首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The restoration of acetylcholinesterase (AChE) activity in axolotl Ambystoma mexicanum embryo after treatment at 38-42 stages with irreversibly AChE-inhibiting Gd-7 phosphororganic inhibitor in concentrations, significantly decreasing AChE activity level, but not interfering with ontogenesis has been studied. The rate of AChE activity restoration in Gd-7 treated axolotl embryo depends on the level of the enzyme restraint and the stage of the embryo development. The value of maximal restoration of AChE activity differs; it is less in embryos, treated with Gd-7 at later stages of development. The ability of the embryos to swim restores parallel to the increase in AChE activity. The data obtained suggest that axolotl embryo possess compensatory mechanism for increasing AChE biosynthesis after decrease in its activity caused by Gd-7. Acetylcholine, accumulating in the organism at partial inactivation of AChE by phosphororganic inhibitor may participate in this mechanism.  相似文献   

2.
The recovery of the acetylcholine esterase (AChE) activity after the irreversible inhibition with an organophosphorus inhibitor B-156 was studied in a developing monolayer culture of chick myoblasts. The culture was obtained from muscles of posterior limbs of the 11 day old chick embryos. The AChE activity was estimated by the modified Ellman method from the moment of inoculation to the stage of spontaneous contractions of muscle fibres. After the B-156 treatment the AChE activity of muscle cells decreased, then started to increase and the maximum recovery of activity, below the initial level, was attained within roughly 2 days after the treatment. The AChE activity in the treated culture somewhat decreased thereafter. The lower the inhibitor concentration, i.e. the lower the value of the initial AChE inhibition, the higher the starting rate and degree of recovery of the AChE activity. The results obtained suggest that, unlike the multilayer culture of muscle tissue at later stages of differentiation no compensatory enhancement of AChE biosynthesis after irreversible inhibition of this enzyme by an organophosphorus inhibitor is observed in the monolayer culture of chick myoblasts at the early stages of myogenesis.  相似文献   

3.
A strain of axolotl, Ambystoma mexicanum, that carries the cardiac lethal or c gene presents an excellent model system in which to study inductive interactions during heart development. Embryos homozygous for gene c contain hearts that fail to beat and do not form sarcomeric myofibrils even though muscle proteins are present. Although they can survive for approximately three weeks, mutant embryos inevitably die due to lack of circulation. Embryonic axolotl hearts can be maintained easily in organ culture using only Holtfreter's solution as a culture medium. Mutant hearts can be induced to differentiate in vitro into functional cardiac muscle containing sarcomeric myofibrils by coculturing the mutant heart tube with anterior endoderm from a normal embryo. The induction of muscle differentiation can also be mediated through organ culture of mutant heart tubes in medium 'conditioned' by normal anterior endoderm. Ribonuclease was shown to abolish the ability of endoderm-conditioned medium to induce cardiac muscle differentiation. The addition of RNA extracted from normal early embryonic anterior endoderm to organ cultures of mutant hearts stimulated the differentiation of these tissues into contractile cardiac muscle containing well-organized sarcomeric myofibrils, while RNA extracted from early embryonic liver or neural tube did not induce either muscular contraction or myofibrillogenesis. Thus, RNA from anterior endoderm of normal embryos induces myofibrillogenesis and the development of contractile activity in mutant hearts, thereby correcting the genetic defect.  相似文献   

4.
The fully grown but nonmetamorphosed (juvenile) axolotl Ambystoma mexicanum was ureogenic and primarily ureotelic in water. A complete ornithine-urea cycle (OUC) was present in the liver. Aerial exposure impeded urea (but not ammonia) excretion, leading to a decrease in the percentage of nitrogen excreted as urea in the first 24 h. However, urea and not ammonia accumulated in the muscle, liver, and plasma during aerial exposure. By 48 h, the rate of urea excretion recovered fully, probably due to the greater urea concentration gradient in the kidney. It is generally accepted that an increase in carbamoyl phosphate synthetase activity is especially critical in the developmental transition from ammonotelism to ureotelism in the amphibian. Results from this study indicate that such a transition in A. mexicanum would have occurred before migration to land. Aerial exposure for 72 h exhibited no significant effect on carbamoyl phosphate synthetase-I activity or that of other OUC enzymes (with the exception of ornithine transcarbamoylase) from the liver of the juvenile A. mexicanum. This supports our hypothesis that the capacities of OUC enzymes present in the liver of the aquatic juvenile axolotl were adequate to prepare it for its invasion of the terrestrial environment. The high OUC capacity was further supported by the capability of the juvenile A. mexicanum to survive in 10 mM NH(4)Cl without accumulating amino acids in its body. The majority of the accumulating endogenous and exogenous ammonia was detoxified to urea, which led to a greater than twofold increase in urea levels in the muscle, liver, and plasma and a significant increase in urea excretion by hour 96. Hence, it can be concluded that the juvenile axolotl acquired ureotelism while submerged in water, and its hepatic capacity of urea synthesis was more than adequate to handle the toxicity of endogenous ammonia during migration to land.  相似文献   

5.
Acetylcholinesterase (AChE)-rich cytoplasmic granules in the developing myofibers increased remarkably until the establishment of neuromuscular junctions and thereafter decreased rapidly, whereas junctional AChE activities continued to increase (K. Wake, 1976, Cell Tissue Res. 173, 383–400). In the present paper, during the developmental course of the chick embryo, the temporal and regional gradients in differentiation of skeletal muscles at various sites were examined with special reference to the fluctuation of intracellular AChE activity. AChE-rich granules in each muscle throughout the whole body of chick embryos were observed. Since the distribution pattern of these granules changed regularly in the course of the muscle fiber development, advances of muscle differentiation in various sites of the body were compared. (1) The process of muscle development is more advanced in the trunk muscles than in the limb muscles. (2) The dorsal trunk muscles differentiate one day earlier than the ventral ones. (3) Within the same limb, proximal muscles differentiate approximately 24 hr ahead of distal ones. (4) The development of posterior limb muscles advances faster than that of anterior limb muscles. (5) Within the thigh muscles, the flexor muscles tend to differentiate earlier than the extensor muscles.  相似文献   

6.
Cultured pectoral muscle from 11-day-old chick embryos was treated for 48 h with phenytoin (diphenylhydantoin, DPH) in concentrations ranging from 15 to 270 microgram/ml on days 7-9 in vitro. Acetylcholinesterase (AChE, EC 3.1.1.7), creatine phosphokinase (CPK, EC 2.7.3.2), and lactic dehydrogenase (LDH, EC 1.1.1.27) activities, [3H]leucine incorporation into protein, and total protein of the cultures decreased in a dose-related manner with DPH concentrations of 30 microgram/ml and greater. Total AChE activity and AChE activity released into the medium were specifically decreased with 15 microgram DPH per millilitre. In cultures treated chronically with 15 microgram DPH per millilitre on days 5-13 in vitro, total AChE activity and AChE activity released into the medium were 66.0 +/- 13.2 and 64.7 +/- 11.8% of untreated controls, respectively, but cellular AChE activity, cell protein, and [3H]leucine incorporation into protein were unaffected. The results indicate that DPH specifically decreases the total net synthesis of AChE activity by a direct action on cultured chick embryo muscle.  相似文献   

7.
1. We have analyzed the behavior of two types of asymmetric molecular forms (A forms) of acetylcholinesterase (AChE) during development of chick hindlimb muscle, in vivo and in cell culture, and upon irreversible inactivation of peroneal muscle AChE with diisopropylfluorophosphate (DFP) in vivo. 2. In agreement with previous developmental studies on chick muscle, globular forms of AChE (G forms) are predominant in chick hindlimb at early embryonic ages, being gradually replaced by A forms as hatching (and, therefore, onset of locomotion) approaches. Of the two A-form types, AI appears and accumulates significantly earlier than AII, so that A/G and II/I ratios higher than 1 are attained only at about hatching time. 3. Cultures prepared from 11-day chick embryo hindlimb myoblasts express both types of A forms, with a combined activity of 27% of total AChE after 12 days in culture. AI forms appear again earlier and are much more abundant than type II asymmetric species through the life span of cultures. 4. All AChE activity in the peroneal muscle is irreversibly inactivated by injection of DFP in vivo. The recovery of A forms follows the same sequence described for normal development, with a delayed and slower recovery of AII forms as compared with AI. 5. Several hypotheses involving tail polypeptides or tissue target molecules, or posttranslational interconversion, are proposed to help explain the earlier appearance and accumulation of AI forms in chick muscle.  相似文献   

8.
Reaggregated cell cultures from dissociated 7-day-old chick embryo whole brains were prepared, and the developmental profiles of acetylcholinesterase and choline acetyltransferase, in the aggregates, determined over a 30-day period. Enzyme activities in vitro, at different times of culture, typically lie between 30 and 60% of the values obtained for embryos or chicks of the same developmental age, up to day-10 posthatching. The increase in acetylcholinesterase activity over a 24-day period of culture/incubation is fourfold in the aggregates vs. sixfold for embryos, while the choline acetyltransferase values increase, during the same period of time, 32-fold in the aggregates vs. 17-fold in vivo. Choline acetyltransferase activity seems to be more dependent on good cell-to-cell contact than acetylcholinesterase activity. On the other hand, morphological studies on the aggregates with light and electron microscopy reveal a number of structural features characteristic of well-developed nervous tissue. It is suggested that aggregate cultures of chick brain cells are an adequate model system that is especially useful in analyzing developmental phenomena requiring free tridimensional interaction.Abbreviations AChE acetylcholinesterase - ChAT choline acetyltransferase - BW284 C51 dibromide 1,5-bis-(4-allyldimethylammoniumphenyl)pentan-3-one dibromide - ACh acetylcholine  相似文献   

9.
Various stresses, including exposure to cold or heat, can result in a sharp increase in pigmentation of sea urchin embryos and larvae. The differentiation of pigment cells is accompanied by active expression of genes involved in the biosynthesis of naphthoquinone pigments and appears to be a part of the defense system protecting sea urchins against harmful factors. To clarify numerous issues occurring at various time points after the cold injury, we studied the effect of shikimic acid, a precursor of naphthoquinone pigments, on cell viability and expression of some pigment genes such as the pks and sult before and after freezing the cultures of sea urchin embryo cells. The maximum level of the pks gene expression after a freezing–thawing cycle was found when sea urchin cells were frozen in the presence of trehalose alone. Despite naphthoquinone pigments have been reported to possess antioxidant and cryoprotectant properties, our data suggest that shikimic acid does not have any additional cryoprotective effect on freezing tolerance of sea urchin embryo pigment cells.  相似文献   

10.
In the sea urchin embryo, inhibition of collagen processing and deposition affects both gastrulation and embryonic skeleton (spicule) formation. It has been found that cell-free extracts of gastrula-stage embryos of Strongylocentrotus purpuratus contain a procollagen C-terminal proteinase (PCP) activity. A rationally designed non-peptidic organic hydroxamate, which is a potent and specific inhibitor of human recombinant PCP (FG-HL1), inhibited both the sea urchin PCP as well as purified chick embryo tendon PCP. In the sea urchin embryo, FG-HL1 inhibited gastrulation and blocked spicule elongation, but not spicule nucleation. A related compound with a terminal carboxylate rather than a hydroxamate (FG-HL2) did not inhibit either chick PCP or sea urchin PCP activity in a procollagen-cleavage assay. However, FG-HL2 did block spicule elongation without affecting spicule nucleation or gastrulation. Neither compound was toxic, because their effects were reversible on removal. It was shown that the inhibition of gastrulation and spicule elongation were independent of tissue specification events, because both the endoderm specific marker Endo1 and the primary mesenchyme cell specific marker SM50 were expressed in embryos treated with FG-HL1 and FG-HL2. These results suggest that disruption of the fibrillar collagen deposition in the blastocoele blocks the cell movements of gastrulation and may disrupt the positional information contained within the extracellular matrix, which is necessary for spicule formation.  相似文献   

11.
The formation of the amphibian organizer is evidenced by the ability of cells of the dorsal marginal zone (DMZ) to self-differentiate to form notochord and to induce the formation of other axial structures from neighboring regions of the embryo. We have attempted to determine when these abilities are acquired in the urodele, Ambystoma mexicanum (axolotl), and in the anuran, Xenopus laevis, by removing the mesodermalizing influence of the vegetal hemisphere at different stages of development and culturing the animal hemisphere isolate. This was possible, even at the 32 and 64-cell stage, through the use of embryos with rare cleavage patterns. Cultured isolates were analyzed for morphological differentiation of mesodermal and neural structures, and for biochemical differentiation of the tissue-specific enzyme, acetylcholinesterase (AChE). Large amounts of mesodermal and neural structures, and normal expression of AChE were found in isolates made as early as the 32-cell stage in both species. Only a small increase in the percentage of isolates developing mesoderm was detected when isolations were made at later cleavage or blastula stages. The amount of mesoderm formed did not depend on the stage of isolation. Mesoderm differentiation was usually limited to the notocord and muscle. The isolates rarely formed pronephros, mesothelium, or mesenchyme, derivatives of ventral mesoderm, during normal development. The results indicate that the marginal zone of the cleavage-stage embryo contains all of the information needed for the formation of the organizer. The formation of dorsal mesoderm does not require subsequent interaction with the cells of the vegetal hemisphere, although the presence of those cells is likely to play a role in normal pattern formation.  相似文献   

12.
The A12 (asymmetric) form of acetylcholinesterase (AChE) is generally considered to be synthesized in leg muscle tissues by myotubes under neural influence, but not by myoblasts. We have examined the expression of the different molecular forms of AChE in explants of developing limb buds and dermomyotomes (the myogenic part of the somites) obtained from 3-day-old chick and quail embryos, either directly after removal or during in vitro culture. We describe a muscular differentiation of both territories in vitro, leading to the formation of myotubes which are morphologically similar to the class of early muscle cells described by Bonner and Hauschka (1974). In vivo the A12 form is present in quail dermomyotomes which are almost entirely composed of mononucleated poorly differentiated cells; in contrast, it is absent from similar cells in chick dermomyotomes and from limb buds in both species. This shows that in the case of quail embryos the appearance of the A12 form precedes the fusion of myoblasts into myotubes. In both species, dermomyotome explants express asymmetric and globular forms of the enzyme during muscular differentiation in vitro, whereas limb buds synthesize only globular forms. After surgical removal of neural tube and/or neural crest at 2 days in ovo, the biosynthesis of the A forms in quail dermomyotomes is not suppressed and is consequently not dependent upon prior connection of the dermomyotomes to central neurons or upon the presence of autonomic precursors. Since limb bud muscle cells derive from somites our results raise questions concerning the differentiation of migrating somitic cells in this territory where a neural influence appears necessary to induce the biosynthesis of asymmetric AChE forms.  相似文献   

13.
We attempted to cultivate muscle cells from chick embryos in a serum-free, defined medium similar to that proposed by Bottenstein and Sato (1979) for the growth and differentiation of a murine neuronal cell-line. (1) We found that muscle cells from the legs of 11-day old chick embryos can be cultivated in a medium containing the different components indicated by Bottenstein and Sato, with 2 g/l bovine serum albumin, without serum or chick embryo extract. Myoblasts attached to the gelatin-coated dishes without any addition of attachment factors. They differentiated into myotubes in a similar manner as in classical serum supplemented media. (2) The level of cellular AchE activity was comparable in cultures grown in the presence of fetal calf serum (FCS), of horse serum (HS) and in the defined medium. The percentage of A12 form was however higher in the defined medium (25–30%) than in FCS supplemented medium (about 5–6%). In HS supplemented medium the A12 form was not detectable, partly because horse serum contains immunoglobulins which bind chicken AChE. The addition of defined medium components to FCS medium cultures did not lead to an increase of A12. In contrast, the addition of a small amount (1%) of fetal calf serum to DM cultures reduced the level of A12 in a drastic manner. FCS components therefore seem to repress the biosynthesis of A12 AChE, or increase its degradation. (3) We estimated intracellular and extracellular compartments of AChE. The ratio of endocellular to ectocellular AChE decreased with the age of the cultures. The G1 form was intracellular at all stages analyzed, but the other molecular forms were located in both cellular compartment, in different proportion: A12 and G4 seemed to be located preferentially in the external compartment, whereas G2 was preferentially intracellular. (4) Muscle cultures grown in the defined medium and in the presence of serum secreted globular forms of AChE in a similar manner.  相似文献   

14.
In the presence of organophosphorus inhibitors (OPI) AChE inhibition is initiated at a lower concentration of ACh; the plot reaction rate versus substrate concentration shows two maxima with a distinct minimum between them. It was shown that extremely mild conditions (short-term heating up to 50 degrees C; acidic or alkaline pH shift by 0.5 units; high concentrations of bivalent cations; erythrocyte storage) which do not affect substrate inhibition, remove this effect. The data obtained suggest that OPI effect is not directed to the site of AChE responsible for enzyme inhibition by ACh excess ("substrate inhibition site"), but to some other area. This results in a change in the conformation of the substrate inhibition site and a pronounced inhibition of the AChE activity takes place at lower substrate concentration.  相似文献   

15.
The frequency dependent dielectric properties of individual axolotl embryos (Ambystoma mexicanum) were investigated experimentally utilizing the technique of electrorotation. Individual axolotl embryos, immersed in low conductivity media, were subjected to a known frequency and fixed amplitude rotating AC electric field and the ensuing rotational motion of the embryo was monitored using a conventional optical microscope. None of the embryos in the pregastrulation or neurulation stages of development exhibited any rotational motion over the field frequency range (10 Hz-5 MHz). Over the same frequency range, the embryos in the gastrulation stage of development exhibited both co-field and counterfield rotation over different ranges of the applied field frequency. Typically, the counterfield rotation exhibited a peak in the rotation spectrum at similar 1 KHz while the co-field peak was located at similar 1-2 MHz. The rotational spectral data was analyzed using a multishelled spherical embryo model to determine the electrical character of embryos during the early development stages (Stages 5-16; i.e., 16 cell through open neural plate stages).  相似文献   

16.
The accumulation of acetylcholinesterase (AChE), the changes in AChE-specific activity and in AChE molecular form distribution were studied in slow-tonic anterior latissimus dorsi (ALD) and in fast-twitch posterior latissimus dorsi (PLD) muscles of the chick embryo. From stage 36 (day 11) to stage 42 (day 17) of Hamburger and Hamilton, the AChE-specific activity decreased, while the relative proportion of asymmetric A 12 and A 8 forms increased. Repetitive injection of curare resulted at stage 42 (day 17) in a decrease in AChE-specific activity, in the accumulation of the synaptic AChE and in the expression of AChE asymmetric forms. Electrical stimulation at a relatively high frequency (40 Hz) of curarized ALD and PLD muscles resulted in a normal increase in AChE asymmetric forms, whereas a lower frequency (5 Hz) resulted in a dominance of globular forms. Both patterns of stimulation partly prevented the loss in synaptic AChE accumulations. These results suggest that in chick embryo muscles, muscle activity and its rhythms are involved in the normal evolution of AChE.  相似文献   

17.
T A Laasberg 《Ontogenez》1988,19(6):645-651
Acetylcholine esterase (AChE, EC 3.1.1.7) and choline acetyltransferase (CAT, EC 2.3.1.6) activities were studied in the early chick embryos. Gastrulation is accompanied by a sharp increase in the AChE activity which was most pronounced in anterior hypoblast. Three molecular of AChE (4.7, 6.8 and 10.9 S) were identified in the extract of chick embryos using a sucrose density gradient centrifugation. The CAT activity remained unchanged during gastrulation but increased twice at the end of gastrulation.  相似文献   

18.
Sarcomere formation has been shown to be deficient in the myocardium of axolotl embryos homozygous for the recessive cardiac lethal gene c. We examined the developing hearts of normal and cardiac mutant embryos from tailbud stage 33 to posthatching stage 43 by scanning electron microscopy in order to determine whether that deficiency has any effect on heart morphogenesis. Specifically, we investigated the relationships of myocardial cells during the formation of the heart tube (stage 33), the initiation of dextral looping (stages 34-36), and the subsequent flexure of the elongating heart (stages 38-43). In addition, we compared the morphogenetic events in the axolotl to the published accounts of comparable stages in the chick embryo. In the axolotl (stage 33), changes in cell shape and orientation accompany the closure of the myocardial trough to form the tubular heart. The ventral mesocardium persists longer in the axolotl embryo than in the chick and appears to contribute to the asymmetry of dextral looping (stages 34-36) in two ways. First, as a persisting structure it places constraints on the simple elongation of the heart tube and the ability of the heart to bend. Second, after it is resorbed, the ventral myocardial cells that contributed to it are identifiable by their orientation, which is orthogonal to adjacent cells: a potential source of shearing effects. Cardiac lethal mutant embryos behave identically during these events, indicating that functional sarcomeres are not necessary to these processes. The absence of dynamic apical myocardial membrane changes, characteristic of the chick embryo (Hamburger and Hamilton stages 9-11), suggests that sudden hydration of the cardiac jelly is less likely to be a major factor in axolotl cardiac morphogenesis. Subsequent flexure (stages 38-43) of the axolotl heart is the same in normal and cardiac lethal mutant embryos as the myocardial tube lengthens within the confines of a pericardial cavity of fixed length. However, the cardiac mutant begins to exhibit abnormalities at this time. The lack of trabeculation (normally beginning at stage 37) in the mutant ventricle is evident at the same time as an increase in myocardial surface area, manifest in extra bends of the heart tube at stage 39. Nonbeating mutant hearts (stage 41) have an abnormally large diameter in the atrioventricular region, possibly the result of the accumulation of ascites fluid. In addition, mutant myocardial cells have a larger apical surface area compared to normals.  相似文献   

19.
Brief treatment with 10(-4)M diisopropylfluorophosphate (DEP) irreversibly inactivates acetylcholinesterase (E.C.3.1.1.7; acetylcholine hydrolase) (AChE) activity in 10 day old chick embryonic muscle cultures. Electron microscopic cytochemistry was employed to follow the distribution of new AChE during recovery from DEP treatment. In normal 10 day cultures of embryo pectoralis muscles AChE is localized in the nuclear envelope, perinuclear sarcoplasm, sarcotubular system, subsurface vesicles and bound outside the cells. Immediately after DFP treatment AChE activity is absent in large myotubes. Within 15 min, activity is randomly present in small amounts in the sarcotubular system and nuclear envelope. There is a dramatic increase in activitv in the nuclear envelope during the 1st hr of recovery, and connections between the nuclear envelope and sarcotubular system are often seen. The next few hr of recovery show increased AChE activity. By 4 hr activity approaches that of controls. Six to 8 hr after treatment, AChE activity can be detected spectrophotometrically in the medium and can be seen bound outside the cells with the electron microscope. The spatial and temporal patterns of AChE activity demonstrate that the recovery of AChE and its mobilization and release from DFP-treated cells are not governed solely by the levels attained by the enzyme in the cultured embryo muscle.  相似文献   

20.
《The Journal of cell biology》1985,101(5):1930-1940
We have isolated highly purified coated vesicles from 17-d-old chick embryo skeletal muscle. These isolated coated vesicles contain acetylcholinesterase (AChE) in a latent, membrane-protected form as demonstrated enzymatically and morphologically using the Karnovsky and Roots histochemical procedure (J. Histochem. Cytochem., 1964, 12:219- 221). By the use of appropriate inhibitors the cholinesterase activity can be shown to be specific for acetylcholine. It also can be concluded that most of the AChE represents soluble enzyme since it is rendered soluble by repeated freeze-thaw cycles. To determine the origin of the coated vesicle-associated AChE, we have isolated coated vesicles from cultured chick embryo myotubes which have been treated with diisopropylfluorophosphate, an essentially irreversible inhibitor of both intra- and extracellular AChE, and have been allowed to recover for 3 h. This time is not enough to allow any newly synthesized AChE to be secreted. These coated vesicles also contain predominantly soluble AChE. These data are compatible with the hypothesis that coated vesicles are important intermediates in the intracellular transport of newly synthesized AChE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号