首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Habitat fragmentation poses a major threat to the viability of plant populations. However, the intensity of fragmentation effects may vary among years. We studied two possible effects of habitat fragmentation (patch size and isolation) on the reproduction and proportion of damaged fruits in 24 patches of the self-compatible shrub Colutea hispanica for three consecutive years with different climate conditions. We also studied the effect of fragmentation on the incidence of two main pre-dispersal seed predators, the butterflies Iolana iolas and Lampides boeticus. High between-year variability was found in number of viable seeds per fruit, number of fruits per plant, total number of viable seeds per plant and proportion of damaged fruits. In 2003, small, isolated patches had a higher fruit set and number of fruits per plant. The proportion of damaged fruits was significantly lower in isolated populations in 2003, while it was very high in all patches in 2004 and 2005. High between-year variability was also found in the proportion of fruits per plant with I. iolas eggs. In 2003 isolated patches had a lower proportion of fruits with I. iolas eggs, but no significant effect of patch size and isolation was found in 2004 or 2005. The proportion of fruits with L. boeticus eggs was similar in the three years of study, although it was slightly higher in large, non-isolated patches in 2003. Thus, the effects of fragmentation on plant reproduction cannot be generalized from one single-year survey. In contrast to the generally accepted idea that fragmentation reduces plant reproduction, plant fitness may increase in isolated patches in years with high fruit production and low seed predation.  相似文献   

2.
Aim The mechanisms of initial dispersal and habitat occupancy by invasive alien species are fundamental ecological problems. Most tests of metapopulation theory are performed on local population systems that are stable or in decline. In the current study we were interested in the usefulness of metapopulation theory to study patch occupancy, local colonization, extinction and the abundance of the invasive Caspian gull (Larus cachinnans) in its initial invasion stages. Location Waterbodies in Poland. Methods Characteristics of the habitat patches (waterbodies, 35 in total) occupied by breeding pairs of Caspian gulls and an equal sample of randomly selected unoccupied patches were compared with t‐tests. Based on presence–absence data from 1989 to 2006 we analysed factors affecting the probability of local colonization, extinction and the size of local populations using generalized linear models. Results Occupied habitat patches were significantly larger and less isolated (from other habitat patches and other local populations) and were located closer to rivers than empty patches. The proximity of local food resources (fish ponds, refuse dumps) positively affected the occurrence of breeding pairs. The probability of colonization was positively affected by patch area, and negatively by distances to fish ponds, nearest habitat patch, nearest breeding colony and to a river, and by higher forest cover around the patch boundaries. The probability of extinction was lower in patches with a higher number of breeding pairs and with a greater area of islets. The extinction probability increased with distances to other local populations, other habitat patches, fish ponds and to refuse dumps and with a higher cover of forest around the patch boundaries. The size of the local population decreased with distances to the nearest habitat patch, local population, river, fish pond and refuse dump. Local abundance was also positively affected by the area of islets in the patch. Main conclusions During the initial stages of the invasion of Caspian gulls in Poland the species underwent metapopulation‐like dynamics with frequent extinctions from colonized habitat patches. The results prove that metapopulation theory may be a useful conceptual framework for predicting which habitats are more vulnerable to invasion.  相似文献   

3.
Cronin JT 《Oecologia》2004,139(4):503-514
Few field studies of natural populations have examined the factors influencing local extinctions and colonization of empty habitat patches for a prey species and its predator. In this study, I carried out a census of planthopper (Prokelisia crocea; Hemiptera: Delphacidae) and egg parasitoid (Anagrus columbi; Hymenoptera: Mymaridae) incidence and densities in 147 host-plant patches (Spartina pectinata; Poaceae) over seven planthopper generations in a tall-grass prairie landscape. For both species, the likelihood of going extinct in a patch was related to a number of patch-specific variables: density, temporal variability in density, proportion of hosts parasitized (planthopper only), host-plant density, patch size, patch isolation, and composition of the surrounding matrix. Colonization likelihood was related only to the physical attributes of the patch. There was high patch turnover in this prairie landscape. On average, planthoppers went extinct in 23% of the patches and A. columbi went extinct in 51% of the patches in each generation. For the planthopper, extinction likelihood increased with a decrease in patch size and the proportion of the matrix composed of mudflat. Parasitism of eggs had no effect on the extinction likelihood of local P. crocea populations, suggesting that A. columbi may not play a major role in the patch dynamics of its host. The likelihood of extinction for A. columbi was dependent on factors that spanned three trophic levels. An increase in plant density, decrease in host density and decrease in parasitoid density all increased the likelihood of A. columbi extinction within a patch. The dependency on multiple trophic levels may explain the higher extinction risk for the parasitoid than its host. A. columbi extinction was also affected by the matrix habitat surrounding the patch—the effect was the opposite of that for P. crocea. Finally, vacant patches were colonized at rates of 53% and 34% per generation for the planthopper and parasitoid, respectively. For both species, colonization probabilities decreased with an increase in patch isolation. High host densities in a patch also favored high rates of colonization by A. columbi. I discuss how anthropogenic changes to the prairie landscape can affect the metapopulation dynamics and persistence time of this host-parasitoid interaction.  相似文献   

4.
The metapopulation concept is widely established in population biology. It predicts that the likelihood of colonization of an empty patch is positively correlated with its connectivity, because colonizers from occupied patches will be more likely to reach an empty patch if they are closer to it. Another prediction is that the likelihood of extinction of an occupied patch will be negatively correlated with its connectivity to other patches, as the occupied patch can be ‘reinforced’ by immigrants from patches that are close by. We tested these predictions using an extensive data set for an epiphytic orchid, Lepanthes rupestris from Puerto Rico. Our data did not support the first prediction, but we found that the likelihood of extinction is negatively correlated with patch connectivity. We hypothesize that this might be because most orchid seeds are wind dispersed and seeds that do not fall immediately below the mother plant are uniformly distributed after a steep leptokurtic distribution. We predict that taxa with similar seed and gene flow characteristics should show similar patterns in the association between colonization/extinction rates and patch connectivity. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 598–606.  相似文献   

5.
Conservation of forest birds in fragmented landscapes requires not only determining the critical patch characteristics influencing local population persistence but also identifying patch networks providing connectivity and suitable habitat conditions necessary to ensure regional persistence. In this study, we assessed the importance of patch attributes, patch connectivity, and network components (i.e., groups of interconnected patches) in explaining the occupancy pattern of the Thorn-tailed Rayadito (Aphrastura spinicauda), a forest bird species of central Chile. Using a daily movement threshold distance, we identified a total of 16 network components of sclerophyllous forest within the study area. Among those components, patch area and vegetation structure-composition were important predictors of patch occupancy. However, the inclusion of patch connectivity and component size (i.e., the area of a network component) into the models greatly increases the models’ accuracy and parsimony. Using the best-fitted model, a total of 33 patches were predicted to be occupied by rayaditos within the study area, but such occupied patches were distributed in only six network components. These results suggest that persistence of rayaditos in central Chile requires the maintenance of large single patches and patch networks providing habitat and connectivity.  相似文献   

6.
The scarce heath (Coenonympha hero) is an internationally threatened butterfly in Western Europe, where it occurs primarily on hay fields and abandoned arable land in a small-scale agricultural landscape of south-central Scandinavia. Due to afforestation, this habitat is becoming increasingly fragmented in Sweden, and it can be expected that the scarce heath will decline abruptly when threshold conditions for metapopulation persistence are no longer met. We used stepwise polychotomous logistic regression to compare habitat characteristics and isolation measures for patches that harbour large, small or no populations, respectively, in an area of south-western Sweden. We found that patch area, distance to the nearest large population and amount of Galium spp. explained a significant part of the variation in relative abundance among patches. Distance to nearest large population resulted in a better model to predict occupancy than both distance to the nearest inhabited patch and connectivity, which suggests that primarily large populations act as sources for small satellite populations. Today, sites of three of the eight larger populations in the study area have been planted with spruce or pine and will disappear within 20 years. We argue that the disappearance of these patches may very well lead to rapid extinction of the whole metapopulation system.  相似文献   

7.
Habitat size, habitat isolation and habitat quality are regarded as the main determinants of butterfly occurrence in fragmented landscapes. To analyze the relationship between the occurrence of the butterfly Cupido minimus and these factors, patch occupancy of the immature stages in patches of its host plant Anthyllis vulneraria was studied in the nature reserve Hohe Wann in Bavaria (Germany). In 2001 and 2002, 82 A. vulneraria patches were surveyed for the presence of C. minimus larvae. The occurrence was largely affected by the size of the food plant patches. In a habitat model that uses multiple logistic regression, the type of management and habitat connectivity are further determinants of species distribution. Internal and temporal validation demonstrate the stability and robustness of the developed habitat models. Additionally, it was proved that the colonization rate of C. minimus was significantly influenced by the distance to the next occupied Anthyllis patch. Concerning long-term survival of (meta-) populations in fragmented landscapes, the results show that lower habitat quality may be compensated by higher connectivity between host plant patches. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Summary The population structure of the spruce grouse (Canachites canadensis) was studied in the Adirondack Mountains of New York, U.S.A. Twenty-five isolated habitat patches exist and are occupied by spruce grouse, with 7 suitable but unoccupied patches existing at the periphery of the range. The regional distribution and abundance of spruce grouse is correlated with the amount of lowland coniferous forest habitat. Unoccupied patches were significantly smaller and significantly farther from occupied patches than were other occupied patches. For all patches, as distance from the nearest occupied patch increased, the percent of occupied patches decreased linearly. I incorporated birth and death rates for spruce grouse into the MacArthur-Wilson survivorship model which closely predicted the proportion of occupied patches for an average population density (2.8 spruce grouse/100ha). For the same demographic parameters, extinction times were calculated which indicate that the 15 habitat patches of a carrying capacity of 3 female spruce grouse (100 ha) would have an average extinction time of less than 6 years. This in part accounts for the high proportion of these patches which are unoccupied. Extinctions and recolonizations of patches were observed during the study. The patterns of patch occupancy can partially be predicted based on their size, spatial arrangement, and the demographic characteristics of the spruce grouse.  相似文献   

9.
Despite increasing awareness of the theoretical importance of habitat dynamics on metapopulations, only a few empirical studies have been conducted. We aimed to increase our understanding of how patch size, dynamics and connectivity affect colonization–extinction dynamics and the occurrence patterns of a beetle (Stephanopachys linearis), which breeds only in burned trees, existing as dynamic habitat patches that have become rare in managed forest landscapes. We assessed species’ presence/absence twice in all known habitat patches (i.e. > 1 ha sites where forest fires had occurred during the previous 2–15 yr) in a 200 × 150 km region of central Sweden, dominated by managed boreal forest. Evaluated over six years, the colonization rate was 47% and the local extinction risk was 65%. Probability of colonization increased with patch size (number of suitable trees in a site) and connectivity to occupied patches within 30 km, and decreased with increasing time since fire. Local extinction risk decreased with habitat patch size but increased, unexpectedly, with connectivity. Occurrence increased with patch size and decreased with increasing time since fire. At a regional scale, S. linearis tracks the fire dynamics by colonising sites with burned trees and by becoming extinct at rates which make the species rare at sites where burnt trees are more than eight years old. In managed boreal forest landscapes, a large proportion of sites may be created by prescribed burning (in our study area: 82%), and consequently human decisions strongly affect the future amount of habitat for fire‐dependent species and its spatial distribution. Stephanopachys linearis uses burned sites more often if more trees are retained and, to some extent, if sites are concentrated in those parts of a region that already support high population densities of the species.  相似文献   

10.
We studied population dynamics of red squirrels in a group of small forest fragments, that cover only 6.5% of the total study area (4664 ha) and where distances to the nearest source population were up to 2.2 km. We tested effects of patch size, quality and isolation and supplementary feeding on patch occupation during 1995–99. Larger patches and patches with supplementary feeding had a higher probability of being occupied. No patch <3.5 ha was ever occupied. No effects of isolation were found, suggesting that the forest habitat in the study area is not sufficiently fragmented to influence red squirrel distribution across patches. For medium sized patches (3.7–21 ha), that were occupied some years, there was an increase in patch occupation over the years, even though overall population size tended to decrease. These patches had a high turnover, especially of males. Patches in which the squirrel population went extinct were recolonized within a year. For patches that were at least some years occupied, squirrel density depended on patch quality only. No effects of patch size, isolation and winter temperature on population density were found. These data suggest that in our study area habitat fragmentation has no effect on local squirrel density and that the random sample hypothesis explains the distribution pattern across patches.  相似文献   

11.
Recent studies on butterflies emphasize habitat characteristics together with metapopulation parameters (patch area and isolation) giving a more thorough understanding of processes influencing population persistence and patch occupancy, than either of them alone. We studied a coastal and an archipelago population of the Apollo butterfly (Parnassius apollo) in SW Finland. Larvae were surveyed for four years in both populations. Counting larvae on three consecutive days and temporarily removing them tested the survey accuracy. The removals showed four times higher larval abundance in the archipelago than on the coast. Survey methods were reliable, provided that empty patch status was not based on single visits only, if larval abundance was low. On the coast, large patches, and patches with high host-plant abundance were often occupied. In the archipelago, patches rich in host-plant were often occupied whereas patch area did not affect patch occupancy. In both populations, the probability of patches being occupied for three consecutive years increased with increasing host-plant abundance and patch area. Conservation of P. apollo depends on securing host-plant abundance on large enough patches in both study systems. In these systems, even crude habitat measures prove useful for understanding ecological processes behind observed patterns.  相似文献   

12.
In natural as well as in cultural landscapes, disturbance and succession are responsible for the emergence and subsequent disappearance of suitable habitat patches. The dynamics of habitat patches has important consequences for the spatial structure and dynamics of regional populations. However, there are only few studies quantifying both patch dynamics and incidence of insect species in a dynamic landscape over several years. I studied the incidence and population dynamics of the leaf beetle Gonioctena olivacea in a system of dynamic patches of the host plant Scotch broom Cytisus scoparius . The incidence of the beetle was most strongly affected by patch area, whereas connectivity, patch quality, patch age, and landscape context had no or only a minor effect when analysed with logistic regression. The size of local beetle populations was highly fluctuating between the years; however, the population dynamics of the local populations was not synchronous. Adjacent patches did not show higher degrees of synchrony than patches separated by large distances. In the three years of study, local populations became extinct through demographic or environmental stochasticity and patch destruction. Each year >10% of the patches disappeared. The extinction rate of beetles in persistent patches was decreasing with increasing patch area. On the other hand, patches newly emerged and were rapidly colonized by the beetle. The colonization rate depended on patch connectivity. Obviously, Gonioctena olivacea was capable of persisting in this system with high turnover of patches owing to its high dispersal power.  相似文献   

13.
While there is agreement that both habitat quality and habitat network characteristics (such as patch size and isolation) contribute to the occupancy of patches by any given species, the relative importance of these factors is under debate. This issue is of fundamental ecological importance, and moreover of special concern for conservation biologists aiming at preserving endangered species. Against this background we investigated patch occupancy in the violet copper Lycaena helle, one of the rarest butterfly species in Central Europe, in the Westerwald area (Rhineland-Palatinate, Western Germany). Occupied (n = 102) differed from vacant (n = 128) patches in altitude, size, connectivity, availability of wind shelter, in the abundance of the larval host-plant, in the abundance of a grass species indicating favorable habitat conditions and in the abundance of nitrophilous plants. Overall, patch occupancy was primarily determined by patch size, connectivity and the abundance of the larval host plant, while all other parameters of habitat quality were of subordinate importance. Therefore, our findings suggest that even for extremely sedentary species such as L. helle habitat networks are decisive and—next to the preservation of habitat quality—need to be an integral part of any conservation management for this species.  相似文献   

14.
Priyanga Amarasekare 《Oecologia》1994,100(1-2):166-176
I attempted to characterize spatial units of local dynamics and dispersal in banner-tailed kangaroo rats (Dipodomys spectabilis), to determine if spatial structure influenced population dynamics in the way predicted by current metapopulation models. D. spectabilis exhibited a hierarchical spatial structure. Local populations that appeared as discrete entities on a scale of kilometers were subdivided into clusters of mounds on a scale of meters. This structure, however, cannot be characyerized in terms of the discrete habitat patches envisioned by the metapopulation models. Occupied areas were statistically distinguishable from the surrounding matrix, but this difference was only quantitative. There were no discrete boundaries between occupied areas and the matrix. Habitat within occupied areas was heterogeneous, and occupied areas in different locations were statistically distinguishable from each other. High heterogeneity within occupied areas, and high contrast among them, make it difficult to define what is a suitable habitat patch for D. spectabilis. On a smaller spatial scale, there was significant aggregation of resident mounds within occupied areas. These aggregations, however, do not correspond to discrete habitat patches. Rather, they appear to result from an interaction between fine-scale habitat heterogeneity and limited dispersal due to natal philopatry and low adult vagility. These complications make it difficult to identify habitat patches independent of the species' distribution. For species like D. spectabilis that are patchily distributed but do not occupy discrete habitat patches, a patch occupancy approach does not seem appropriate for describing spatial structure. Hierarchical spatial structure underscores the need for a framework that incorporates multiple scales of spatial structure, rather than one that pre-imposes a single spatial scale as being important for population dynamics. A framework that (i) considers patchiness as a combination of both habitat heterogeneity, and life-history and behavioral characteristics, and (ii) incorporates hierarchical spatial structure, appears to be the most suitable for conceptualizing spatial dynamics of behaviorally complex vertebrates such as D. spectabilis.  相似文献   

15.
Long-term persistence of species and the SLOSS problem   总被引:1,自引:0,他引:1  
The single large or several small (SLOSS) problem has been addressed in a large number of empirical and theoretical studies, but no coherent conclusion has yet been reached. Here I study the SLOSS problem in the context of metapopulation dynamics. I assume that there is a fixed total amount A(0) of habitat available, and I derive formulas for the optimal number n and area A of habitat patches, where n=A(0)/A. I consider optimality in two ways. First, I attempt to maximize the time to metapopulation extinction, which is a relevant measure for metapopulation viability for rare and threatened species. Second, I attempt to maximize the metapopulation capacity of the habitat patch network, which corresponds both with maximizing the distance to the deterministic extinction threshold and with maximizing the fraction of occupied patches. I show that in the typical case, a small number of large patches maximizes the metapopulation capacity, while an intermediate number of habitat patches maximizes the time to extinction. The main conclusion stemming from the analysis is that the optimal number of patches is largely affected by the relationship between habitat patch area and rates of immigration, emigration and local extinction. Here this relationship is summarized by a single factor zeta, termed the patch area scaling factor.  相似文献   

16.
Mistletoes are aerial hemiparasitic plants which occupy patches of favorable habitat (host trees) surrounded by unfavorable habitat and may be possibly modeled as a metapopulation. A metapopulation is defined as a subdivided population that persists due to the balance between colonization and extinction in discrete habitat patches. Our aim was to evaluate the dynamics of the mistletoe Psittacanthus robustus and its host Vochysia thyrsoidea in three Brazilian savanna areas using a metapopulation approach. We also evaluated how the differences in terms of fire occurrence affected the dynamic of those populations (two areas burned during the study and one was fire protected). We monitored the populations at six-month intervals. P. robustus population structure and dynamics met the expected criteria for a metapopulation: i) the suitable habitats for the mistletoe occur in discrete patches; (ii) local populations went extinct during the study and (iii) colonization of previously non-occupied patches occurred. The ratio of occupied patches decreased in all areas with time. Local mistletoe populations went extinct due to two different causes: patch extinction in area with no fire and fire killing in the burned areas. In a burned area, the largest decrease of occupied patch ratios occurred due to a fire event that killed the parasites without, however, killing the host trees. The greatest mortality of V. thyrsoidea occurred in the area without fire. In this area, all the dead trees supported mistletoe individuals and no mortality was observed for parasite-free trees. Because P. robustus is a fire sensitive species and V. thyrsoidea is fire tolerant, P. robustus seems to increase host mortality, but its effect is lessened by periodic burning that reduces the parasite loads.  相似文献   

17.
This paper has three primary aims: to establish an effective means for modelling mainland-island metapopulations inhabiting a dynamic landscape; to investigate the effect of immigration and dynamic changes in habitat on metapopulation patch occupancy dynamics; and to illustrate the implications of our results for decision-making and population management. We first extend the mainland-island metapopulation model of Alonso and McKane [Bull. Math. Biol. 64:913–958, 2002] to incorporate a dynamic landscape. It is shown, for both the static and the dynamic landscape models, that a suitably scaled version of the process converges to a unique deterministic model as the size of the system becomes large. We also establish that, under quite general conditions, the density of occupied patches, and the densities of suitable and occupied patches, for the respective models, have approximate normal distributions. Our results not only provide us with estimates for the means and variances that are valid at all stages in the evolution of the population, but also provide a tool for fitting the models to real metapopulations. We discuss the effect of immigration and habitat dynamics on metapopulations, showing thatmainland-like patches heavily influence metapopulation persistence, and we argue for adopting measures to increase connectivity between this large patch and the other island-like patches. We illustrate our results with specific reference to examples of populations of butterfly and the grasshopperBryodema tuberculata.  相似文献   

18.
In the past, extensive areas in Drenthe (The Netherlands) were covered by peat bogs and wet heath lands, but nowadays only relatively small fragments are left. During the second half of the 20th century the quality of these fragments decreased, due to lowering of the water table and the input of nutrients. These factors will have a negative effect on the survival of species which are adapted to these stable type of biotopes, like the Black bog ant. The distribution pattern was analysed within a study area of 750 km2, in order to find out if this species will survive in a landscape where its habitat is severely fragmented. Using multiple logistic regression analysis it appears that size and quality of the habitat patches, as well as openness of the environment, contribute significantly to patch-occupancy. No correlation was found between the probability of a patch being occupied and its distance to the nearest occupied patch. It appears that the spatial cohesion of local populations by means of flying queens is weak or absent on the scale of the study area. Only in parts of the area, where the distance between habitat patches is less than 3 km in open field, a habitat network may still exist. However, with ongoing habitat loss a threshold will be passed and the species will ultimately become extinct.  相似文献   

19.
Recent studies on the determinants of distribution and abundance of animals at landscape level have emphasized the usefulness of the metapopulation approach, in which patch area and habitat connectivity have often proved to explain satisfactorily existing patch occupancy patterns. A different approach is needed to study the common situation in which suitable habitat is difficult to determine or does not occur in well‐defined habitat patches. We applied a landscape ecological approach to study the determinants of distribution and abundance of the threatened clouded apollo Parnassius mnemosyne butterfly within an area of 6 km2 of agricultural landscape in south‐western Finland. The relative role of 24 environmental variables potentially affecting the distribution and abundance of the butterfly was studied using a spatial grid system with 2408 grid squares of 0.25 ha, of which 349 were occupied by the clouded apollo. Both the probability of butterfly presence and abundance in a 0.25 ha square increased with the presence of the larval host plant Corydalis solida the cover of semi‐natural grassland, the amount of solar radiation and spalial autocorrelation in butterfly occurrence. Additionally, butterfly abundance increased with overall mean patch size and decreased with maximum slope angle and wind speed. Two advantages of the employment of a spatial grid system included the avoidance of a subjective definition of suitable habitat patches and an evaluation of the relative significance of different components of habitat quality at the same time with habitat availability and connectivity. The large variation in habitat quality was influenced by the abundance of the larval host plant and adult nectar sources but also by climatological. topographical and structural factors. The application of a spatial grid system as used here has potential for a wide use in studies on landscape‐level distribution and abundance patterns in species with complex habitat requirements and habitat availability patterns.  相似文献   

20.
《Journal of bryology》2013,35(3):187-195
Abstract

Occupancy and sporophyte numbers of Buxbaumia viridis on patches of decaying wood were investigated during a 4-year period (1996-99). Temporal variation in sporophyte number was investigated in relation to precipitation. Spore number per sporophyte was counted and spore number per substratum patch area and forest area were calculated. To predict the occupancy of B. viridis on decaying logs and stumps in a forest, the patch size (suitable wood area) was the most important variable. Decomposition stage was included in the model as a quality factor, expressing the higher and more stable humidity in late wood-decay stages. The suitable wood area of each patch was determined first and foremost by the stage of decomposition and diameter of the decaying wood. Only 16% of all wood patches considered suitable for production of sporophytes were occupied. The probability of a patch being occupied increased linearly with patch size to approximately 7 dm2; above this size the probability of being colonized was close to one. Both the number of sporophytes and the number of occupied patches were correlated with precipitation amounts during the summer months, with a reduction of occupied patches of 73% in the dry year 1999, compared with mean values for 1996-98. Spore number per sporophyte was correlated with length and width of the capsule, and varied between 1.4 and 9.0 million, with a mean value of 6.0 million. It is suggested that the rarity of B. viridis is caused by a low probability of patches being occupied because of their short longevity and small size, together with the facts that the species is dioicous, short-lived, sensitive to desiccation of the substratum, and has a gametophyte that is so minute it cannot compete with larger bryophytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号