首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetic and equilibrium studies on the interaction of steroids with human corticosteroid-binding globulin (CBG, transcortin) were performed with pH, temperature, and steroid structure as variables. Dissociation rate constants were determined fluorometrically; the values for cortisol, corticosterone, deoxycorticosterone, and progesterone are 0.031, 0.047, 0.10, and 0.16 s-1, respectively, at 20 degrees C, pH 7.4. The pH dependence of the dissociation rate constant for the corticosterone complex below pH 10.5 at 20 degrees C is given by koff = 0.043 (1 + [H+]/10(-6.50)) s-1; above pH 11, koff = 0.030 (1 + 10(-12.15/[H+] s-1. A temperature-dependence study of koff for the cortisol and progesterone complexes gave values of 0.0028 s-1 and 0.012 s-1 at 4 degrees C, respectively, and 0.88 s-1 and 4.5 s-1 at 37 degrees C, with progesterone dissociating about four to five times faster over the entire temperature range. The affinity constants, determined by equilibrium dialysis, for the binding of cortisol, corticosterone, and progesterone at 4 degrees C were 7.9, 7.2, and 7.0 X 10(8) M-1; values of 0.40 and 0.26 X 10(8) M-1 were determined at 37 degrees C for cortisol and progesterone. The close similarity of the affinity constants of the three steroids combined with differing dissociation rates implies that the association rate changes with steroid structure, in contrast to our earlier findings with progesterone-binding globulin.  相似文献   

2.
Stopped flow fluorometry, measuring changes in the intrinsic fluorescence of progesterone-binding globulin (PBG), was used to determine the association and dissociation rates of the interaction of PBG with seven delta4-3-ketosteroids. The rates of formation and dissociation of the PBG-progesterone complex were measured as a function of concentration and temperature. At 20 degrees, kon = 8.7 X 10(7) M-1 S-1 and koff = 0.060 S-1. The association rate constants for progesterone, deoxycorticosterone, testosterone, testosterone acetate, and medrogestone were found to be the same within experimental error. The different affinities of PBG for these steroids result from the dissociation rate constants of the steroids which ranged from 0.43 S-1 for testosterone to 0.024 S-1 for medrogestone. Two corticosteroids, corticosterone and cortisol, were both bound somewhat more slowly (approximately 5 X 10(7) M-1 S-1). Reflecting their very low affinity for PBG both steroids dissociate very rapidly: corticosterone at 1.4 S-1 and cortisol at 90 S-1. The ratio of association to dissociation rate constants gave affinity constants in agreement with independently determined constants.  相似文献   

3.
The thermodynamics of the conversion of aqueous fumarate to L-(-)-malate has been investigated using both heat conduction microcalorimetry and a gas chromatographic method for determining equilibrium constants. The reaction was carried out in aqueous Tris-HCl buffer over the pH range 6.3-8.0, the temperature range 25-47 degrees C, and at ionic strengths varying from 0.0005 to 0.62 mol kg-1. Measured enthalpies and equilibrium ratios have been adjusted to zero ionic strength and corrected for ionization effects to obtain the following standard state values for the conversion of aqueous fumarate 2- to malate 2- at 25 degrees C: K = 4.20 +/- 0.05, delta G degrees = -3557 +/- 30 J mol-1, delta H degrees = -15670 +/- 150 J mol-1, and delta C degrees p = -36 +/- J mol-1 K-1. Equations are given which allow one to calculate the combined effects of pH and temperature on equilibrium constants and enthalpies of this reaction.  相似文献   

4.
The enthalpy change of the binding of Ca2+ and Mn2+ to equine lysozyme was measured at 25 degrees C and pH 7.5 by batch microcalorimetry: delta H degrees Ca2+ = -76 +/- 5 kJ mol-1, delta H degrees Mn2+ = -21 +/- 10 kJ mol-1. Binding constants, log KCa2+ = 6.5 +/- 0.2 and log KMn2+ = 4.1 +/- 0.5, were calculated from the calorimetric data. Therefore, delta S degrees Ca2+ = -131 +/- 20 JK-1 mol-1 and delta S degrees Mn2+ = 8 +/- 44 JK-1 mol-1. Removal of Ca2+ induces small but significant changes in the circular dichroism spectrum, indicating the existence of a partially unfolded apo-conformation, comparable with, but different from, the apo-conformation of bovine alpha-lactalbumin.  相似文献   

5.
S A Kuby  R N Roy 《Biochemistry》1976,15(9):1975-1987
A systematic study has been made of the pH- and temperature-dependency of the steady-state kinetic parameters of the stabilized two-subunit enzyme species of glucose-6-phosphate dehydrogenase, in the absence of superimposed association-dissociation reactions. The Vmax(app) data obtained in several buffers between pH 5 and 10 and at 18-32 degrees C lead to the postulate that at least two sets of protonic equilibria may govern the catalysis (one near pH 5.7 AT 25 DEGREES C and another near pH 9.2); furthermore, two pathways for product formation (i.e., two Vmax's) appear to be required to explain the biphasic nature of the log Vmax(app) vs. pH curves, with Vmax(basic) greater than Vmax(acidic + neutral). Of the several buffers explored, either a uniform degree of interaction or a minimal degree of buffer species interaction could be assessed from the enthalpy changes associated with the derived values for ionization constants attributed to the protonic equilibria in the enzyme-substrates ternary complexes for the case of Tris-acetate-EDTA buffers, at constant ionic strength. With the selection of this buffer at 0.1 (T/2) and at 25 and 32 degrees C, a self-consistent kinetic mechanism has emerged which allows for the random binding of the two fully ionized substrates to the enzyme via two major pathways, and product formation by both E-A--B- and HE-A--B-. As before (Kuby et al. Arch. Biochem, Biophys. 165, 153-178, 1974), a quasi-equilibrium is presumed, with rate-limiting steps (k + 5 and k + 5') at the interconversion of the ternary complexes. Values for the two sets of protonic equilibria defined by this mechanism (viz., pKk, pKH2 for the first ionizations, and pKk', pKH' for the second) could then be estimated. From their numerical values (e.g., at 25 degrees C: pKK = 5.7 PKH2 = 5.2; and pKK' = 9.1, PKH' = 8.2) and from the values for delta H degrees ioniz (e.g., delta H degrees pKK APPROXIMATELY 5.1 KCAL/MOL; DELTA H degrees pKK' APPROXIMATELY 11 KCAL/MOL), A POSTULATE IS PRESENTED WHICH ATTRIBUTES THESE Acid dissociation constants to an imidazole and epsilon-amino group, respectively.  相似文献   

6.
The fluorescence of N-dansylgalactosamine [N-(5-dimethylaminonaphthalene-1-sulphonyl)galactosamine] was enhanced 11-fold with a 25 nm blue-shift in the emission maximum upon binding to soya-bean agglutinin (SBA). This change was used to determine the association constants and thermodynamic parameters for this interaction. The association constant of 1.51 X 10(6) M-1 at 20 degrees C indicated a very strong binding, which is mainly due to a relatively small entropy value, as revealed by the thermodynamic parameters: delta G = -34.7 kJ X mol-1, delta H = -37.9 kJ X mol-1 and delta S = -10.9 J X mol-1 X K-1. The specific binding of this sugar to SBA shows that the lectin can accommodate a large hydrophobic substituent on the C-2 of galactose. Binding of non-fluorescent ligands, studied by monitoring the fluorescence changes when they are added to a mixture of SBA and N-dansylgalactosamine, indicates that a hydrophobic substituent at the anomeric position increases the affinity of the interaction. The C-6 hydroxy group also stabilizes the binding considerably. Kinetics of binding of N-dansylgalactosamine to SBA studied by stopped-flow spectrofluorimetry are consistent with a single-step mechanism and yielded k+1 = 2.4 X 10(5) M-1 X s-1 and k-1 = 0.2 s-1 at 20 degrees C. The activation parameters indicate an enthalpicly controlled association process.  相似文献   

7.
The thermodynamics of the equilibria between aqueous ribose, ribulose, and arabinose were investigated using high-pressure liquid chromatography and microcalorimetry. The reactions were carried out in aqueous phosphate buffer over the pH range 6.8-7.4 and over the temperature range 313.15-343.75 K using solubilized glucose isomerase with either Mg(NO3)2 or MgSO4 as cofactors. The equilibrium constants (K) and the standard state Gibbs energy (delta G degrees) and enthalpy (delta H degrees) changes at 298.15 K for the three equilibria investigated were found to be: ribose(aq) = ribulose(aq) K = 0.317, delta G degrees = 2.85 +/- 0.14 kJ mol-1, delta H degrees = 11.0 +/- 1.5 kJ mol-1; ribose(aq) = arabinose(aq) K = 4.00, delta G degrees = -3.44 +/- 0.30 kJ mol-1, delta H degrees = -9.8 +/- 3.0 kJ mol-1; ribulose(aq) = arabinose(aq) K = 12.6, delta G degrees = -6.29 +/- 0.34 kJ mol-1, delta H degrees = -20.75 +/- 3.4 kJ mol-1. Information on rates of the above reactions was also obtained. The temperature dependencies of the equilibrium constants are conveniently expressed as R in K = -delta G degrees 298.15/298.15 + delta H degrees 298.15[(1/298.15)-(1/T)] where R is the gas constant (8.31441 J mol-1 K-1) and T the thermodynamic temperature.  相似文献   

8.
Fractionated polyuridylic acid with an average chain length of 55 nucleotides forms binary complexes with 30S subunits with a stoichiometry of I:I. These complexes are heterogeneous in stability. The more stable one is characterized by an association constant K2 - 5.5xI09 M-I, and the less stable-by KI = I06xM-I, at 20 mM Mg2+, 200 mM NH4(+) and 0 degrees C. The main reason for this heterogeneity is the presence or absence of the ribosomal protein SI in the presence or absence of the ribosomal protein SI in the subunits. Decrease of Mg2+ concentration down to 5 mM hardly changes the K2 values but reduction of the NH4(+) concentration to 50 mM results in a 25-fold increase of K2. Association constants K2 for the stable complex, i.e. in the presence of SI protein, were measured at different temperatures (0 - 30 degrees C) and the thermodynamic parameters of binding (delta H degrees, delta S degrees, delta G degrees) were determined. Analogous experiments were made with 70S ribosomes. K2 values as well as delta H degrees, delta S degrees, delta G degrees appeared the same both for 30S and 70S ribosomes in all conditions examined. This is strong evidence that the 50S subunits do not contribute to the interaction of poly(U) with the complete 70S ribosomes.  相似文献   

9.
Equilibrium constants for the binding of cyanate to the ferric heme c octapeptide in 50% ethylene glycol, 50% aqueous buffer were measured spectrophotometrically. Equilibrium constants measured at several temperatures from -20 degrees C to 0 degrees C exhibited an apparent van't Hoff relationship yielding thermodynamic values of delta Ho = -1.3 X 10(3) +/- 0.9 X 10(3) J/mol (-3.1 X 10(2) +/- 2 X 10(2) cal/mol), delta So = -3 +/- 3 J/K X mol (-0.6 +/- 0.8 cal/K X mol). The equilibrium constant for cyanate binding at 25 degrees C and pH 7.4 is 1.21 which is approximately 2 to 3 orders of magnitude lower than that observed for cyanate binding to methemoglobin and metmyoglobin. Krel, the ratio of the hemoprotein to model heme octapeptide binding constants, for NCO- is smaller than Krel for N3- suggesting that hydrogen bonding between the terminal ligand atoms and the distal histidine in hemoglobin and myoglobin does not contribute to the increased protein ligand stabilization observed for these anions relative to the model. A donor-acceptor interaction between the distal histidine and the electrophilic middle atoms of these bound ligands is proposed.  相似文献   

10.
The effect of pH and temperature on the apparent association equilibrium constant (Ka) for the binding of the recombinant proteinase inhibitor eglin c (eglin c), of the soybean Bowman-Birk proteinase inhibitor (BBI) and of its chymotrypsin and trypsin inhibiting fragments (F-C and F-T, respectively) to Leu-proteinase, the leucine specific serine proteinase from spinach (Spinacia oleracea L.) leaves, has been investigated. On lowering the pH from 9.5 to 4.5, values of Ka (at 21 degrees C) for complex formation decrease thus reflecting the acidic pK-shift of the hystidyl catalytic residue from approximately 6.9, in the free Leu-proteinase, to approximately 5.1, in the enzyme: inhibitor adducts. At pH 8.0, values of the apparent thermodynamic parameters for the proteinase:inhibitor complex formation are: Leu-proteinase:eglin c-Ka = 2.2 x 10(11) M-1, delta G degree = -64 kJ/mol, delta H degree = +5.9 kJ/mol, and delta S degree = +240 kJ/molK; Leu-proteinase:BBI-Ka = 3.2 x 10(10) M-1, delta G degree = -59 kJ/mol, delta H degree = +8.8 kJ/mol, and delta S degree = +230 J/molK; and Leu-proteinase:F-C-Ka = 1.1 x 10(6) M-1, delta G degree = -34 kJ/mol, delta H degree = +18 J/mol, and delta S degree = +180 J/molK (values of Ka, delta G degree and delta S degree were obtained at 21.0 degrees C; values of delta H degree were temperature-independent over the range explored, i.e. between 10.0 degrees C and 40.0 degrees C).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The difference spectra of lactate and malate dehydrogenase complexes with four native dyes containing vinylsulfonic and triazinic groups (light-resistant yellow 2KT, red-violet 2KT, etc.) were monitored in 0.1 M phosphate buffer pH 8.2 at 20 degrees C. The dissociation constants were calculated from the spectral data. The most stable complexes were lactate dehydrogenase--light-resistant yellow 2KT and malate dehydrogenase--light-resistant yellow 2KT ones. The values of delta H degree = 5.75 kcal/mole and standard thermodynamic parameters, delta G degree = -6.5 kcal/mole and delta S degree = 41.2 e. u., were calculated from the values of association constants for temperature dependence. The thermodynamic characteristics confirmed the key role of hydrophobic interactions in lactate dehydrogenase--reactive dye complex formation. All the dyes under study competitively inhibit lactate and malate oxidation by the corresponding dehydrogenases. The inhibition constants of both enzymes by the four dyes were determined at 20 degrees C in 0.1 M phosphate buffer pH 8.2. Light-resistant yellow 2KT appeared to be the most effective inhibitor of the enzymes.  相似文献   

12.
Both the nonactivated and activated forms of the chick oviduct cytosol progesterone receptor-hormone complexes displayed first-order dissociation kinetics at temperatures between 0 and 25 degrees C. The rate constant was always 2-3-times greater for the nonactivated than for the activated complex. The thermodynamic parameters calculated from the Eyring plot for the nonactivated and activated forms, respectively, were: delta H+ = 28.6 +/- 0.2 and 29.9 +/- 1.5 kcal/mol; -T delta S+ = 7.4 +/- 0.6 and 7.7 +/- 1.6 kcal/mol; and delta G+ = 21.3 +/- 0.5 and 22.1 +/- 0.1 kcal/mol. These values suggest that activation results in an increase in enthalpy of the ligand-receptor interaction, thus stabilizing the complex. The dissociation rate constants for the native complex obtained by two different experimental approaches, namely, isotope dilution ('chase') and dissociation against charcoal, indicated the absence of cooperativity in the receptor-ligand binding.  相似文献   

13.
In order to identify the forces involved in the binding and to understand the mechanism involved, equilibrium and kinetic studies were performed on the binding of the winged bean acidic lectin to human erythrocytes. The magnitudes of delta S and delta H were positive and negative respectively, an observation differing markedly from the lectin-simple sugar interactions where delta S and delta H are generally negative. Analysis of the sign and magnitudes of these values indicate that ionic and hydrogen bonded interactions prevail over hydrophobic interactions resulting in net -ve delta H (-37.12 kJ.mol-1) and +ve delta S (14.4 J.mole-1 K-1 at 20 degrees C), thereby suggesting that this entropy driven reaction also reflects conformational changes in the lectin and/or the receptor. Presence of two kinds of receptors for WBA II on erythrocytes, as observed by equilibrium studies, is consistent with the biexponential dissociation rate constants (at 20 degrees C K1 = 1.67 x 10(-3) M-1 sec-1 and K2 = 11.1 x 10(-3) M-1 sec-1). These two rate constants differed by an order of magnitude accounting for the difference in the association constants of the two receptors of WBA II. However, the association process remains monoexponential suggesting no observable difference in the association rates of the lectin molecule with both the receptors, under the experimental conditions studied. The thermodynamic parameters calculated from kinetic data correlate well with those observed by equilibrium. A two-step binding mechanism is proposed based on the kinetic parameters for WBA II-receptor interaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The number of carbohydrate-binding sites of the GalNAc-specific lectin is four per tetramer. The binding parameters of N-acetyl-D-galactosamine and methyl-N-acetyl-alpha-D- galactosaminide , were determined by titrating the perturbation in the absorption spectrum of the protein. For D-galactosides, it was necessary to use p-nitrophenyl-N-acetyl-beta-D- galactosaminide as an indicator in substitution titrations. The association constants K were determined at several temperatures yielding 2.4 X 10(4) M-1 at 25 degrees C with delta H degree' = -45 kJ mol-1 and delta S degree' = -67 J X K-1 mol-1 for methyl-N-acetyl-alpha-D- galactosaminide and 1.0 X 10(3) M-1 at 25 degrees C, delta H degree' = -38 kJ mol-1 and delta S degree' = -69 J X K-1 mol-1 for methyl-alpha-D-galactoside. The increase in K by a factor of 25 caused by the acetamido group is largely enthalpic . Whenever different methods were used to determine the association constant of a given compound, the agreement was excellent. The observed changes in absorption or fluorescence of all chromophoric carbohydrate derivatives used are specific for the binding of carbohydrates. For large aromatic beta- aglycons such as p-nitrophenyl or 4-methylumbelliferyl groups, the increase in K of the N-acetyl-D- galactosaminide moiety is by a factor of 2 or less, but for a large N-5-dimethylaminonaphthalene-1-sulfonyl (dansyl) group this factor is about 20 as compared with the acetyl group. The concomitant 10-fold increase in dansyl fluorescence, also observed with four other GalNAc-binding lectins together with a favorable and large delta S degree' = +60 J X K-1 mol-1 strongly point at the presence of a hydrophobic region in the vicinity of the carbohydrate-binding site. The results of stopped flow kinetics with 4-methylumbelliferyl-N-acetyl-beta-D- galactosaminide and the lectin are consistent with a simple mechanism for which k+ = 1.1 X 10(4) M-1 S-1 and k- = 0.4 S-1 at 25 degrees C. This k- is slower than for any monosaccharide-lectin complex reported so far.  相似文献   

15.
Values of K, delta G(o), delta H(o), delta S(o) and delta C(po) for the binding reaction of small organic ligands forming 1:1 complexes with either alpha- or beta-cyclodextrin were obtained by titration calorimetry from 15 degrees C to 45 degrees C. A hydrogen bond or hydrophobic interaction was introduced by adding a single functional group to the ligand. The thermodynamics of binding with and without the added group are compared to estimate the contribution of the hydrogen bond or hydrophobic interaction. A change in the environment of a functional group is required to influence the binding thermodynamics, but molecular size-dependent solute-solvent interactions have no effect. For phenolic O-H-O hydrogen bond formation, delta H(o) varies from -2 to -1.4 kcal mol(-1) from 15 degrees C to 45 degrees C, and delta C(p) is increased by 18 cal K(-1) mol(-1). The hydrophobic interaction has an opposite effect: in alpha-cyclodextrin, delta C(po) = -13.3 cal K(-1) mol(-1) per ligand -CH(2)-, identical to values found for the transfer of a -CH(2)-group from water to a nonpolar environment. At room temperature, the hydrogen bond and the -CH(2)-interaction each contribute about -600 cal mol(-1) to the stability (delta G(o)) of the complex. With increased temperature, the hydrogen bond stability decreases (i.e., hydrogen bonds "melt"), but the stability of the hydrophobic interaction remains essentially constant.  相似文献   

16.
The kinetics of association of Escherichia coli 30S and 50S ribosomal subunits have been carried out as a function of temperature after a magnesium jump from 1.5 to 3 mM. Turbidimetric recordings combined with a stopped-flow apparatus were used to follow the kinetics. The data show that the rates of formation and dissociation of the 70S particles at 3 mM Mg2+ and +25 degrees C were, respectively: k2 = 10(5) M-1 s-1, k1 = 4,5 X 10(-3) s-1; lowering the temperature decreases the rate constants with activation energies equal to E2 = 7.5 kcal/mol, E1 = 26.5 kcal/mol and enhances the association equilibrium towards the 70S species with an enthalpy change (delta H degrees assoc = -19.9 kcal/mol) dominant over the entropy change (delta S degrees assoc = -33 cal/(deg mol)). These thermodynamic parameters were compared to those obtained from studies on the interactions of codon-anticodon in yeast phenylalanine transfer RNA as well as of ribooligonucleotides. The kinetic and thermodynamic data are shown to be consistent with 16S-23S RNA interaction.  相似文献   

17.
Thermodynamics of the enzyme-catalyzed (alkaline phosphatase, EC 3.1.3.1) hydrolysis of glucose 6-phosphate, mannose 6-phosphate, fructose 6-phosphate, ribose 5-phosphate, and ribulose 5-phosphate have been investigated using microcalorimetry and, for the hydrolysis of fructose 6-phosphate, chemical equilibrium measurements. Results of these measurements for the processes sugar phosphate2- (aqueous) + H2O (liquid) = sugar (aqueous) + HPO2++-(4) (aqueous) at 25 degrees C follow: delta Ho = 0.91 +/- 0.35 kJ.mol-1 and delta Cop = -48 +/- 18 J.mol-1.K-1 for glucose 6-phosphate; delta Ho = 1.40 +/- 0.31 kJ.mol-1 and delta Cop = -46 +/- 11 J.mol-1.dK-1 for mannose 6-phosphate; delta Go = -13.70 +/- 0.28 kJ.mol-1, delta Ho = -7.61 +/- 0.68 kJ.mol-1, and delta Cop = -28 +/- 42 J.mol-1.K-1 for fructose 6-phosphate; delta Ho = -5.69 +/- 0.52 kJ.mol-1 and delta Cop = -63 +/- 37 J.mol-1.K-1 for ribose 5-phosphate; and delta Ho = -12.43 +/- 0.45 kJ.mol-1 and delta Cop = -84 +/- 30 J.mol-1.K-1 for the hydrolysis of ribulose 5-phosphate. The standard state is the hypothetical ideal solution of unit molality. Estimates are made for the equilibrium constants for the hydrolysis of ribose and ribulose 5-phosphates. The effects of pH, magnesium ion concentration, and ionic strength on the thermodynamics of these reactions are considered.  相似文献   

18.
Using the patch-clamp method temperature dependences of the chord conductance of single potential--dependent slow and fast K+ channels in mollusk neurons were studied. Under control conditions (20 degrees C, 0 mV, [K+]o = 1.5 mM and [K+]i = 100 mM) the conductances of the fast and slow K+ channels were equal to 20-25 pS and 30-40 pS, respectively. Besides, the temperature dependences of the currents through the K+ channels of lesser conductance (5-20 pS) were studied. Some of these channels may be regarded as subtypes of the fast and slow K+ channels named above. It was found that for the channels of all types single channel currents arise with temperature. However, in the range of 10-20 degrees C an anomalous conductance decrease at temperature elevation was observed. For all channels except for the fast one at temperatures above 20 degrees C activation energy (delta Ea) calculated from the Arrhenius plots of the currents was about 4 kcal/mol. At the temperatures below 10 degrees C delta Ea was equal to about 12 kcal/mol. In this temperature range delta Ea had a pronounced potential dependency. Temperature dependences of the fast K+ channel conductance were opposite to those of the slow K+ channel to some extent.  相似文献   

19.
The binding of Streptomyces subtilisin inhibitor (SSI) to alpha-chymotrypsin (CT) (EC 3.4.21.1) was studied by isothermal and differential scanning calorimetry at pH 7.0. Thermodynamic quantities for the binding of SSI to the enzyme were derived as functions of temperature from binding constants (S. Matsumori, B. Tonomura, and K. Hiromi, private communication) and isothermal calorimetric experiments at 5-30 degrees C. At 25 degrees C, the values are delta G degrees b = -29.9 kJ mol-1, delta Hb = +18.7 (+/- 1.3) kJ mol-1, delta S degrees b = +0.16 kJ K-1 mol-1, and delta C p,b = -1.08 (+/- 0.11) kJ mol-1. The binding of SSI to CT is weak compared with its binding to subtilisin [Uehara, Y., Tonomura, B., & Hiromi, K. (1978) J. Biochem. (Tokyo) 84, 1195-1202; Takahashi, K., & Fukada, H. (1985) Biochemistry 24, 297-300]. This difference is due primarily to a less favorable enthalpy change in the formation of the complex with CT. The hydrophobic effect is presumably the major source of the entropy and heat capacity changes which accompany the binding process. The unfolding temperature of the complex is about 7 degrees C higher than that of the free enzyme. The enthalpy and the heat capacity changes for the unfolding of CT were found to be 814 kJ mol-1 and 17.3 kJ K-1 mol-1 at 49 degrees C. The same quantities for the unfolding of the SSI-CT complex are 1183 kJ mol-1 and 39.2 kJ K-1 mol-1 at 57 degrees C.  相似文献   

20.
Protected forms of dehydroepiandrosterone, delta 5 cholenic acid, (25R)-26-hydroxycholesterol and diosgenin were converted to the corresponding delta 5,7 dienes by successive treatment with 1,3-dibromo-5,5-dimethylhydantoin (dibromantin), tetrabutylammonium bromide and tetrabutylammonium fluoride. The crude products, which contained the delta 5,7 species contaminated by minor amounts of the delta 5 and delta 4,6 steroids, were purified by silica gel-AgNO3 chromatography to give the following steroids in approximately 99% purity and at least 50% yield: 3 beta-acetoxyandrosta-5,7-dien-17-one, methyl 3 beta-acetoxychola-5,7-dien-24-oate, (25R)-3 beta,26-diacetoxycholesta-5,7-diene and (25R)-3 beta-acetoxyspirosta-5,7-diene. Analogous treatment of acetate derivatives of pregnenolone and stigmasterol gave 3 beta-acetoxypregna-5,7-dien-20-one and 3 beta-acetoxystigmasta-5,7,22-triene in approximately 50% yield but of lower purity. Full 1H and 13C NMR assignments are given for seven delta 5,7 steroid acetates and the corresponding delta 5 starting materials. Coupling constants for rings A, B and C of delta 5,7 steroids are presented and stereochemical assignments have been made for the following 1H NMR signals: the C-11 protons of delta 5,7 steroids, the C-16 protons of sterols and bile acids, the C-22 and C-23 protons of bile acid esters and the C-28 protons of stigmasterol derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号