) by soil drought were significantly correlated with Fv/Fm, LIDS (−1.0, −1.5 MPa), LIHT (45 and 50°C) and water loss (WL). The correlation coefficient between the tests LIDS and LIHT were most of the considered cases statistically significant which indicate that the mechanism of membranes injury resulted from simulated drought or high temperature were similar in triticale. Water loss (WL) of excited leaves was the most suitable test for screening drought tolerance in triticale population. Changes of gaseous exchange parameters were not useful as screening test in this research.  相似文献   

11.
The physiological reasons for the differences in sensitivity of C3 and C4 plant species to environmental stresses have not been thoroughly explained. In this study the effects of drought stress on the growth and selected physiological traits were examined in the seedlings of 13 single cross maize (C4 plant) hybrids and 11 spring triticale (C3 plant) breeding lines and varieties differing in drought sensitivity. For plants in the seedling stage the results demonstrated a genetic variation in dry matter accumulation of shoots and roots (DWS, DWR), number (N) and length (L) of particular components (seminal, seminal adventitious, nodal) of the root system, membrane injury by soil drought (LID), osmotic and high temperature stress (LIOS, LIHT), water potential (ψ), water loss (WL), grain germination in osmotic stress (FG, PI), and seedling survival (SS). Seedlings grown under moderate soil drought showed a decrease in dry matter of the top parts and roots and a decrease in the length of seminal, seminal adventitious and nodal roots in comparison to seedlings grown in control conditions. The observed harmful effects of drought stress were more distinct in drought sensitive genotypes. Used in this paper drought susceptibility indexes (DSIGY) were calculated in other experiment by determining the changes in grain yield (GY) under two soil moisture levels (irrigated and drought). The variation of DSIGY for maize ranges from 0.381 to 0.650 and for triticale from 0.354 to 0.578. The correlations between DSIGY and laboratory tests (LI, FG, SS) confirmed that they are good indicators of drought tolerance in plants. The highest values of genetic variation were observed in LI, DWS, SS and WL and the lowest in the measurements of ψ FG, PI, LS, LSA and LN. The correlation coefficients between LIOS and LIHT tests were, in most of the considered cases, statistically significant, which indicates that in maize and triticale the mechanisms of membrane injury caused by simulated drought or high temperature are physiologically similar. It can be concluded that an approach to the breeding of maize and triticale for drought tolerance using these tests can be implemented on the basis of separate selection for each trait or for all of them simultaneously. In that case, it would be necessary to determine the importance of the trait in relation to growth phase, drought timing and level, as well as its associations with morphological traits contributing to drought tolerance. The obtained values of the correlation coefficient between laboratory tests suggest that the same physiological traits may be applied as selection criteria in drought tolerance of maize and triticale genotypes.  相似文献   

12.

Background and Aims

Field studies have demonstrated that aluminum (Al) toxicity is low in no-till systems during cropping seasons that have adequate and well-distributed rainfall. This study evaluated the performance of corn (Zea mays L.) and soybean (Glycine max L. Merrill) on an acid loamy soil under a long-term no-till system, in response to surface liming and as affected by genotypic tolerance to Al and water stress.

Methods

A field trial examined the effect of surface application of lime (0, 4, 8, and 12 Mg ha?1) on no-till corn and soybean nutrition and yield. Trials were also carried out in undisturbed soil columns taken from the unlimed and limed plots. Two hybrids/cultivars of corn and soybean, one sensitive and the other moderately sensitive to Al were grown at two soil moisture levels with and without water stress (50 % and 80 % water filled pore space).

Results

Alleviating soil acidity by liming improved nutrition and increased grain yields of corn and soybean. The benefits of liming on root length density, nutrient uptake and shoot biomass production of corn and soybean were more pronounced in Al-sensitive genotypes under water stress.

Conclusions

The results suggest that plants exposed to drought stress under no-till systems are more affected by Al toxicity.  相似文献   

13.
《Acta Oecologica》2004,25(1-2):17-22
Both waterlogging and water deficiency are major environmental factors affecting plant growth and functioning in many wetland and floodplain ecosystems across North America. Wetland plants possess various characteristics that enable them to survive and function in the intermittently flooded wetland environments, while their sensitivity to drought has received less attention. The present study quantified the photosynthetic and growth responses of cattail (Typha latifolia), an important species of freshwater wetlands, to a wide range of soil moisture regimes. In addition, changes in the efficiency of photosynthetic apparatus following initiation of the treatments were investigated. Under greenhouse conditions, seedlings were subjected to four soil moisture regimes: (1) drained (control), (2) continuous flooding, (3) periodic flooding, and (4) periodic drought. Results indicated that dark fluorescence yield was increased in response to periodic drought, while it showed decreases under continuous flooding. Net photosynthesis and stomatal conductance were enhanced by continuous flooding and periodic flooding. In contrast, these parameters exhibited reduction under periodic drought. In addition, leaf chlorophyll content was adversely affected by periodic drought. Recovery of net photosynthesis was noted, along with enhanced height growth, in both continuously and periodically flooded plants. Meanwhile, continuous flooding enhanced biomass production while periodic drought led to biomass reduction. Periodic drought also contributed to substantial reduction in root growth compared with shoot growth. Therefore, the combined photosynthetic performance and growth responses of cattail are likely to contribute to the ability of this species to thrive in flooded condition but be susceptive to periodic drought.  相似文献   

14.
不同花生品种对旱涝胁迫的响应及生理机制   总被引:1,自引:0,他引:1  
刘登望  王建国  李林  谭红姣  马杰  卢山 《生态学报》2015,35(11):3817-3824
为评价花生对旱、涝胁迫的响应,本试验以4个旱、涝耐性差异明显的花生品种为材料,运用温室防雨盆栽方法,在苗期、花针期分别进行正常灌溉(对照)、干旱(7d,叶片萎蔫)、根部淹涝(土面水深2 cm,时间1d、3d、7d)和整株淹涝(水深至苗顶,时间1d、3d、7d)的处理,测定地上部及根系生物量、根冠比、根系活力、叶片超氧化物歧化酶(SOD)活性、丙二醛(MDA)含量。结果表明,苗期、花针期干旱均抑制地上部生长,提高根冠比;苗期干旱降低根系生物量,而花针期增加。2个时期淹涝均促进地上部生长、抑制根系生长、降低根冠比,并随淹水加深、延时而加重。旱、涝条件下根系活力均降低,SOD、MDA呈上升趋势。遭受相同时间(7d)的水分胁迫后,危害程度以干旱重于淹涝,花针期重于苗期。基于生物量、生理指标变化的综合分析进一步表明,4个花生品种的旱、涝耐性差异很大,湘花55号耐旱性强、耐涝性弱,豫花15号耐旱性弱、耐涝性强,中花4号耐旱、涝性均最弱,中花8号耐旱、涝性均最强。  相似文献   

15.
Dry direct‐seeded rice (DSR) cultivation is widely spreading in tropical Asia, but drought and nutrient deficiency stresses often cause crop failure in rainfed lowlands. The objective of this study was to dissect the physio‐morphological characteristics associated with crop establishment and early vigour of DSR under drought and P deficiency conditions in the Philippines. It was found that new drought‐resistant cultivars bred for DSR (Rc348 and Rc192) had faster germination and sprout growth than popular irrigated rice cultivars (Rc222 and Rc10) under soil water deficit due to rapid moisture acquisition by the germinating seeds from drying soils. There was a significant correlation between seed moisture content and the reduction in seed dry weight, and between reduction in seed dry weight and shoot elongation under both control and drought stress treatments at the germination stage. At the seedling stage, the root growth of Rc348 under drought tended to be more vigorous with its higher root‐to‐shoot ratio compared to Rc222 and Rc10. The seedling vigour of Rc348 under P deficiency was also greater than that of Rc222 due to its greater root growth and P uptake. The yields of Rc348 and Rc192 grown under rainfed condition at the target drought‐prone site where a dry spell of 13 days occurred during crop establishment were higher (4.0–4.1 t ha?1) than the yield of Rc10 (3.0 t ha?1). These results suggest that quick germination and seedling vigour with quick root anchorage and great nutrient uptake capacity, even with limitations of soil moisture and nutrients, would be important traits for DSR in rainfed lowlands.  相似文献   

16.
The effects of three levels of moisture under greenhouse conditions and also identical moisture levels under field conditions, on the growth yield and water relations of two tomato cultivars, Fireball and Ife I, were investigated. The objective was to ascertain the drought susceptibility of these two tomato cultivars. The cultivar, Ife I, was more drought susceptible than Fireball and the drought susceptibility increased with the level of soil water stress. The drought tolerance, of Fireball is attributed to a lower leaf area, better root system development in terms of average root length and rooting depth, and a higher leaf water potential. The higher leaf stomatal resistances of Fireball variety suggest an inbuilt mechanism to regulate water vapour flow in times of stress.  相似文献   

17.
A 48 h or 96 h period of waterlogging induced a partial rotting of the root system of 18 month old potted kiwifruit cuttings. However, root regeneration compensated for the loss of damaged roots and the plants remained healthy. Inoculation with Phytophthora cryptogea under low soil moisture conditions caused a small amount of root rotting (11 %) and regeneration of the roots occurred. Root rot was significantly increased when inoculations were combined with extended periods of waterlogging. Root rot incidence was highest (89 %) in inoculated plants exposed to periods of 96 h waterlogging. Regeneration did not occur with any of these plants and consequently, the shoot systems were severely damaged.  相似文献   

18.
Sequence of drought response of maize seedlings in drying soil   总被引:2,自引:0,他引:2  
Leaf elongation in monocotyledonous plants is sensitive to drought. To better understand the sequence of events in plants subjected to soil drying, leaf elongation and transpiration of maize seedlings ( Zea mays L.) of 4 cultivars were monitored continuously and the diurnal courses of the root and leaf water relations were determined. Results from this study indicate the following sequence of drought response: Leaf elongation decreased before changes in the leaf water relations of non‐growing zones of leaf blades were detected and before transpiration decreased. Reductions in leaf elongation preceded changes in the root water potential (ψw). Root ψw was not a very sensitive indicator of soil dryness, whereas the root osmotic potential (ψs) and root turgor (ψp) were more sensitive indicators. The earliest events observed in drying soil were a significant increase in the largest root diameter class (1 720 to 1 960 gm) and a decrease in leaf elongation ( P = 0.08) 2 days after withholding water. Significant increases in root length were observed 2 days later. Soil drying increased the number of fine roots with diameters of <240 µm. Slight increases in soil strength did not affect leaf elongation in the drying soil.  相似文献   

19.
梯度水分对鱼腥草生长及生理特征的影响   总被引:1,自引:0,他引:1  
以不同的施水量,模拟自然生境中林下鱼腥草不同水分条件,设置了8个水分梯度,研究梯度水分对鱼腥草生长和生理特征的影响,以建立鱼腥草生态栽培模式。结果表明:水分的减少或增加均显著减少生物量,中度、重度干旱和水淹明显降低株高和叶面积指数。重度干旱显著提高根冠比。除轻度湿润组外,水分的减少或增加,均显著提高MDA含量;与对照组相比,各干旱处理组SOD和CAT活性和MDA含量明显增强;除脯氨酸含量以外,湿润各处理组CAT、POD、SOD活性和MDA含量均明显低于干旱各处理组;水淹时,CAT、POD、SOD活性、MDA和脯氨酸含量均较低。说明中度干旱或中度湿润已对鱼腥草形成逆境胁迫。栽培鱼腥草的水分条件可以控制在轻度干旱和轻度湿润之间。  相似文献   

20.
Plants growing in soils typically experience a mixture of loose and compact soil. The hypothesis that the proportion of a root system exposed to compact soil and/or the timing at which this exposure occurs determines shoot growth responses was tested. Broccoli (Brassica oleracea var. italica cv. Greenbelt) seedlings were grown in pot experiments with compact, loose and localized soil compaction created by either horizontal (compact subsoils 75 or 150 mm below loose topsoil) or vertical (adjacent compact and loose columns of soil) configurations of loose (1.2 Mg m(-3)) and compact (1.8 Mg m(-3)) soil. Entirely compact soil reduced leaf area by up to 54%, relative to loose soil. When compaction was localized, only the vertical columns of compact and loose soil reduced leaf area (by 30%). Neither the proportion of roots in compact soil nor the timing of exposure could explain the differing shoot growth responses to localized soil compaction. Instead, the strong relationship between total root length and leaf area (r(2)=0.92) indicated that localized soil compaction reduced shoot growth only when it suppressed total root length. This occurred when isolated root axes of the same plant were exposed to vertical columns of compact and loose soil. When a single root axis grew through loose soil into either a shallow or deep compact subsoil, compensatory root growth in the loose soil maintained total root length and thus shoot growth was unaffected. These contrasting root systems responses to localized soil compaction may explain the variable shoot growth responses observed under heterogeneous conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号