首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
微生物的代谢活动易受到环境变化的影响,当环境中存在重金属污染时微生物会通过调节代谢降低自身所受的重金属的毒害。本文通过微生物代谢组学研究探讨重金属胁迫下微生物代谢活动的响应情况,介绍了微生物代谢组学的相关技术和方法,对其应用进行说明;基于重金属对微生物细胞的毒害作用,对重金属胁迫下微生物代谢组学的相关内容进行综述,发现在重金属胁迫下,微生物可以通过增加代谢活动进而产生更多的代谢物质来响应重金属的胁迫,其中微生物产生的胞外聚合物、草酸和柠檬酸等代谢物在微生物响应重金属胁迫中具有重要作用。微生物通过产生相应代谢物不仅使自身可以在重金属胁迫下生存,这些代谢物还可以使环境中重金属有所减少,这对于利用微生物资源修复重金属污染具有重要意义。  相似文献   

2.
微生物代谢产物的结构和功能多样,对相邻微生物和环境会产生重要影响。传统的天然产物分离方法不能系统全面地监测单一或混合微生物样品中代谢物的合成和释放模式。成像质谱能够同时可视化观察从单一微生物菌落到复杂微生物群落的多个代谢产物的时空分布,可以用于发现重要的生物活性分子,观察微生物菌落的代谢交流,以及跟踪微生物之间相互竞争过程中代谢物的修饰等方面的研究。本文综述了成像质谱在微生物代谢产物研究中的最新进展,展望了该技术的应用前景。  相似文献   

3.
肠道菌群是一个复杂的共生微生物系统,其对人体的健康具有重要的影响,肠道菌群代谢机体自身不可消化的物质,产生各种代谢物。近年来,许多研究发现,肠道菌群代谢物在心血管疾病和代谢疾病中具有重要的作用。将近几年有关肠道菌群代谢物与心脏疾病和代谢紊乱疾病关联的重要研究结果进行综述。  相似文献   

4.
植物根系代谢物是植物-微生物互作的桥梁纽带,作为信号物质和微生物营养源调控着微生物的群落结构和多样性,而根区微生物区系的改变则反作用于植物的生长、发育和抗性。本文聚焦植物根系代谢物介导的植物-微生物互作,梳理了植物-微生物互作研究中次级代谢物的种类、作用及其检测手段;探讨了植物通过调节自身代谢物以适应品种进化及繁衍后代过程中发挥的功能作用;阐述了逆境胁迫下植物利用根系代谢物招募特异微生物(解磷、溶磷)或者有益微生物促进自身生长以缓解胁迫压力的机制;分析了根系代谢物作为信号物质诱导植物抗病的方式"求救假说",为可持续农业发展提供思路和理论依据。  相似文献   

5.
人类肠道菌群是一个复杂的共生微生物系统,长期定植于人类的胃肠道中,通过发酵产生大量的代谢产物,如短链脂肪酸、色氨酸及吲哚衍生物、胆汁酸和三磷酸腺苷等,对人体产生局部和全身的作用,并与炎症性肠病(inflammatory bowel disease,IBD)的发生发展密切相关。近年来,基于高通量基因测序技术的肠道微生物组学和代谢组学已成为新的研究热点,通过研究微生物群的小分子代谢物,发现微生物、代谢物和宿主三者间相互作用的潜在机制,而肠道菌群代谢物与IBD密切相关,这为预防和治疗IBD提供了新的策略。本文就近年来肠道菌群主要代谢物与IBD之间的关系及其潜在机制的重要研究成果进行综述。  相似文献   

6.
为了筛选出能够诱导hUC-MSCs成脂或成骨分化的微生物代谢物,将hUC-MSCs接种于96孔板中,并加入代谢物筛选样品,通过观察细胞形态学变化,以及油红染色、碱性磷酸酶染色鉴定hUC-MSCs的成脂、成骨分化。从446种微生物代谢物中筛选出一种具有明显诱导hUC-MSCs成脂分化的微生物代谢物。  相似文献   

7.
微生物代谢组学是系统生物学的重要组成部分,其与基因组学、转录组学和蛋白质组学相互补充,近年来受到越来越多人的重视。其主要对细胞生长或生长周期某一时刻细胞内外所有低分子量代谢物进行定性和定量分析,直接反映了细胞的生理状态,对理解细胞功能十分重要。由于代谢物的复杂性,研究者需根据不同的目的及对象选择合适的分析方法。对微生物代谢组学近年来的研究方法进行综述,包括样品处理、分析手段、数据分析,并讨论了微生物代谢组学在工业中的应用及所面临的挑战。  相似文献   

8.
代谢物组学及其在微生物研究中的应用   总被引:1,自引:0,他引:1  
代谢物组学(metabolomics)是继基因组学(genomics)、蛋白质组学(proteomics)后发展起来的一门新学科。对代谢物组学的含义,研究方法及流程,特别是其在微生物中的应用进行了介绍,包括使用代谢物组学中的NMR技术研究微生物在降解环境污染物中的作用;使用代谢物组学技术研究微生物代谢通量,从而在分析代谢通量的基础上通过代谢工程改变代谢通量,提高目的产物的得率;确定所获得基因库中沉默基因的功能;运用代谢物组学分析方法阐明生物体系对于环境变化的响应,从而协助我们确定最佳的取样时间及最佳分析组织,设计实验。随后简要对代谢物组学发展动态进行了展望。  相似文献   

9.
使用某些化学药品以达到抑制或杀死病原微生物的方法,称为化学治疗。而用于化学治疗的药物则称为化学疗剂。不同化学疗剂的作用机制各不相同,有的是作为微生物正常代谢物的结构类似物而与正常代谢物争夺酶,有的则是特异地抑制微生物某些大分子的生物合成过程。本文介绍某些化学疗剂如抗代谢物、抗生素、干扰素等的抗微生物作用机制。  相似文献   

10.
肠道微生物是哺乳动物最密集的微生物群落,也是最多样化的微生物群落之一。随着宏基因组学的不断发展,肠道微生物成为热门的研究领域。肠道微生物具有保护和代谢等功能,在胰岛素抵抗和肥胖等疾病中发挥重要作用。本文介绍了肠道微生物及其代谢物通过调节食欲、神经递质合成分泌、炎性反应进而调节肥胖,探讨了肠道微生物的影响因素,展望了肠道微生物对治疗人类肥胖的应用前景。  相似文献   

11.
Recently, high-throughput screening (HTS) has become the mainstream technique for drug discovery. Compounds that are synthesized by combinatorial chemistry might be more suitable than natural products to apply to HTS, because the purification procedure is a drawback of using natural products. Nevertheless, natural products remain an extremely important source of drugs. To overcome the demerits of natural products, we are constructing the RIKEN Natural Products Depository (NPDepo) that is focused primarily on microbial metabolites. In this review, I describe (i) engineering pathways for biosynthetic gene clusters of microbial metabolites, (ii) construction of fraction libraries of microbial metabolites, and (iii) the development of a new screening system using a chemical array and a protein library produced by GLORIA.  相似文献   

12.
Diversifying microbial natural products for drug discovery   总被引:9,自引:0,他引:9  
Historically, nature has provided the source for the majority of the drugs in use today. More than 20,000 microbial secondary metabolites have been described, but only a small percentage of these have been carried forward as natural product drugs. Natural products are in tough competition with large chemical libraries and with combinatorial chemistries. Hence, each step of a natural product program has to be more efficient than ever, starting from the collection of environmental samples and the selection of strains, to metabolic expression, genetic exploitation, sample preparation and chemical dereplication. This review will focus on approaches for diversifying microbial natural product strains and extract libraries, while decreasing genetic and chemical redundancy.V. Knight and J.-J. Sanglier contributed equally to this work  相似文献   

13.
Cultivation-independent surveys of ribosomal RNA genes have revealed the existence of novel microbial lineages, many with no known cultivated representatives. Ribosomal RNA-based analyses, however, often do not provide significant information beyond phylogenetic affiliation. Analysis of large genome fragments recovered directly from microbial communities represents one promising approach for characterizing uncultivated microbial species better. To assess further the utility of this approach, we constructed large-insert bacterial artificial chromosome (BAC) libraries from the genomic DNA of planktonic marine microbial assemblages. The BAC libraries we prepared had average insert sizes of 80 kb, with maximal insert sizes > 150 kb. A rapid screening method assessing the phylogenetic diversity and representation in the library was developed and applied. In general, representation in the libraries agreed well with previous culture-independent surveys based on polymerase chain reaction (PCR)amplified rRNA fragments. A significant fraction of the genome fragments in the BAC libraries originated from as yet uncultivated microbial species, thought to be abundant and widely distributed in the marine environment. One entire BAC insert, derived from an uncultivated, surface-dwelling euryarchaeote, was sequenced completely. The planktonic euryarchaeal genome fragment contained some typical archaeal genes, as well as unique open reading frames (ORFs) suggesting novel function. In total, our results verify the utility of BAC libraries for providing access to the genomes of as yet uncultivated microbial species. Further analysis of these BAC libraries has the potential to provide significant insight into the genomic potential and ecological roles of many indigenous microbial species, cultivated or not.  相似文献   

14.
Recent progress in molecular microbial ecology has revealed that traditional culturing methods fail to represent the scope of microbial diversity in nature, since only a small proportion of viable microorganisms in a sample are recovered by culturing techniques. To develop methods to investigate the full extent of microbial diversity, we used a bacterial artificial chromosome (BAC) vector to construct libraries of genomic DNA isolated directly from soil (termed metagenomic libraries). To date, we have constructed two such libraries, which contain more than 1 Gbp of DNA. Phylogenetic analysis of 16S rRNA gene sequences recovered from one of the libraries indicates that the BAC libraries contain DNA from a wide diversity of microbial phyla, including sequences from diverse taxa such as the low-G+C, gram-positive Acidobacterium, Cytophagales, and Proteobacteria. Initial screening of the libraries in Escherichia coli identified several clones that express heterologous genes from the inserts, confirming that the BAC vector can be used to maintain, express, and analyze environmental DNA. The phenotypes expressed by these clones include antibacterial, lipase, amylase, nuclease, and hemolytic activities. Metagenomic libraries are a powerful tool for exploring soil microbial diversity, providing access to the genetic information of uncultured soil microorganisms. Such libraries will be the basis of new initiatives to conduct genomic studies that link phylogenetic and functional information about the microbiota of environments dominated by microorganisms that are refractory to cultivation.  相似文献   

15.
Recent progress in molecular microbial ecology has revealed that traditional culturing methods fail to represent the scope of microbial diversity in nature, since only a small proportion of viable microorganisms in a sample are recovered by culturing techniques. To develop methods to investigate the full extent of microbial diversity, we used a bacterial artificial chromosome (BAC) vector to construct libraries of genomic DNA isolated directly from soil (termed metagenomic libraries). To date, we have constructed two such libraries, which contain more than 1 Gbp of DNA. Phylogenetic analysis of 16S rRNA gene sequences recovered from one of the libraries indicates that the BAC libraries contain DNA from a wide diversity of microbial phyla, including sequences from diverse taxa such as the low-G+C, gram-positive Acidobacterium, Cytophagales, and Proteobacteria. Initial screening of the libraries in Escherichia coli identified several clones that express heterologous genes from the inserts, confirming that the BAC vector can be used to maintain, express, and analyze environmental DNA. The phenotypes expressed by these clones include antibacterial, lipase, amylase, nuclease, and hemolytic activities. Metagenomic libraries are a powerful tool for exploring soil microbial diversity, providing access to the genetic information of uncultured soil microorganisms. Such libraries will be the basis of new initiatives to conduct genomic studies that link phylogenetic and functional information about the microbiota of environments dominated by microorganisms that are refractory to cultivation.  相似文献   

16.
Microbial metabolomics has been seriously limited by our inability to perform a reliable separation of intra- and extracellular metabolites with efficient quenching of cell metabolism. Microbial cells are sensitive to most (if not all) quenching agents developed to date, resulting in leakage of intracellular metabolites to the extracellular medium during quenching. Therefore, as yet we are unable to obtain an accurate concentration of intracellular metabolites from microbial cell cultures. However, knowledge of the in vivo concentrations of intermediary metabolites is of fundamental importance for the characterization of microbial metabolism so as to integrate meaningful metabolomics data with other levels of functional genomics analysis. In this article, we report a novel and robust quenching method for microbial cell cultures based on cold glycerol-saline solution as the quenching agent that prevents significant leakage of intracellular metabolites and, therefore, permits more accurate measurement of intracellular metabolite concentrations in microbial cells.  相似文献   

17.
Screening microorganisms for the biotransformation of the 3-keto-delta(4,9(10))-19-norsteroid RU27987 (Trimegestone) resulted in the isolation of nine identified metabolites, some of them being selectively produced by different strains. Eight metabolites were found to be hydroxylated on various positions of the rings, and one was additionally epoxidized. These microbial metabolites could be used as chromatographic standards and two of them were found identical to the unknown major human metabolites. Moreover, most microbial metabolites were produced in sufficient amounts to be tested for their biological activities. All these features demonstrate the usefulness and versatility of microbial biotransformation systems as a tool for early identification and convenient production of potentially active mammalian and non-mammalian metabolites.  相似文献   

18.
Microorganisms are ubiquitous on earth, often forming complex microbial communities in numerous different habitats. Most of these organisms cannot be readily cultivated in the laboratory using standard media and growth conditions. However, it is possible to gain access to the vast genetic, enzymatic, and metabolic diversity present in these microbial communities using cultivation-independent approaches such as sequence- or function-based metagenomics. Function-based analysis is dependent on heterologous expression of metagenomic libraries in a genetically amenable cloning and expression host. To date, Escherichia coli is used in most cases; however, this has the drawback that many genes from heterologous genomes and complex metagenomes are expressed in E. coli either at very low levels or not at all. This review emphasizes the importance of establishing alternative microbial expression systems consisting of different genera and species as well as customized strains and vectors optimized for heterologous expression of membrane proteins, multigene clusters encoding protein complexes or entire metabolic pathways. The use of alternative host-vector systems will complement current metagenomic screening efforts and expand the yield of novel biocatalysts, metabolic pathways, and useful metabolites to be identified from environmental samples.  相似文献   

19.
The effects of microbial phenolic metabolites on the activities of enzymes of the tricarboxylic acid cycle were investigated in isolated mitochondria. The detection of metabolites of the tricarboxylic acid cycle in the blood of patients with sepsis as potential biomarkers of mitochondrial dysfunction was investigated. We found that microbial phenolic metabolites possess an inhibitory effect on the activity of dehydrogenases, as determined by the reduction of dichlorophenolindophenol and nitroblue tetrazolium in liver mitochondria and liver homogenates. The effect was more pronounced in the case of the oxidation of NAD-dependent substrates than succinate oxidation, as well as at lower concentrations of microbial metabolites than in the case of inhibition of respiration. Using gas chromatography coupled with mass spectrometry it was shown that the content of the tricarboxylic acid cycle metabolites is lower in the blood of patients with sepsis as compared to healthy donors. Our data demonstrate that microbial phenolic acids can significantly contribute to mitochondrial dysfunction and to metabolic suppression, both of which are characteristic of these pathologies.  相似文献   

20.
The interdependence between geoelectrical signatures at underground petroleum plumes and the structures of subsurface microbial communities was investigated. For sediments contaminated with light non-aqueous-phase liquids, anomalous high conductivity values have been observed. Vertical changes in the geoelectrical properties of the sediments were concomitant with significant changes in the microbial community structures as determined by the construction and evaluation of 16S rRNA gene libraries. DNA sequencing of clones from four 16S rRNA gene libraries from different depths of a contaminated field site and two libraries from an uncontaminated background site revealed spatial heterogeneity in the microbial community structures. Correspondence analysis showed that the presence of distinct microbial populations, including the various hydrocarbon-degrading, syntrophic, sulfate-reducing, and dissimilatory-iron-reducing populations, was a contributing factor to the elevated geoelectrical measurements. Thus, through their growth and metabolic activities, microbial populations that have adapted to the use of petroleum as a carbon source can strongly influence their geophysical surroundings. Since changes in the geophysical properties of contaminated sediments parallel changes in the microbial community compositions, it is suggested that geoelectrical measurements can be a cost-efficient tool to guide microbiological sampling for microbial ecology studies during the monitoring of natural or engineered bioremediation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号