首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nucleotide analogue 5-p-fluorosulfonylbenzoyladenosine reacts with rat liver microsomal 3-hydroxy-3-methylglutaryl-CoA reductase kinase, causing a rapid loss of the AMP activation capacity and a slower inactivation of the catalytic activity. The rate constant for loss of AMP activation is eleven times higher (K1 = 0.107 min-1) than the rate constant for inactivation (K2 = 0.0094 min-1). Mg-ATP protects preferentially against inactivation, while Mg-AMP at a low concentration (7.5/0.05 mM) protects preferentially against loss of the AMP activation capacity. Oppositely, Mg-ADP at a low concentration (7.5/0.05 mM) hardly protects against loss of AMP activation capacity. We conclude that microsomal reductase kinase has distinct sites for activation and catalysis.  相似文献   

2.
J L Wyatt  R F Colman 《Biochemistry》1977,16(7):1333-1342
Rabbit muscle pyruvate kinase is irreversibly inactivated upon incubation with the adenine nucleotide analogue, 5'-p-fluorosulfonylbenzoyladenosine. A plot of the time dependence of the logarithm of the enzymatic activity at a given time divided by the initial enzymatic activity(logE/Eo) reveals a biphasic rate of inactivation, which is consistent with a rapid reaction to form partially active enzyme having 54% of the original activity, followed by a slower reaction to yield totally inert enzyme. In addition to the pyruvate kinase activity of the enzyme, modification with 5'-p-fluorosulfonylbenzoyladenosine also disrupts its ability to catalyze the decarboxylation of oxaloacetate and the ATP-dependent enolization of pyruvate. In correspondence with the time dependence of inactivation, the rate of incorporation of 5'-p-[14C]fluorosulfonylbenzoyladenosine is also biphasic. Two moles of reagent per mole of enzyme subunit are bound when the enzyme is completely inactive. The pseudo-first-order rate constant for the rapid rate is linearly dependent on reagent concentration, whereas the constant for the slow rate exhibits saturation kinetics, suggesting that the reagent binds reversibly to the second site prior to modification. The adenosine moiety is essential for the effectiveness of 5'-p-fluorosulfonylbenzoyladenosine, since p-fluorosulfonylbenzoic acid does not inactivate pyruvate kinase at a significant rate. Thus, the reaction of 5'-p-fluorosulfonylbenzoyladenosine with pyruvate kinase exhibits several of the characteristics of affinity labeling of the enzyme. Protection against inactivation by 5'-p-fluorosulfonylbenzoyladenosine is provided by the addition to the incubation mixture of phosphoenolpyruvate. Mg-ADP or Mg2+. In contrast, the addition of pyruvate, Mg-ATP, or ADP and ATP alone has no effect on the rate of inactivation. These observations are consistent with the postulate that the 5'-p-fluorosulfonylbenzoyladenosine specifically labels amino acid residues in the binding region of Mg2+ and the phosphoryl group of phosphoenolpyruvate which is transferred during the catalytic reaction. The rate of inactivation increases with increasing pH, and k1 depends on the unprotonated form of an amino acid residue with pK = 8.5. On the basis of the pH dependence of the reaction of pyruvate kinase with 5'-p-fluorosulfonylbenzoyladenosine and the elimination of cysteine residues as possible sites of reaction, it is postulated that lysyl or tyrosyl residues are the most probably candidates for the critical amino acids.  相似文献   

3.
4.
Incubation of 5'-p-fluorosulfonylbenzoyladenosine with the catalytic subunit of bovine cardiac muscle cyclic AMP-dependent protein kinase led to the formation of an inactive enzyme irreversibly modified with approximately one mol of reagent per mol of subunit. The inactivation reaction followed pseudofirst order kinetics. The rate of inactivation at various reagent concentrations exhibited saturation kinetics implying that the reagent reversibly binds to the enzyme prior to inactivation. The addition of MgATP, MgADP, or MgAMP-PNP to the reaction mixture fully protected the enzyme from inactivation by 5'-p-fluorosulfonylbenzoyladenosine. The reagent was demonstrated to be a competitive inhibitor of MgATP with a Ki of 0.235 mM. Metal-free nucleotides were without effect upon the reaction rate while metal ions alone accelerated the inactivation rate up to 7-fold. The inclusion of casein or synthetic peptide substrate in the incubation mixture did not affect the reaction kinetics. Reaction of 5'-p-fluorosulfonylbenzoyladenosine with the kinase subunit exhibits all of the characteristics of affinity labeling of the MgATP-binding site.  相似文献   

5.
Plants produce diverse isoprenoids, which are synthesized in plastids, mitochondria, endoplasmic reticulum (ER), and the nonorganellar cytoplasm. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) catalyzes the synthesis of mevalonate, a rate-limiting step in the cytoplasmic pathway. Several branches of the pathway lead to the synthesis of structurally and functionally varied, yet essential, isoprenoids. Several HMGR isoforms have been identified in all plants examined. Studies based on gene expression and on fractionation of enzyme activity suggested that subcellular compartmentalization of HMGR is an important intracellular channeling mechanism for the production of the specific classes of isoprenoids. Plant HMGR has been shown previously to insert in vitro into the membrane of microsomal vesicles, but the final in vivo subcellular localization(s) remains controversial. To address the latter in Arabidopsis (Arabidopsis thaliana) cells, we conducted a multipronged microscopy and cell fractionation approach that included imaging of chimeric HMGR green fluorescent protein localizations in transiently transformed cell leaves, immunofluorescence confocal microscopy in wild-type and stably transformed seedlings, immunogold electron microscopy examinations of endogenous HMGR in seedling cotyledons, and sucrose density gradient analyses of HMGR-containing organelles. Taken together, the results reveal that endogenous Arabidopsis HMGR is localized at steady state within ER as expected, but surprisingly also predominantly within spherical, vesicular structures that range from 0.2- to 0.6-microm diameter, located in the cytoplasm and within the central vacuole in differentiated cotyledon cells. The N-terminal region, including the transmembrane domain of HMGR, was found to be necessary and sufficient for directing HMGR to ER and the spherical structures. It is believed, although not directly demonstrated, that these vesicle-like structures are derived from segments of HMGR-ER. Nevertheless, they represent a previously undescribed subcellular compartment likely capable of synthesizing mevalonate, which provides new evidence for multiorganelle compartmentalization of the isoprenoid biosynthetic pathways in plants.  相似文献   

6.
HMGR (3-hydroxy-3-methylglutaryl-coenzyme A reductase; E.C.1.1.1.34) supplies mevalonate for the synthesis of many plant primary and secondary metabolites, including the terpenoid component of indole alkaloids. Suspension cultures of Camptotheca acuminata and Catharanthus roseus, two species valued for their anticancer indole alkaloids, were treated with the elicitation signal transducer methyl jasmonate (MeJA). RNA gel blot analysis from MeJA treated cultures showed a transient suppression of HMGR mRNA, followed by an induction in HMGR message. Leaf disks from transgenic tobacco plants containing a chimeric hmgl::GUS construct were also treated with MeJA and showed a dose dependent suppression of wound-inducible GUS activity. The suppression of the wound response by MeJA was limited to the first 4 h post-wounding, after which time MeJA application had no effect. The results are discussed in relation to the differential regulation of HMGR isogenes in higher plants.Abbreviations GUS -glucuronidase - hmg gene of hmgr - HMGR 3-hydroxy-3-methylglutaryl-coenzyme A reductase - JA jasmonic acid - MeJA methyl jasmonate - MUG methylumbelliferyl--d-glucuronide - TDC tryptophan decarboxylase - SDS sodium dodecyl sulfate - SS strictosidine synthase  相似文献   

7.
The mechanism of slow binding inhibition of 3-hydroxy-3-methylglutaryl- coenzyme A reductase by lovastatin, fluindostatin, and related compounds was studied. Several of these compounds, including lovastatin, were found to be slow binding, while other less potent inhibitors were not. From a comparison of kinetic parameters obtained by steady-state measurements and progress curve analysis, it was concluded that the slow binding inhibitors bind by a mechanism which is more accurately described by biphasic binding than by single-step binding. The overall association rates of the slow binding inhibitors range from 1 x 10(6) to 4 x 10(-7) M-1 s-1, and the dissociation rates are in the range of 10(-3) s-1. The structures of slow binding and reversible inhibitors were compared by using molecular modeling methods. From these comparisons, it was proposed that the slow binding and very potent inhibition of, for instance, lovastatin, is not simply a result of binding of a transition state or reaction intermediate analogue. The various lipophilic groups of the inhibitors that do not seem to be related to structural features of the substrate may also play a crucial role in determining the mechanism of binding of HMGR inhibitors.  相似文献   

8.
The interaction of Escherichia coli glutamine synthetase with the adenosine 5'-triphosphate analogue, 5'-p-fluorosulfonylbenzoyladenosine (5'-FSO2BzAdo), has been studied. This interaction results in the covalent attachment of the 5'-FSO2BzAdo to the enzyme with concomitant loss of catalytic activity. Although adenine nucleotides interact with glutamine synthetase at three distinct sites--a noncovalent AMP effector site, a regulatory site of covalent adenylylation, and the catalytic ATP/ADP binding site--our studies suggest that reaction with 5'-FSO2BzAdo occurs only at the active center. When glutamine synthetase was incubated with 5'-FSO2BzAdo, the decrease in catalytic activity obeyed pseudo-first order kinetics. The plot of the observed rate constant of inactivation versus the concentration of 5'-FSO2BzAdo was hyperbolic, consistent with reversible binding of the analogue to the enzyme prior to covalent attachment. Protection against inactivation was afforded by ATP and ADP; L-glutamate did not protect the enzyme against inactivation, but rather enhanced the rate of inactivation, consistent with the observations of others (Timmons, R. B., Rhee, S. G., Luterman, D. L., and Chock, P. B. (1974) Biochemistry 13, 4479-4485) that there is synergism in the binding of the two substrates to the enzyme. The incorporation of approximately 1.09 mol of the 5'-FSO2BzAdo/mol of glutamine synthetase subunit resulted in the total loss of enzymatic activity. The results suggest that 5'-FSO2BzAdo occupies the ATP binding site at the active center of glutamine synthetase and binds covalently to an amino acid residue nearby.  相似文献   

9.
The aim of this study was to investigate the possible existence and magnitude of stable carbon isotope discrimination by human 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR). The catalytic portion of HMGR was expressed and purified. The reaction product mevalonate was lactonized and extracted from the reaction mixture by a solid-phase extraction protocol. Stable carbon isotope ratios of mevalonolactone (MVL) were analyzed by gas chromatography-combustion-isotope ratio mass spectrometry. An average fractionation factor (12)k/(13)k of 1.0031 +/- 0.0004 for all carbon atoms contained in MVL was estimated by the method of internal competition. The value was calculated by nonlinear curve fitting, where the ratio (13)C/(12)C of MVL was plotted versus the fraction of reaction.  相似文献   

10.
11.
This report describes the development of a series of monoclonal antibodies to rat liver 3-Hydroxy-3-methylglutaryl-CoA reductase (HMGR). Sera from hybridoma tumor-bearing mice were used to remove and characterize HMGR activity from a mixture of rat liver proteins. Two IgG2 monoclonal antibodies removed separately greater than 80% HMGR activity while non-immune mouse or negative hybridoma-derived sera were ineffective. Radiolabeled immunoprecipitates of enzyme preparations resolved in one- and two-dimensional SDS-PAGE showed two predominant subunits at Mr 52,000 and 54,000. Our results indicate that in these preparations of rat liver proteins HMGR exists as a heteropolymer with at least two distinct subunits of different molecular weights.  相似文献   

12.
13.
Recent studies have shown that epidermal cholesterol synthesis is regulated by HMG CoA reductase activity and that this activity is modulated by changes in the cutaneous permeability barrier. Here, we quantitated HMG CoA reductase activity after acute and chronic barrier disruption in the upper and lower layers of murine epidermis. In unperturbed epidermis, 13 and 87% of enzyme activity localized to the upper and lower epidermis, respectively, with the majority of activity in the stratum basale. Acute barrier disruption with either acetone or sodium dodecylsulfate provoked an increase in HMG CoA reductase activity (54% and 30%) in the lower layers, but only a small change in the upper layers. However, the activation state of the enzyme was increased 50% in the upper epidermis. Correction of barrier function by occlusion with an impermeable Latex wrap prevented the increase both in enzyme activity and activation state. After chronic barrier disruption; i.e., essential fatty acid deficient (EFAD) diet, HMG CoA reductase activity was increased in the upper epidermis (161%); a change prevented by occlusion. These results show: (1) that HMG CoA reductase activity is present in both the upper and lower cell layers; (2) that acute insults to barrier integrity stimulate enzyme activity in both the upper and lower epidermis; and (3) that chronic insults provoke an increase in enzyme activity in the upper layers. These studies provide further insights into the linkage of the permeability barrier with epidermal cholesterol metabolism.  相似文献   

14.
A procedure for the preparation of rat liver microsomal fractions essentially devoid of contaminating lysosomes is described. When this preparation was examined by immunoblotting with a rabbit antiserum to rat 3-hydroxy-3-methylglutaryl-CoA reductase, a single band corresponding to an Mr of 100000 was observed. No evidence was found for glycosylation of rat liver-3-hydroxy-3-methylglutaryl-CoA reductase. Native rat liver microsomal 3-hydroxy-3-methylglutaryl-CoA reductase differs from the purified proteolytically modified species in that it displays allosteric kinetics towards NADPH.  相似文献   

15.
16.
17.
18.
Microsomal 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase kinase has been purified to apparent homogeneity by a process involving the following steps: solubilization from microsomes and chromatography on Affi-Gel Blue, phosphocellulose, Bio-Gel A 1.5m, and agarose-hexane-ATP. The apparent Mr of the purified enzyme as judged by gel-filtration chromatography is 205,000 and by sodium dodecyl sulfate-gel electrophoresis is 105,000. Immunoprecipitation of homogeneous reductase phosphorylated by reductase kinase and [γ-32P]ATP produces a unique band containing 32P bound to protein which migrates at the same Rf as the reductase subunit. Incubation of 32P-labeled HMG-CoA reductase with reductase phosphatase results in a time-dependent loss of protein-bound 32P radioactivity, as well as an increase in enzymic activity. Reductase kinase, when incubated with ATP, undergoes autophosphorylation, and a simultaneous increase in its enzymatic activity is observed. Tryptic treatment of immunoprecipitated, 32P-labeled HMG-CoA reductase phosphorylated with reductase kinase produces only one 32P-labeled phosphopeptide with the same Rf as one of the two tryptic phosphopeptides that have been reported in a previous paper. The possible existence of a second microsomal reductase kinase is discussed.  相似文献   

19.
We identify His381 of Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase as the basic residue functional in catalysis. The catalytic domain of 20 HMG-CoA reductases contains a single conserved histidine (His381 of the P. mevalonii enzyme). Diethyl pyrocarbonate inactivated the P. mevalonii enzyme, and hydroxylamine partially restored activity. We changed His381 to alanine, lysine, asparagine, and glutamine. The mutant proteins were overexpressed, purified to homogeneity, and characterized. His381 mutant enzymes were not inactivated by diethyl pyrocarbonate. All four mutant enzymes exhibited wild-type crystal morphology and chromatographed on substrate affinity supports like wild-type enzyme. The mutant enzymes had low catalytic activity (Vmax 0.06-0.5% that of wild-type enzyme), but Km values approximated those for wild-type enzyme. For wild-type enzyme and mutant enzymes H381A, H381N, and H381Q, Km values at pH 8.1 were 0.45, 0.27, 3.7, and 0.71 mM [(R,S)-mevalonate]; 0.05, 0.03, 0.20, and 0.11 mM [coenzyme A]; 0.22, 0.14, 0.81, and 0.62 mM [NAD+]. Km values at pH 11 for wild-type enzyme and mutant enzyme H381K were 0.32 and 0.75 mM [(R,S)-mevalonate]; 0.24 and 0.50 mM [coenzyme A]; 0.15 and 1.23 mM [NAD+]. Both pK values for the enzyme-substrate complex increased relative to wild-type enzyme (by 1-2.5 pH units for pK1 and by 0.5-1.3 pH units for pK2). For mutant enzyme H381K, the pK1 of 10.2 is consistent with lysine acting as a general base at high pH. His381 of P. mevalonii HMG-CoA reductase, and consequently the histidine of the consensus Leu-Val-Lys-Ser-His-Met-Xaa-Xaa-Asn-Arg-Ser motif of the catalytic domain of eukaryotic HMG-CoA reductases, thus is the general base functional in catalysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号