首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have identified and cloned two DNA regions which are highly reiterated in Bradyrhizobium japonicum serocluster 123 strains. While one of the reiterated DNA regions, pFR2503, is closely linked to the B. japonicum common and genotype-specific nodulation genes in strain USDA 424, the other, pMAP9, is located next to a Tn5 insertion site in a host-range extension mutant of B. japonicum USDA 438. The DNA cloned in pFR2503 and pMAP9 are reiterated 18 to 21 times, respectively, in the genomes of B. japonicum serocluster 123 strains. Gene probes from the reiterated regions share sequence homology, failed to hybridize (or hybridized poorly) to genomic DNA from other B. japonicum and Bradyrhizobium spp. strains, and did not hybridize to DNA from Rhizobium meliloti, Rhizobium fredii, Rhizobium leguminosarum biovars trifolii, phaseoli, and viceae, or Agrobacterium tumefacians. The restriction fragment length polymorphism hybridization profiles obtained by using these gene probes are useful for discriminating among serologically related B. japonicum serocluster 123 strains.  相似文献   

2.
Several soybean plant introduction (PI) genotypes have recently been described which restrict nodulation of Bradyrhizobium japonicum serocluster 123 in an apparently serogroup-specific manner. While PI 371607 restricts nodulation of strains in serogroup 123 and some in serogroup 127, those in serogroup 129 are not restricted. When DNA regions within and around the B. japonicum I-110 common nodulation genes were used as probes to genomic DNA from the serogroup strains USDA 123, USDA 127, and USDA 129, several of the probes differentially hybridized to the nodulation-restricted and -unrestricted strains. One of the gene regions, cloned in plasmid pMJS12, was subsequently shown to hybridize to 4.6-kilobase EcoRI fragments from DNAs from nodulation-restricted strains and to larger fragments in nodulation-unrestricted strains. To determine if the different hybridization patterns could be used to predict nodulation restriction, we hybridized pMJS12 to EcoRI-digested genomic DNAs from uncharacterized serocluster 123 field isolates. Of the 36 strains examined, 15 were found to have single, major, 4.6-kilobase hybridizing EcoRI fragments. When tested for nodulation, 80% (12 of 15) of the strains were correctly predicted to be restricted for nodulation of the PI genotypes. In addition, hybridization patterns obtained with pMJS12 and nodulation phenotypes on PI 371607 indicated that there are at least three types of serogroup 127 strains. Our results suggest that the pMJS12 gene probe may be useful in selecting compatible host-strain combinations and in determining the suitability of field sites for the placement of soybean genotypes containing restrictive nodulation alleles.  相似文献   

3.
Southern hybridization with nif (nitrogen fixation) and nod (nodulation) DNA probes from Rhizobium meliloti against intact plasmid DNA of Rhizobium japonicum and Bradyrhizobium japonicum strains indicated that both nif and nod sequences are on plasmid DNA in most R. japonicum strains. An exception is found with R. japonicum strain USDA194 and all B. japonicum strains where nif and nod sequences are on the chromosome. In R. japonicum strains, with the exception of strain USDA205, both nif and nod sequences are on the same plasmid. In strain USDA205, the nif genes are on a 112-megadalton plasmid, and nod genes are on a 195-megadalton plasmid. Hybridization to EcoRI digests of total DNA to nif and nod probes from R. meliloti show that the nif and nod sequences are conserved in both R. japonicum and B. japonicum strains regardless of the plasmid or chromosomal location of these genes. In addition, nif DNA hybridization patterns were identical among all R. japonicum strains and with most of the B. japonicum strains examined. Similarly, many of the bands that hybridize to the nodulation probe isolated from R. meliloti were found to be common among R. japonicum strains. Under reduced hybridization stringency conditions, strong conservation of nodulation sequences was observed in strains of B. japonicum. We have also found that the plasmid pRjaUSDA193, which possess nif and nod sequences, does not possess sequence homology with any plasmid of USDA194, but is homologous to parts of the chromosome of USDA194. Strain USDA194 is unique, since nif and nod sequences are present on the chromosome instead of on a plasmid as observed with all other strains examined.  相似文献   

4.
Nodulation of soybeans by indigenous and inoculum strains of Bradyrhizobium japonicum was studied in field experiments in Wisconsin from 1983 to 86. Aqueous suspensions of bacteria were applied to seeds at the time of planting at levels of 7?×?10(7)-10(10) bacteria per 2.5-cm row. The predominant indigenous serogroup was 123 in these soils. Six different inoculum strains were used (two from serocluster 123, two from serogroup 110, and one each from serogroups 122 and C1). Nodule occupants were identified using spontaneous antibiotic-resistant mutations in the inoculum strains, phage typing, and serotyping. In the 1983 experiment, the majority of nodules were formed by the inoculum strains in almost all cases (up to 100% in some cases), in two different soils containing 3.5?×?10(5) indigenous B. japonicum per gram. After 2 years without inoculation at the same two site, the inoculum strains did not form many nodules on uninoculated soybeans (less than 10% in most cases; less than 30% in all cases). In inoculation experiments carried out in 1985 and 1986, four inoculum strains were used (3 members of 123 serocluster and USDA 110str); inocula containing 10(8) bacteria per 2.5-cm row formed less than42%ofthe nodules in soils containing 1?×?10(4)-4?×?10(4)B. japonicum per gram. The major conclusions are (i) the success of inoculation in Midwestern U.S. soils is highly variable, even with members of the (highly competitive) 123 serocluster, and (ii) successful inoculation in 1 year in a Wisconsin soil does not ensure that the inoculated strain will persist in forming nodules in that field in subsequent years without further inoculation. Key words: Bradyrhizobium japonicum, strain persistence, field trials.  相似文献   

5.
Abstract We have isolated a Bradyrhizobium japonicum USDA 438 (serogroup 123) mutant which has the ability to form nodules on serogroup 123 nodulation-restricting plant introduction genotypes and soybeans containing the Rj4 allele. The identity of the mutant was confirmed by using a serocluster 123-specific DNA probe, restriction fragment length polymorphism analysis, and serogroup-specific fluorescent antibodies. While the mutant contains Tn 5 inserted into a cryptic, non nod gene-containing locus, site-directed mutagenesis and complementation studies indicated that the transposon is not responsible for host-range extension. The mutant and the wild-type parent had the same chromatographic profiles of [14C]acetate-labelled extracellular B. japonicum nod factors.  相似文献   

6.
Soil Bradyrhizobium populations limit nodule occupancy of soybean by symbiotically-superior inoculant strains throughout much of the American midwest. In this study, the competitiveness of indigenous populations of B. japonicum serocluster 123 from Waukegan and Webster soils was evaluated in growth pouches using a root-tip marking procedure. The native rhizobia were from soils incubated 0–8 h in soybean root exudate (SRE) or plant nutrient solution (PNS) prior to inoculation. Populations of serocluster 123 strains in soil and nodule occupancy by these strains were assessed using fluorescent antibodies prepared against B. japonicum USDA 123. There were no significant differences in populations that came from SRE or PNS incubated soils: both populations increased in number over the incubation period. Nodule occupancy by both populations in growth pouches was similar to that previously encountered in field studies with these two soils. With the Waukegan soil, the serocluster 123 population dominated nodulation forming 69 and 62% of taproot nodules above and below the root tip mark, respectively. However, for the more alkaline Webster soil, serocluster 123 strains were much less competitive, producing only 9 and 13%, respectively, of the nodules formed above and below the root tip mark. In growth pouches, soil populations of bradyrhizobia from the Webster soil produced significantly more nodules than those from the Waukegan soil, but both strains and a pure culture of USDA 110 had a similar distribution of nodules.  相似文献   

7.
Strains in Bradyrhizobium japonicum serocluster 123 are the major indigenous competitors for nodulation in a large portion of the soybean production area of the United States. Serocluster 123 is defined by the serotype strains USDA 123, USDA 127, and USDA 129. The objective of the work reported here was to evaluate the ability of two soybean genotypes, PI 377578 and PI 417566, to restrict the nodulation and reduce the competitiveness of serotype strains USDA 123, USDA 127, and USDA 129 in favor of the highly effective strain CB1809 and to determine how these soybean genotypes alter the competitive relationships among the three serotype strains in the serocluster. The soybean genotypes PI 377578 and PI 417566 along with the commonly grown cultivar Williams were planted in soil essentially free of soybean rhizobia and inoculated with single-strain treatments of USDA 123, USDA 127, USDA 129, or CB1809 and six dual-strain competition treatments of USDA 123, USDA 127, or USDA 129 versus CB1809, USDA 123 versus USDA 127, USDA 123 versus USDA 129, and USDA 127 versus USDA 129. PI 377578 severely reduced the nodulation and competitiveness of USDA 123 and USDA 127, while PI 417566 similarly affected the nodulation and competitiveness of USDA 129. Thus, the two soybean genotypes can reduce the nodulation and competitiveness of each of the three serocluster 123 serotype strains. Our results indicate that host control of restricted nodulation and reduced competitiveness is quite specific and effectively discriminates between B. japonicum strains which are serologically related.  相似文献   

8.
Genetic structure in field populations of Bradyrhizobium japonicum isolated in Poland was determined by using several complementary techniques. Of the 10 field sites examined, only 4 contained populations of indigenous B. japonicum strains. The Polish bradyrhizobia were divided into at least two major groups on the basis of protein profiles on polyacrylamide gels, serological reaction with polyclonal antisera, repetitive extragenic palindromic PCR fingerprints of genomic DNA, and Southern hybridization analyses with nif and nod gene probes. Serological analyses indicated that 87.5% of the Polish B. japonicum isolates tested were in serogroups 123 and 129, while seven (12.5%) of the isolates tested belonged to their own unique serogroup. These seven strains also could be grouped together on the basis of repetitive extragenic palindromic PCR fingerprints, protein profiles, and Southern hybridization analyses. Cluster analyses indicated that the seven serologically undefined isolates were genetically dissimilar from the majority of the Polish B. japonicum strains. Moreover, immuno-cross-adsorption studies indicated that although the Polish B. japonicum strains reacted with polyclonal antisera prepared against strain USDA123, the majority failed to react with serogroup 123- and 129-specific antisera, suggesting that Polish bradyrhizobia comprise a unique group of root nodule bacteria which have only a few antigens in common with strains USDA123 and USDA129. Nodulation studies indicated that members of the serologically distinct group were very competitive for nodulation of Glycine max cv. Nawiko. None of the Polish serogroup 123 or 129 isolates were restricted for nodulation by USDA123- and USDA129-restricting soybean plant introduction genotypes. Taken together, our results indicate that while genetically diverse B. japonicum strains were isolated from some Polish soils, the majority of field sites contained no soybean-nodulating bacteria. In addition, despite the lack of long-term soybean production in Poland, field populations of unique B. japonicum strains are present in some Polish soils and these strains are very competitive for nodulation of currently used Polish soybean varieties.  相似文献   

9.
The occurrence of hopanoid lipids in Bradyrhizobium bacteria   总被引:2,自引:0,他引:2  
Abstract Lipid extraction procedures followed by GLC and GLC-MS analysis were used to investigate the triterpenoid content in Bradyrhizobium and Rhizobium bacteria. Unlike the tested strains of Rhizobium bacteria, a range of triterpenoids e.g., squalene and different classes of hopanoid derivatives were detected in bacteria from all Bradyrhizobium strains investigated (different strains from Bradyrhizobium japonicum, Bradyrhizobium elkanii as well as Bradyrhizobium sp.). Furthermore, related compounds were identified from some hopanoid lipids (e.g., diplopterol) that carried an additional methyl group in their molecular structure. The hopanoid content was high in some strains and accounted for more than 40% of the total lipid fraction (e.g., in strains Bradyrhizobium japonicum USDA 110 and USDA 31), while other strains contained only about a tenth of that amount (e.g., Bradyrhizobium japonicum ATCC 10324 and Bradyrhizobium sp. ( Lupinus ) ATCC 10319).  相似文献   

10.
The genomes of 11 Bradyrhizobium japonicum serocluster 123 field isolates were analyzed by using field inversion gel electrophoresis. Genomic fingerprints produced by digestion of intact genomic DNA in agarose plugs with the rare-cutting restriction enzymes AseI, DraI, SpeI, and XbaI showed that the isolates were genetically diverse. Few (30 to 50%) isolates exhibited the same fingerprint as the USDA serogroup strain with which they are antigenically related. Southern hybridization with a nifHD gene probe to the blotted field inversion electrophoresis gels provided further evidence of the relatedness between members of serogroups 123 and 127.  相似文献   

11.
The genomes of 11 Bradyrhizobium japonicum serocluster 123 field isolates were analyzed by using field inversion gel electrophoresis. Genomic fingerprints produced by digestion of intact genomic DNA in agarose plugs with the rare-cutting restriction enzymes AseI, DraI, SpeI, and XbaI showed that the isolates were genetically diverse. Few (30 to 50%) isolates exhibited the same fingerprint as the USDA serogroup strain with which they are antigenically related. Southern hybridization with a nifHD gene probe to the blotted field inversion electrophoresis gels provided further evidence of the relatedness between members of serogroups 123 and 127.  相似文献   

12.
13.
The lack of high-resolution genetic or physical maps for the family Rhizobiaceae limits our understanding of this agronomically important bacterial family. On the basis of statistical analyses of DNA sequences of the Rhizobiaceae and direct evaluation by pulsed-field agarose gel electrophoresis (PFE), five restriction endonucleases with AT-rich target sites were identified as the most rarely cutting: AseI (5'-ATTAAT-3'), DraI (5'-TTTAAA-3'), SpeI (5'-ACTAGT-3'), SspI (5'-AATAAT-3'), and XbaI (5'-TCTAGA-3'). We computed the sizes of the genomes of Bradyrhizobium japonicum USDA 424 and Rhizobium meliloti 1021 by adding the sizes of DNA fragments generated by SpeI digests. The genome sizes of R. meliloti 1021 and B. japonicum USDA 424 were 5,379 +/- 282.5 kb and 6,195 +/- 192.4 kb, respectively. We also compared the organization of the genomes of free-living and bacteroid forms of B. japonicum. No differences between the PFE-resolved genomic fingerprints of free-living and mature (35 days after inoculation) bacteroids of B. japonicum USDA 123 and USDA 122 were observed. Also, B. japonicum USDA 123 genomic fingerprints were unchanged after passage through nodules and after maintenance on a rich growth medium for 100 generations. We conclude that large-scale DNA rearrangements are not seen in mature bacteroids or during free-living growth on rich growth media under laboratory conditions.  相似文献   

14.
The DNA region encoding early nodulation functions of Bradyrhizobium japonicum 3I1b110 (I110) was isolated by its homology to the functionally similar region from Rhizobium meliloti. Isolation of a number of overlapping recombinant clones from this region allowed the construction of a restriction map of the region. The identified nodulation region of B. japonicum shows homology exclusively to those regions of R. meliloti and Rhizobium leguminosarum DNA known to encode early nodulation functions. The region of homology with these two fast-growing Rhizobium species was narrowed to an 11.7-kilobase segment. A nodulation-defective mutant of Rhizobium fredii USDA 201, strain A05B-2, was isolated and found to be defective in the ability to curl soybean root hairs. Some of the isolated recombinant DNA clones of B. japonicum were found to restore wild-type nodulation function to this mutant. Analysis of the complementation results allows the identification of a 1.8-kilobase region as essential for restoration of Hac function.  相似文献   

15.
To elucidate the phylogenetic relationships between Thai soybean bradyrhizobia and USDA strains of Bradyrhizobium, restriction fragment length polymorphism (RFLP) analysis using the nifDK gene probe and sequencing of the partial 16S rRNA gene were performed. In our previous work, Thai isolates of Bradyrhizobium sp. (Glycine max) were separated clearly from Bradyrhizobium japonicum and Bradyrhizobium elkanii based on the RFLP analysis using the nodDYABC gene probe. RFLP analysis using the nifDK gene probe divided 14 Thai isolates and eight USDA strains of B. japonicum into different groups, respectively, but categorized into the same cluster. All of seven strains within these Thai isolates had the same sequence of the partial 16S rRNA gene, and it was an intermediate sequence between those of B. japonicum USDA 110 and B. elkanii USDA 76T. Furthermore, three USDA strains of B. japonicum, USDA of (B. japonicum ATCC 10324T), USDA 115 and USDA 129, had the same partial 16S rRNA gene sequence that seven Thai isolates had. These results suggest that Thai isolates of Bradyrhizobium sp. (Glycine max) are genetically distinct from USDA strains of B. japonicum and B. elkanii, but also indicate a close relationship between Thai isolates and USDA strains of B. japonicum.  相似文献   

16.
The genome of the nitrogen-fixing symbiont, Rhizobium fredii USDA257, contains nine copies of repetitive sequences known as the R. fredii repetitive sequence (RFRS) family. We previously sequenced RFRS3, which is linked to symbiosis plasmid-borne nodulation genes of this organism and has substantial homology to the T-DNA of Agrobacterium rhizogenes and lesser homology to reiterated sequences of Bradyrhizobium japonicum. Here we characterize a second family member, RFRS9. The EcoRI fragment containing RFRS9 is 1,248 bp in length and contains a single 666-bp open reading frame that is flanked by perfect 8-bp inverted repeats. Nucleic and amino acid sequences corresponding to the C terminus of the putative RFRS9 protein are nearly identical to those of RFRS3, and they retain homology to DNA from A. rhizogenes. The central portion of the RFRS9 protein also appears to be related to the S locus-specific glycoprotein family of pollen stigma incompatibility glycoproteins from Brassica oleracea, which are involved in signal perception. Sequences that define the RFRS family are restricted to the open reading frame of RFRS9 and associated upstream sequences. These regions also contain a second group of repetitive sequences, which is present in four copies within the genome of USDA257. Both families of repetitive sequences are ubiquitous in R. fredii, and they are preferentially localized on symbiosis plasmids. Southern hybridization confirms that sequences homologous to RFRS9 are present in broad-host-range Rhizobium sp. strain NGR234, in A. rhizogenes, and in two biotype 3 strains of Agrobacterium tumefaciens.  相似文献   

17.
18.
Cell-associated oligosaccharides of Bradyrhizobium spp.   总被引:12,自引:5,他引:7       下载免费PDF全文
We report the initial characterization of the cell-associated oligosaccharides produced by four Bradyrhizobium strains: Bradyrhizobium japonicum USDA 110, USDA 94, and ATCC 10324 and Bradyrhizobium sp. strain 32H1. The cell-associated oligosaccharides of these strains were found to be composed solely of glucose and were predominantly smaller than the cyclic beta-1,2-glucans produced by Agrobacterium and Rhizobium species. Linkage studies and nuclear magnetic resonance analyses demonstrated that the bradyrhizobial glucans are linked primarily by beta-1,6 and beta-1,3 glycosidic bonds. Thus, the bradyrhizobia appear to synthesize cell-associated oligosaccharides of structural character substantially different from that of the cyclic beta-1,2-glucans produced by Agrobacterium and Rhizobium species.  相似文献   

19.
By using cloned Rhizobium meliloti, Rhizobium leguminosarum, and Rhizobium sp. strain MPIK3030 nodulation (nod) genes as hybridization probes, homologous regions were detected in the slow-growing soybean symbiont Bradyrhizobium japonicum USDA 110. These regions were found to cluster within a 25-kilobase (kb) region. Specific nod probes from R. meliloti were used to identify nodA-, nodB-, nodC-, and nodD-like sequences clustered on two adjacent HindIII restriction fragments of 3.9 and 5.6 kb. A 785-base-pair sequence was identified between nodD and nodABC. This sequence contained an open reading frame of 420 base pairs and was oriented in the same direction as nodABC. A specific nod probe from R. leguminosarum was used to identify nodIJ-like sequences which were also contained within the 5.6-kb HindIII fragment. A nod probe from Rhizobium sp. strain MPIK3030 was used to identify hsn (host specificity)-like sequences essential for the nodulation of siratro (Macroptilium atropurpureum) on a 3.3-kb HindIII fragment downstream of nodIJ. A transposon Tn5 insertion within this region prevented the nodulation of siratro, but caused little or no delay in the nodulation of soybean (Glycine max).  相似文献   

20.
Diversity was examined within a group of 79 isolates of Bradyrhizobium japonicum reactive to fluorescent antibodies (FAs) prepared against B. japonicum USDA 123. Analyses were by means of cross-adsorbed FAs, bacteriophage typing, and endonuclease restriction digest patterns. Serogroups 127 and 129 shared antigenic determinants with serogroup 123 but not with each other. Bacteriophage and DNA digest patterns reflected more common features between serogroups 123 and 127 than between 123 and 129. Serogroups 129 and 122 showed FA cross-reactivity. The term serocluster was proposed to reflect interrelationships observed among the serogroups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号