首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms of peroxynitrite-induced apoptosis are not fully understood. We report here that peroxynitrite-induced apoptosis of PC12 cells requires the simultaneous activation of p38 and JNK MAP kinase, which in turn activates the intrinsic apoptotic pathway, as evidenced by Bax translocation to the mitochondria, cytochrome c release to the cytoplasm and activation of caspases, leading to cell death. Peroxynitrite induces inactivation of the Akt pathway. Furthermore, overexpression of constitutively active Akt inhibits both peroxynitrite-induced Bax translocation and cell death. Peroxynitrite-induced death was prevented by overexpression of Bcl-2 and by cyclosporin A, implicating the involvement of the intrinsic apoptotic pathway. Selective inhibition of mixed lineage kinase (MLK), p38 or JNK does not attenuate the decrease in Akt phosphorylation showing that inactivation of the Akt pathway occurs independently of the MLK/MAPK pathway. Together, these results reveal that peroxynitrite-induced activation of the intrinsic apoptotic pathway involves interactions with the MLK/MAPK and Akt signaling pathways.  相似文献   

2.
3.
4.
Multiple Ca2+ signaling pathways converge on CaM kinase in PC12 cells.   总被引:1,自引:0,他引:1  
M MacNicol  H Schulman 《FEBS letters》1992,304(2-3):237-240
The role of multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) in mediating various Ca2+ signaling pathways was examined in PC12 cells. Conversion of the kinase to a Ca(2+)-independent form was used to monitor which neurotransmitters activate the enzyme in situ. CaM kinase responds to Ca2+ influx elicited by ligand-gated Ca2+ channels for ATP and acetylcholine. It also responds to Ca2+ mobilization of IP3-sensitive stores elicited by phospholipase C-linked receptors for ATP and acetylcholine as well as by caffeine. CaM kinase mediates the actions of many neurotransmitters and Ca2+ signaling pathways.  相似文献   

5.
Pituitary adenylyl cyclase-activating peptide (PACAP) stimulates calcium transients and catecholamine secretion in adrenal chromaffin and PC12 cells. The PACAP type 1 receptor in these cells couples to both adenylyl cyclase and phospolipase C pathways, but although phospolipase C has been implicated in the response to PACAP, the role of adenylyl cyclase is unclear. In this study, we show that PACAP38 stimulates Ca(2+) influx in PC12 cells by activating a cation current that depends upon the dual activation of both the PLC and adenylyl cyclase signaling pathways but does not involve protein kinase C. In activating the current, PACAP38 has to overcome an inhibitory effect of Ras. Thus, in cells expressing a dominant negative form of Ras (PC12asn17-W7), PACAP38 induced larger, more rapidly activating currents. This effect of Ras could be overidden by intracellular guanosine-5'-O-3-(thio)triphosphate (GTPgammaS), suggesting that it was mediated by inhibition of downstream G proteins. Ras may also inhibit the current through a G protein-independent mechanism, because cAMP analogues activated the current in PC12asn17-W7 cells, provided GTPgammaS was present, but not in PC12 cells expressing wild type Ras. We conclude that coupling of PACAP to both adenylyl cyclase and phospholipase C is required to activate Ca(2+) influx in PC12 cells and that tonic inhibition by Ras delays and limits the response.  相似文献   

6.
7.
The physiological action of extracellular ATP and other nucleotides in the nervous system is controlled by surface-located enzymes (ecto-nucleotidases) of which several families with partially overlapping substrate specificities exist. In order to identify ecto-nucleotidases potentially associated with neural cells, we chose PC12 cells for analysis. PC12 cells revealed surface-located ATPase and ADPase activity with apparent K(m)-values of 283 microM and 243 microM, respectively. Using PCR we identified the mRNA of all members of the ecto-nucleoside triphosphate diphosphohydrolase family investigated (NTPDase1 to NTPDase3, NTPDase5/6), of ecto-nucleotide pyrophosphatase/phosphodiesterase3 (NPP3), tissue-non-specific alkaline phosphatase and ecto-5'-nucleotidase. The surface-located catalytic activity differed greatly between the various enzyme species. Our data suggest that hydrolysis of ATP and ADP is mainly due to members of the ecto-nucleoside triphosphate diphosphohydrolase family. Activity of ecto-5'-nucleotidase and alkaline phosphatase was very low and activity of NPP3 was absent. For a detailed analysis of the cellular distribution of ecto-nucleotidases single and double transfections of PC12 cells were performed, followed by fluorescence analysis. Ecto-nucleotidases were distributed over the entire cell surface and accumulated intracellularly in varicosities and neurite tips. PC12 cell ecto-nucleotidases are likely to play an important role in terminating autocrine functions of released nucleotides and in producing extracellular nucleosides supporting the survival and neuritic differentiation of PC12 cells.  相似文献   

8.
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), an Ig-like transmembrane protein, functions in cell adhesion, angiogenesis and epithelial cell morphogenesis, and has been identified as a tumor suppressor. For all of these functions, CEACAM1 requires signaling capabilities. However, the mechanisms of CEACAM1-mediated signaling are only poorly understood. Here we characterized for the first time CEACAM1 expression and signaling in the neuroendocrine rat pheochromocytoma PC12 cell line. Stimulation of CEACAM1 by ligation on the cell surface with antibodies induced formation of large CEACAM1 clusters and a rapid and transient CEACAM1 tyrosine dephosphorylation. Functionally, this dephosphorylation correlated with a reduced association between CEACAM1 and the tyrosine phosphatase SHP2. Clustering also stimulated binding of CEACAM1 to the actin cytoskeleton, measured by a partial translocation of CEACAM1 into the insoluble fraction after detergent extraction. Both tyrosine dephosphorylation and interaction with the cytoskeleton were sensitive to neuronal differentiation of PC12 cells. The first detected downstream activation of the mitogen-activated protein kinases ERK1 and ERK2, but not of JNK or p38, describes a novel target of CEACAM1-mediated signaling and contributes to the understanding of how CEACAM1 regulates cellular function.  相似文献   

9.
10.
11.
12.
Synaptogyrins constitute a family of synaptic vesicle proteins of unknown function. With the full-length structure of a new brain synaptogyrin isoform, we now show that the synaptogyrin family in vertebrates includes two neuronal and one ubiquitous isoform. All of these synaptogyrins are composed of a short conserved N-terminal cytoplasmic sequence, four homologous transmembrane regions, and a variable cytoplasmic C-terminal tail that is tyrosine-phosphorylated. The localization, abundance, and conservation of synaptogyrins suggest a function in exocytosis. To test this, we employed a secretion assay in PC12 cells expressing transfected human growth hormone (hGH) as a reporter protein. When Ca2+-dependent hGH secretion from PC12 cells was triggered by high K+ or alpha-latrotoxin, co-transfection of all synaptogyrins with hGH inhibited hGH exocytosis as strongly as co-transfection of tetanus toxin light chain. Synaptophysin I, which is distantly related to synaptogyrins, was also inhibitory but less active. Inhibition was independent of the amount of hGH expressed but correlated with the amount of synaptogyrin transfected. Inhibition of exocytosis was not observed with several other synaptic proteins, suggesting specificity. Analysis of the regions of synaptogyrin required for inhibition revealed that the conserved N-terminal domain of synaptogyrin is essential for inhibition, whereas the long C-terminal cytoplasmic tail is largely dispensable. Our results suggest that synaptogyrins are conserved components of the exocytotic apparatus, which function as regulators of Ca2+-dependent exocytosis.  相似文献   

13.
Cold shock and wind stimuli initiate Ca(2+) transients in transgenic tobacco (Nicotiana plumbaginifolia) seedlings (named MAQ 2.4) containing cytoplasmic aequorin. To investigate whether these stimuli initiate Ca(2+) pathways that are spatially distinct, stress-induced nuclear and cytoplasmic Ca(2+) transients and the expression of a stress-induced calmodulin gene were compared. Tobacco seedlings were transformed with a construct that encodes a fusion protein between nucleoplasmin (a major oocyte nuclear protein) and aequorin. Immunocytochemical evidence indicated targeting of the fusion protein to the nucleus in these plants, which were named MAQ 7.11. Comparison between MAQ 7.11 and MAQ 2.4 seedlings confirmed that wind stimuli and cold shock invoke separate Ca(2+) signaling pathways. Partial cDNAs encoding two tobacco calmodulin genes, NpCaM-1 and NpCaM-2, were identified and shown to have distinct nucleotide sequences that encode identical polypeptides. Expression of NpCaM-1, but not NpCaM-2, responded to wind and cold shock stimulation. Comparison of the Ca(2+) dynamics with NpCaM-1 expression after stimulation suggested that wind-induced NpCaM-1 expression is regulated by a Ca(2+) signaling pathway operational predominantly in the nucleus. In contrast, expression of NpCaM-1 in response to cold shock is regulated by a pathway operational predominantly in the cytoplasm.  相似文献   

14.
15.
To elucidate the signal transduction mechanisms used by ligands that induce differentiation and the cessation of cell division, we utilized p13suc1-agarose, a reagent that binds p34cdc2/cdk2. By using this reagent, we identified a 78- to 90-kDa species in PC12 pheochromocytoma cells that is rapidly phosphorylated on tyrosine following treatment with the differentiation factors nerve growth factor (NGF) and fibroblast growth factor but not by the mitogens epidermal growth factor or insulin. This species, called SNT (suc-associated neurotrophic factor-induced tyrosine-phosphorylated target), was also phosphorylated on tyrosine in primary rat cortical neurons treated with the neurotrophic factors neurotrophin-3, brain-derived neurotrophic factor, and fibroblast growth factor but not in those treated with epidermal growth factor. In neuronal and fibroblast cells, where NGF can also act as a mitogen, SNT was tyrosine phosphorylated to a much greater extent during NGF-induced differentiation than during NGF-induced proliferation. SNT was phosphorylated in vitro on serine, threonine, and tyrosine in p13suc1-agarose precipitates from NGF-treated PC12 cells, indicating that this protein may be a substrate of kinase activities associated with p13suc1-p34cdc2/cdk2 complexes. In addition, SNT was associated predominantly with nuclear fractions following subcellular fractionation of NGF-treated PC12 cells. Finally, in PC12 cells, NGF-stimulated tyrosine phosphorylation of SNT was dependent on the levels of Trk tyrosine kinase activity and was constitutively induced by expression of pp60v-src. However, Ras was not required for constitutive SNT tyrosine phosphorylation, suggesting that this protein functions distally to Trk and pp60v-src but in a pathway parallel to that of Ras. SNT is the first identified specific target of differentiation factor-induced tyrosine kinase activity in neuronal cells.  相似文献   

16.
17.
Nitric oxide signaling is crucial for effecting long lasting changes in cells, including gene expression, cell cycle arrest, apoptosis, and differentiation. We have determined the temporal order of gene activation induced by NO in mammalian cells and have examined the signaling pathways that mediate the action of NO. Using microarrays to study the kinetics of gene activation by NO, we have determined that NO induces three distinct waves of gene activity. The first wave is induced within 30 min of exposure to NO and represents the primary gene targets of NO. It is followed by subsequent waves of gene activity that may reflect further cascades of NO-induced gene expression. We verified our results using quantitative real time PCR and further validated our conclusions about the effects of NO by using cytokines to induce endogenous NO production. We next applied pharmacological and genetic approaches to determine the signaling pathways that are used by NO to regulate gene expression. We used inhibitors of particular signaling pathways, as well as cells from animals with a deleted p53 gene, to define groups of genes that require phosphatidylinositol 3-kinase, protein kinase C, NF-kappaB, p53, or combinations thereof for activation by NO. Our results demonstrate that NO utilizes several independent signaling pathways to induce gene expression.  相似文献   

18.
19.
Oxidative stress is considered a major cause of neurodegenerative disorders. In this work, we investigated the cytoprotective effects and mechanisms of the citrus flavonoid nobiletin (NOB) and its metabolite, 3',4'-didemethylnobiletin (3',4'-dihydroxy-5,6,7,8-tetramethoxyflavone; DTF), in PC12 cells. Both NOB and DTF exhibited strong potency in attenuating serum withdrawal- and H(2)O(2)-caused cell death and increased intracellular GSH level via upregulation of both catalytic and modifier subunits of glutamate-cysteine ligase (GCL). However, only DTF suppressed intracellular ROS accumulation in H(2)O(2)-treated cells, induced heme oxygenase-1 (HO-1) expression, and enhanced nuclear factor E2-related factor 2 (Nrf2) binding to the ARE. Nevertheless, DTF-mediated HO-1 upregulation was independent of Nrf2 activation because knockdown of Nrf2 expression by siRNA did not affect its expression. DTF suppressed NF-κB activation, and addition of NF-κB inhibitor, pyrrolidine dithiocarbamate or Bay 11-7082, synergistically enhanced DTF-mediated HO-1 expression, indicating that HO-1 induction is associated with NF-κB suppression. NOB and DTF also activated the ERK, JNK, and Akt pathways in PC12 cells that had undergone serum starvation. Addition of pharmacological kinase inhibitors, U0126, SP600125, and LY294002, caused cytotoxicity and the last significantly attenuated NOB- and DTF-mediated antiapoptotic actions, indicating the involvement of PI3K/Akt signaling in their cytoprotective effects. In conclusion, HO-1 and GCL upregulation and intrinsic ROS-scavenging activity may contribute to DTF-mediated cytoprotection. Furthermore, modulation of PI3K/Akt signaling is involved in channeling the DTF stimulus for cell survival against oxidative insults.  相似文献   

20.
Iron loading inhibits ferroportin1 expression in PC12 cells   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号