首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Cucurbitales are a clade of rosids with a worldwide distribution and a striking heterogeneity in species diversity among its seven family members: the Anisophylleaceae (29-40 species), Begoniaceae (1400 spp.), Coriariaceae (15 spp.), Corynocarpaceae (6 spp.), Cucurbitaceae (800 spp.), Datiscaceae (2 spp.), and Tetramelaceae (2 spp.). Most Cucurbitales have unisexual flowers, and species are monoecious, dioecious, andromonoecious, or androdioecious. To resolve interfamilial relationships within the order and to polarize morphological character evolution, especially of flower sexual systems, we sequenced nine plastids (atpB, matK, ndhF, rbcL, the trnL-F region, and the rpl20-rps12 spacer), nuclear (18S and 26S rDNA), and mitochondrial (nad1 b/c intron) genes (together approximately 12,000 bp) of 26 representatives of the seven families plus eight outgroup taxa from six other orders of the Eurosids I. Cucurbitales are strongly supported as monophyletic and are closest to Fagales, albeit with moderate support; both together are sister to Rosales. The deepest split in the Cucurbitales is that between the Anisophylleaceae and the remaining families; next is a clade of Corynocarpaceae and Coriariaceae, followed by Cucurbitaceae, which are sister to a clade of Begoniaceae, Datiscaceae, and Tetramelaceae. Based on this topology, stipulate leaves, inferior ovaries, parietal placentation, and one-seeded fruits are inferred as ancestral in Cucurbitales; exstipulate leaves, superior ovaries, apical placentation, and many-seeded fruits evolved within the order. Bisexual flowers are reconstructed as ancestral, but dioecy appears to have evolved already in the common ancestor of Begoniaceae, Cucurbitaceae, Datiscaceae, and Tetramelaceae, and then to have been lost repeatedly in Begoniaceae and Cucurbitaceae. Both instances of androdioecy (Datisca glomerata and Schizopepon bryoniifolius) evolved from dioecious ancestors, corroborating recent hypotheses about androdioecy often evolving from dioecy.  相似文献   

2.
3.
Floral morphology, anatomy and histology in the newly circumscribed order Celastrales, comprising Celastraceae, Parnassiaceae and Lepidobotryaceae are studied comparatively. Several genera of Celastraceae and Lepidobotrys (Lepidobotryaceae) were studied for the first time in this respect. Celastraceae are well supported as a group by floral structure (including genera that were in separate families in earlier classifications); they have dorsally bulged‐up locules (and thus apical septa) and contain oxalate druses in their floral tissues. The group of Celastraceae and Parnassiaceae is also well supported. They share completely syncarpous gynoecia with commissural stigmatic lobes (and strong concomitant development of the commissural vascular bundles but weak median carpel bundles), only weakly crassinucellar or incompletely tenuinucellar ovules with an endothelium, partly fringed sepals and petals, protandry in bisexual flowers combined with herkogamy by the movement of stamens and anther abscission, and stamens fused with the ovary. In contrast, Lepidobotryaceae are more distant from the other two families, sharing only a handful of features with Celastraceae (not Parnassiaceae), such as pseudohermaphroditic flowers, united stamen bases forming a collar around the gynoecium and seeds with a conspicuous aril. However, all three families together are also somewhat supported as a group and share petals that are not retarded in late floral bud development, 3‐carpellate gynoecia, ventral slits of carpels closed by long interlocking epidermal cells and pollen tube transmitting tissue encompassing several cell layers, both integuments usually more than two cell layers thick, and only weak or lacking floral indumentum. In some molecular analyses Celastrales form an unsupported clade with Malpighiales and Oxalidales. This association is supported by floral structure, especially between Celastrales and Malpighiales. Among Celastrales, Lepidobotryaceae especially share special features with Malpighiales, including a diplostemonous androecium with ten fertile stamens, epitropous ovules with an obturator and strong vascularization around the chalaza. © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society, 2005, 149 , 129–194.  相似文献   

4.
The squash (Cucurbita maxima) phloem exudate-expressed aspartic proteinase inhibitor (SQAPI) is a novel aspartic acid proteinase inhibitor, constituting a fifth family of aspartic proteinase inhibitors. However, a comparison of the SQAPI sequence to the phytocystatin (a cysteine proteinase inhibitor) family sequences showed ∼30% identity. Modeling SQAPI onto the structure of oryzacystatin gave an excellent fit; regions identified as proteinase binding loops in cystatin coincided with regions of SQAPI identified as hypervariable, and tryptophan fluorescence changes were also consistent with a cystatin structure. We show that SQAPI exists as a small gene family. Characterization of mRNA and clone walking of genomic DNA (gDNA) produced 10 different but highly homologous SQAPI genes from Cucurbita maxima and the small family size was confirmed by Southern blotting, where evidence for at least five loci was obtained. Using primers designed from squash sequences, PCR of gDNA showed the presence of SQAPI genes in other members of the Cucurbitaceae and in representative members of Coriariaceae, Corynocarpaceae, and Begoniaceae. Thus, at least four of seven families of the order Cucurbitales possess member species with SQAPI genes, covering ∼99% of the species in this order. A phylogenetic analysis of these Cucurbitales SQAPI genes indicated not only that SQAPI was present in the Cucurbitales ancestor but also that gene duplication has occurred during evolution of the order. Phytocystatins are widespread throughout the plant kingdom, suggesting that SQAPI has evolved recently from a phytocystatin ancestor. This appears to be the first instance of a cystatin being recruited as a proteinase inhibitor of another proteinase family. [Reviewing Editor: Dr. Antony Dean]  相似文献   

5.
Cucurbitales are an important order of flowering plants known for encompassing edible plants of economic and medicinal value and numerous ornamental plants of horticultural value. By reanalyzing the genomes of two representative families (Cucurbitaceae and Begoniaceae) in Cucurbitales, we found that the previously identified Cucurbitaceae common paleotetraploidization that occurred shortly after the core-eudicot-common hexaploidization event is shared by Cucurbitales, including Begoniaceae. We built a multigenome alignment framework for Cucurbitales by identifying orthologs and paralogs and systematically redating key evolutionary events in Cucurbitales. Notably, characterizing the gene retention levels and genomic fractionation patterns between subgenomes generated from different polyploidizations in Cucurbitales suggested the autopolyploid nature of the Begoniaceae common tetraploidization and the allopolyploid nature of the Cucurbitales common tetraploidization and the Cucurbita-specific tetraploidization. Moreover, we constructed the ancestral Cucurbitales karyotype comprising 17 proto-chromosomes, confirming that the most recent common ancestor of Cucurbitaceae contained 15 proto-chromosomes and rejecting the previous hypothesis for an ancestral Cucurbitaceae karyotype with 12 proto-chromosomes. In addition, we found that the polyploidization and tandem duplication events promoted the expansion of gene families involved in the cucurbitacin biosynthesis pathway; however, gene loss and chromosomal rearrangements likely limited the expansion of these gene families.

The previously identified Cucurbitaceae common paleotetraploidization is shared by Cucurbitales and Begoniaceae.  相似文献   

6.
Floral morphology, anatomy and histology were studied in representatives of all families of current Oxalidales, which were recently constituted as a result of molecular systematic studies by other authors, and are composed of families of different positions in traditional classifications (Oxalidaceae, Connaraceae, Brunelliaceae, Cephalotaceae, Cunoniaceae, Elaeocarpaceae, Tremandraceae). Two of the three pairs of sister (or nested) families that come out in molecular analyses are highly supported by floral structure: Oxalidaceae/Connaraceae and Elaeocarpaceae/Tremandraceae, whereas Cephalotaceae/Cunoniaceae are not especially similar at the level of Oxalidales. Oxalidaceae and Connaraceae share petals that are postgenitally united into a basal tube (although they are imbricate in both) but free at the insertion zone, stamens that are congenitally united at the base, uniseriate glandular hairs on the stamen filaments, and ovules that are hemianatropous to almost orthotropous. The sharing of a special type of sieve-tube plastids and of trimorphic heterostyly, studied by other authors, should also be mentioned. With Brunelliaceae, the two families share an androgynophore and nectaries at the base of the stamens in alternisepalous sectors. Elaeocarpaceae and Tremandraceae share buzz-pollinated flowers and a syndrome of features functionally connected with it. In addition, petals are larger than sepals in advanced bud, they are valvate, involute and enwrap part of the adjacent stamens, they have three vascular traces. Lignified hairs are common on the anthers and are found in the ovary locules and on the ovules (not lignified) of representatives of both families. Ovules have a chalazal appendage, and the inner integument is much thicker than the outer.  © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 140 , 321–381.  相似文献   

7.
rbcL sequences to clarify the inter- and intrarelationships of Rhizophoraceae which have been variously discussed. The analyses included 12 of the 15 genera of Rhizophoraceae (4/7 of Macarisieae, 4/4 of Gynotrocheae, and 4/4 of Rhizophoreae) and a few putatively related taxa, including two of the four genera of Anisophylleaceae. The most parsimonious trees supported the monophyly of Rhizophoraceae as well as each of the three traditionally recognized tribes Macarisieae, Gynotrocheae, and Rhizophoreae. The family Rhizophoraceae is a sister taxon to Erythroxylum (Erythroxylaceae) and is further closely related to Byrsonima (Malpighiaceae), Passiflora (Passifloraceae), Turnera (Turneraceae), Ochna (Ochnaceae), Drypetes (Euphorbiaceae), and Humiria (Humiriaceae). Anisophylleaceae, which have often been included in Rhizophoraceae as a tribe or subfamily, are placed in a common clade with Begonia (Begoniaceae), Cucurbita (Cucurbitaceae), Coriaria (Coriariaceae), Corynocarpus (Corynocarpaceae), Datisca (Datiscaceae), Tetrameles (Datiscaceae), and Octomeles (Datiscaceae). Within Rhizophoraceae the mangrove tribe Rhizophoreae is sister to the inland tribe Gynotrocheae, with inland tribe Macarisieae positioned as a sister taxon to these two tribes. This pattern of relationships within the family basically agrees with those suggested by cladistic analyses based on morphological characters, except that Gynotrocheae are monophyletic with Crossostylis as a derived taxon within the tribe in the present study. Based on this cladogram for Rhizophoraceae, we discuss evolutionary trends of a few ecological and morphological characters, including the formation of aerial roots and the ovary position. Received 12 August 1999/ Accepted in revised form 11 October 1999  相似文献   

8.
Floral structure of all putative families of Crossosomatales as suggested by molecular studies was comparatively studied. The seven comprise Crossosomataceae, Stachyuraceae, Staphyleaceae, Aphloiaceae, Geissolomataceae, Ixerbaceae, and Strasburgeriaceae. The entire clade (1) is highly supported by floral structure, also the clades (in sequence of diminishing structural support): Ixerbaceae/Strasburgeriaceae (2), Geissolomataceae/Ixerbaceae/Strasburgeriaceae (3), Aphloiaceae/Geissolomataceae/Ixerbaceae/Strasburgeriaceae (4), and Crossosomataceae/Stachyuraceae/Staphyleaceae (5). Among the prominent floral features of Crossosomatales (1) are solitary flowers, presence of a floral cup, imbricate sepals with outermost smaller than inner, pollen grains with horizontally extended endoapertures, shortly stalked gynoecium, postgenitally united carpel tips forming a compitum, stigmatic papillae two‐ or more‐cellular, ovary locules tapering upwards, long integuments forming zigzag micropyles, cell clusters with bundles of long yellow crystals, mucilage cells, seeds with smooth, sclerified testa and without a differentiated tegmen. Clade (2) is characterized by large flowers, petals forming a tight, pointed cone in bud, stamens with long, stout filaments and sagittate anthers, streamlined, conical gynoecium, antitropous ovules, rudimentary aril, lignified, unicellular, T‐shaped hairs and idioblasts with striate mucilaginous cell walls. Clade (3) is characterized by alternisepalous carpels, punctiform stigma formed by postgenitally united and twisted carpel tips, synascidiate ovary, only one or two pendant ovules per carpel, nectary recesses between androecium and gynoecium. Clade (4) is characterized by pronounced ‘pollen buds’. Clade (5) is characterized by polygamous or functionally unisexual flowers, x‐shaped anthers, free and follicular carpels (not in Stachyuraceae). Crossosomataceae and Aphloiaceae, although not retrieved as a clade in molecular studies, share several special floral features: polystemonous androecium; basifixed anthers without a connective protrusion; stigma with two more or less decurrent crests; camplyotropous ovules and reniform seeds; simple, disc‐shaped nectaries and absence of hairs. © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society, 2005, 147 , 1–46.  相似文献   

9.
Ochnaceae s.l. (Ochnaceae, Quiinaceae and Medusagynaceae), one of the well‐supported subclades of the large order Malpighiales retrieved so far in molecular phylogenetic studies, were comparatively studied with regard to floral structure using microtome section series and scanning electron microscopy (SEM). Floral morphology, anatomy and histology also strongly reflect this close relationship. Potential synapomorphies of the subclade include: flowers nectarless, sepals of different sizes within a flower, petals not retarded in development and forming the protective organs of advanced floral buds, petal aestivation contort, petals with three vascular traces, petals reflexed over the sepals and directed toward the pedicel, polystemony, anthers almost or completely basifixed, gynoecium often with more than five carpels, short gynophore present, styles separate for at least their uppermost part and radiating outwards, suction‐cup‐shaped stigmas, vasculature forming a dorsal band of bundles in the upper stylar region, gynoecium epidermis with large, radially elongate cells, ovules either weakly crassinucellar or incompletely tenuinucellar with an endothelium, abundance of tanniferous tissues and sclerenchyma in floral organs. The most strongly supported subclade of two of the three families in molecular analyses, Quiinaceae and Medusagynaceae, is also particularly well supported by floral structural features, including the presence of functionally and morphologically unisexual flowers, a massive thecal septum that persists after anther dehiscence, styles radiating outward from the ovary, two lateral ovules per carpel, positioned one above the other, conspicuous longitudinal ribs on the ovary wall at anthesis, and a ‘false endothelium’ on the nucellus at anthesis. Additionally, the group fits well in Malpighiales and further emphasizes the relationship of Malpighiales with Celastrales and Oxalidales, and thus the unity of the COM clade. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 170 , 299–392.  相似文献   

10.
Flowers of Anisophyllea(Anisophylleaceae, Cucurbitales) andCeratopetalum(Cunoniaceae, Oxalidales) are surprisingly similar in appearance.To date, these families have never been interpreted as closelyrelated, and even in present molecular (rbcL) studies they appearin different orders of eurosids I (APG, Annals of the MissouriBotanical Garden85:531–553, 1998). In this investigation,flowers of selected taxa of both families are morphologicallyand anatomically compared. In addition, previous work on thetwo families is reviewed. The results strongly emphasize thegreat similarity in all floral organs. Some special similaritiesinclude the occurrence of trimerous flowers, isomerous organwhorls (including the gynoecium), valvate sepals, digitate petals,obdiplostemony, incurved filaments in bud with similar anthers,similar pollen, similar nectaries, carpels with free styles,a canal in the centre of each individual carpel as well as inthe centre of the entire gynoecium along the symplicate zone,and similar ovules with a slit-shaped micropyle. In addition,recently recovered Late Cretaceous floral fossils that sharefeatures of both families further emphasize a potential closerelationship. However, if more extensive molecular studies areperformed in the future that support the current disparate positionof the two families, then an explanation of the biological/functionalsimilarities in floral structure should be attempted: specifically,whether this suite of features is a symplesiomorphy for basalrosids, or an autapomorphy for each family. Copyright 2001 Annalsof Botany Company Anisophylleaceae, Cucurbitales, Cunoniaceae, eudicots, floral structure, molecular systematics, Myrtales, Oxalidales, Saxifragales  相似文献   

11.
The floral organs of Sinofranchetia chinensis Hemsl. (Lardizabalaceae) are all spiral in initiation. Stamen and petal (nectar‐leaf) primordia initiate independently and are different in shape. The petals and three stamens in the first whorl are retarded in the early developmental stages. The carpel primordia are conduplicate; the stigma is formed around the upper part of the ventral slit and the style is not differentiated. The functionally unisexual flowers are bisexual in organization in the early developmental stages. The development of the flowers on the inflorescence is spiral and centripetal. Some floral characteristics of Sinofranchetia appear to be plesiomorphic in Lardizabalaceae. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 160 , 82–92.  相似文献   

12.
Flowers of many living Fagales exhibit unusual developmental characteristics. At anthesis, ovulate flowers have carpels bearing immature orthotropous ovules. After pollination, the ovules increase in size and become anatropous and the ovary enlarges. Simultaneously, the pollen tubes extend from the stigma to the ovules with several phases of growth and quiescence. Finally, after the first fertilization, the remaining ovules abort, resulting in a single‐seeded fruit. Three‐dimensionally preserved potentially fagaceous mesofossil flowers from the Campanian of Massachusetts, USA, provide evidence on the evolution of these characters. The fossils share putative synapomorphies with the Fagales (six tepals, mostly inferior, three‐carpellate ovary with each locule initially containing two pendant ovules, punctate‐rugulate, tricolporate pollen and fruit with a single seed). However, the fossil is bisexual and has nectaries, characters shared with the sister order Cucurbitales, and both lack the fagalean immature orthotropous developmental stage. The fossil shares synapomorphies of an inferior ovary and a single‐seeded indehiscent fruit with both living orders and appears to be transitional. Comparison of ontogenetic changes between the fossil and related fagalean taxa suggests independent stepwise changes in development in which some characters of the modern clades were in place at ~ 75 Myr and others evolved more recently. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 168 , 353–376.  相似文献   

13.
Floral onset in soybean (Glycine max cv. Ransom) is characterized by precocious initiation of axillary meristems in the axils of the most recently initiated leaf primordium. During floral transition, leaf morphology changes from trifoliolate leaf with stipules, to a three-lobed bract, to an unlobed bract. Soybean flowers initiated at 26/22 C day/night temperatures are normal, papilionaceous, and pentamerous. Sepal, petal, and stamen whorls are initiated unidirectionally from the abaxial to adaxial side of the floral apex. The median sepal is located abaxially and the median petal adaxially on the meristem. The organogeny of ‘Ransom’ flowers was found to be: sepals, petals, outer stamens plus carpel, inner stamens; or, sepals, petals, carpel, outer stamens, inner stamens. The outer stamen whorl and the carpel show possible overlap in time of initiation. Equalization of organ size occurs only within the stamen whorls. The sepals retain distinction in size, and the petals exhibit an inverse size to age relationship. The keel petals postgenitally fuse along part of their abaxial margins; their bases, however, remain free. Soybean flowers initiated at cool day/night temperatures of 18/14 C exhibited abnormalities and intermediate organs in all whorls. The gynoecium consisted of one to ten carpels (usually three or four), and carpel connation varied. Fusion of keel petals was often lacking, and stamen filaments fused erratically. Multiple carpellate flowers developed into multiple pods that were separate or variously connate. Intermediate type organs had characteristics only of organs in adjacent whorls. These aberrant flowers demonstrate that the floral meristem of soybean is not fixed or limited in its developmental capabilities and that it has the potential to produce alternate morphological patterns.  相似文献   

14.
This is the first comparative study of floral structure of the recently established new family Picrodendraceae (part of Euphorbiaceae s.l.) in Malpighiales. Nine species of eight (out of ca. 28) genera were studied. Female flowers are mainly completely trimerous, and in such flowers the perianth consists of one or two whorls of sepals. A floral disc (which probably functions as a nectary) is mostly present. The free parts of the carpels are simple (unbranched) in all ten species studied. Each carpel contains two crassinucellar, anatropous or hemitropous, epitropous (antitropous) ovules, which are covered by a large obturator. The inner integument is thicker than the outer (equally thick in two species studied), and commonly both integuments form the micropyle. In mature ovules the vascular bundle commonly branches in the chalaza, with the branches extending to the base of the inner integument but not entering it. A nucellar cap and, less often, a nucellar beak is formed. Floral structure supports the close relationship of Picrodendraceae with Phyllanthaceae and Euphorbiaceae s.str. within Malpighiales, as suggested (but not yet strongly supported) by some recent published molecular analyses. These three families share a unique combination of characters, including (1) unisexual, apetalous trimerous flowers, (2) crassinucellar ovules with a nucellar beak, (3) a large obturator, and (4) explosive fruits with carunculate seeds.  相似文献   

15.
Within the rosid order Malpighiales, Rhizophoraceae and Erythroxylaceae (1) are strongly supported as sisters in molecular phylogenetic studies and possibly form a clade with either Ctenolophonaceae (2) or with Linaceae, Irvingiaceae and Caryocaraceae (less well supported) (3). In order to assess the validity of these relationships from a floral structural point of view, these families are comparatively studied for the first time in terms of their floral morphology, anatomy and histology. Overall floral structure reflects the molecular results quite well and Rhizophoraceae and Erythroxylaceae are well supported as closely related. Ctenolophonaceae share some unusual floral features (potential synapomorphies) with Rhizophoraceae and Erythroxylaceae. In contrast, Linaceae, Irvingiaceae and Caryocaraceae are not clearly supported as a clade, or as closely related to Rhizophoraceae and Erythroxylaceae, as their shared features are probably mainly symplesiomorphies at the level of Malpighiales or a (still undefined) larger subclade of Malpighales, rather than synapomorphies. Rhizophoraceae and Erythroxylaceae share (among other features) conduplicate petals enwrapping stamens in bud, antepetalous stamens longer than antesepalous ones, a nectariferous androecial tube with attachment of the two stamen whorls at different positions: one whorl on the rim, the other below the rim of the tube, the ovary shortly and abruptly dorsally bulged and the presence of a layer of idioblasts (laticifers?) in the sepals and ovaries. Ctenolophonaceae share with Rhizophoraceae and/or Erythroxylaceae (among other features) sepals with less than three vascular traces, a short androgynophore, an ovary septum thin and severed or completely disintegrating during development, leading to a developmentally secondarily unilocular ovary, a zigzag‐shaped micropyle and seeds with an aril. Special features occurring in families of all three groupings studied here are, for example, synsepaly, petals not retarded and thus forming protective organs in floral bud, petals postgenitally fused or hooked together in bud, androecial tube and petals fusing above floral base, androecial corona, apocarpous unifacial styles, nucellus thin and long, early disintegrating (before embryo sac is mature), and nectaries on the androecial tube. Some of these features may be synapomorphies for the entire group, if it forms a supported clade in future molecular studies, or for subgroups thereof. Others may be plesiomorphies, as they also occur in other Malpighiales or also in Celastrales or Oxalidales (COM clade). The occurrence of these features within the COM clade is also discussed. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, 166 , 331–416.  相似文献   

16.
The development of the ovule, fruit and seed of Xyris spp. was studied to assess the embryological characteristics of potential taxonomic usefulness. All of the studied species have (1) orthotropous, bitegmic and tenuinucellate ovules, with a micropyle formed by both the endostoma and exostoma; (2) a cuticle in the ovules and seeds between the nucellus/endosperm and the inner integument and between the inner and outer integuments; (3) helobial, starchy endosperm; (4) a reduced, campanulate and undifferentiated embryo; (5) a seed coat formed by a tanniferous endotegmen, endotesta with thick‐walled cells and exotesta with thin‐walled cells; and (6) a micropylar operculum formed from inner and outer integuments. The pericarp is composed of a mesocarp with cells containing starch grains and an endocarp and exocarp formed by cells with U‐shaped thickened walls. The studied species differ in the embryo sac development, which can be of the Polygonum or Allium type, and in the pericarp, which can have larger cells in either endocarp or exocarp. The Allium‐type embryo sac development was observed only in Xyris spp. within Xyridaceae. Xyris also differs from the other genera of Xyridaceae by the presence of orthotropous ovules and a seed coat formed by endotegmen, endotesta and exotesta, in agreement with the division of the family into Xyridoideae and Abolbodoideae. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 619–628.  相似文献   

17.
Lardizabalaceae, one of seven families of Ranunculales, represent a monophyletic group. The family has functionally unisexual flowers with the organs in trimerous whorls, petaloid sepals and sometimes nectariferous petals. Among Ranunculales, Lardizabalaceae share several floral characters and climbing habit with Menispermaceae, but molecular analyses indicate that Circaeasteraceae and Lardizabalaceae form a strongly supported clade. Morphological and ontogenetic studies of flowers have proved to be a good complement to molecular data in clarifying relationships. Floral organogenesis has been studied in very few species of the family. This study investigates the comparative floral development of three species from three genera (Decaisnea, Akebia and Holboellia) of Lardizabalaceae using scanning electron microscopy. Flowers have a whorled phyllotaxis. Within each whorl, the organs are initiated either simultaneously or in a rapid spiral sequence. In Akebia, six sepals are initiated, but one to three sepals of the second whorl do not further develop. The presence of three sepals in Akebia is thus a developmentally secondary simplification. The petals (if present) are retarded in early developmental stages; stamens and petals are different in shape from the beginning of development. The retarded petals may not be derived from staminodes in Lardizabalaceae. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, 166 , 171–184.  相似文献   

18.
Reproductive structures and systematics of Buxaceae   总被引:3,自引:0,他引:3  
Buxaceae belong to a grade of families near the base of eudicots. Flowers of these families are characterized by a variable number and arrangement of floral organs. In this study, the anthetic structure of the gynoecium and androecium of representatives of all genera of Buxaceae were comparatively studied, and observations on the flowering processes and pollination biology were made. Styloceras and Notobuxus were studied in detail for the first time. Various features of the morphological analysis support our earlier molecular phylogenetic study. Shared reproductive characters among Sarcococca , Pachysandra and Styloceras are the occurrence of two (rarely three) carpels, the lack of interstylar nectaries, a micropyle formed by both integuments, attractive stamens in male flowers, and fleshy fruits. In addition, Styloceras and Pachysandra share a secondary partition in the ovary. Notobuxus does not seem to be clearly distinct from Buxus . Both have a similar inflorescence and perianth structure; female flowers have three carpels, interstylar nectaries, micropyles formed by the inner integument, rudimentary arils, and they develop into capsular fruits; in male flowers stamens are sessile and the central pistillode is lacking in some species. Thus, it is questionable to justify a separation of Buxus and Notobuxus at genus level. The results further strongly support the placement of Buxaceae among basal eudicots.  © The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 140 , 193–228.  相似文献   

19.
In molecular phylogenetic studies, Lophopyxidaceae and Putranjivaceae are well supported as sisters in the large rosid order Malpighiales. As the floral structure of both families is poorly known and the two families have never been compared, the present comparative study was carried out, as part of a larger project on the comparative floral structure of Malpighiales, using microtome section series and scanning electron microscopy (SEM) studies. Similar to other angiosperm clades, it appears that the structure of the ovules is a strong marker for suprafamilial relationships in Malpighiales. Both families have two collateral pendant antitropous ovules per carpel associated with obturators (as in some Euphorbiaceae s.l., to which Putranjivaceae belonged in earlier classifications). However, in contrast with Euphorbiaceae s.l., the ovules are not crassinucellar, but either incompletely tenuinucellar or only weakly crassinucellar with a long and conspicuously slender nucellus and an endothelium, and do not have a nucellar beak, but a normal micropyle, features they share with families other than Euphorbiaceae s.l. among Malpighiales. Other shared features of the two families include the following. The outer sepals tend to be smaller than the inner ones and the sepals do not protect the gynoecium in older buds. Sepals of some taxa have a single vascular trace. A short zone of synsepaly tends to be present. Stamens tend to be antesepalous in haplostemonous flowers. A short gynophore is present. The synascidiate zone extends up to above the placenta, but is restricted to the ovary in taxa with more than one carpel. The micropyle is formed by the inner integument. The ventral carpel slits extend down into the synascidiate zone as postgenitally fused furrows. The carpels have a broad dorsal band of vascular bundles in the style. The overall floral structure of the two families corroborates their sister position well and does not support the earlier association of Putranjivaceae with Euphorbiaceae s.l. or of Lophopyxidaceae with Geraniales–Sapindales–Celastrales, which rely on shared superficial floral similarities. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 172 , 404–448.  相似文献   

20.
Floral structure is compared in Pelagodoxa and Sommieria (Arecaceae, Arecoideae). Male flowers have three free, imbricate sepals, three basally congenitally united and apically valvate petals, and six stamens. Anthers are dorsifixed and dehiscence introrse. The sterile gynoecium is tricarpellate. Female flowers have three free, imbricate sepals and three free, imbricate petals, which are slightly fused with the sepals at the base. Four to six staminodes are congenitally united at the base and fused with the ovary for a short distance. The gynoecium is syncarpous. Carpels are almost equal in early development; later the gynoecium becomes pseudomonomerous. The three stigmatic branches are equally developed, apical and sessile. The carpels are (syn-)ascidiate up to the level of the placenta and (sym-)plicate above. Each carpel has one ovule, in the sterile carpels it is aborted at anthesis. The fertile ovule is erect up to anthesis and pendant afterwards because of the bulging out of the ovary. Pollen tube transmitting tracts (PTTT) encompass the secretory epidermis of the ventral slits of each carpel. Floral structure in Pelagodoxa and Sommieria supports the sister group relationship between the two genera suggested in recent molecular phylogenies and reflects their close relationships to a major clade of pseudomonomerous arecoid palms from the Indo-Pacific region.  © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society , 2004, 146 , 27–39.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号