首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Foam fractionation of globular proteins   总被引:2,自引:0,他引:2  
Foam fractionation of bovine serum albumin (BSA) was studied as a model system for potato wastewater. The effects of feed concentration, superficial gas velocity, feed flow rate, bubble size, pH, and ionic strength on the enrichment and recovery of BSA were investigated in a single-stage continuous foam fractionation column. Enrichments ranged from 1.5 to 6.0 and recoveries from 5 to 85%. The feed concentrations were varied from 0.01 to 0.2 wt %, and enrichments were found to increase with lower feed concentrations. Enrichments also increased with lower superficial gas velocities and larger bubble sizes. At sufficiently low feed flow rates, enrichment was found to increase with an increase in the flow rate, eventually becoming insensitive to the feed flow rate at higher values. The pH was varied from 3.5 to 7.0 and ionic strength from 0.001M to 0.2M. The effects of pH and ionic strength were found to be coupled with bubble size. A minimum bubble size was found at pH 4.8, the isoelectric point of BSA, resulting in a minimum in the enrichment. Bubble size, and thus enrichment, was found to increase as the ionic strength decreased from 0.2M to 0.01M. Previous models(1,2) for the hydrodynamics of foam column were extended for a singlestage continuous foam fractionation column for the prediction of enrichment and recovery. The model assumed adsorption equilibrium, infinite surface viscosity, and bubbles of the same size. Though coalescence was formally accounted for in the model by considering bubble size as a function of foam height, calculations for the experimental runs were performed only for the case of no coalescence. Quantitative predictions of enrichment and recovery could not be made with a single representative bubble size because of the broad inlet bubble size distribution as well as broadening of the distribution as a result of coalescence. The experimental enrichments were higher and recoveries were lower than the model predictions, the discrepancy being more pronounced at lower feed concentrations because of increased coalescence. The higher enrichments are due to the predominant effect of internal reflux as a result of coalescence whereas the lower recoveries are a result of detrimental effects of broadening bubble size distributions.  相似文献   

2.
Multiple equilibrium stages can be engendered in foam fractionation, a process used for the enrichment of streams of proteins, by returning some of the foamate stream to the top of the column as external reflux liquor. However, it was recognised, 40 years ago that reflux could be autogenously created through the coalescence of bubbles in fractionation columns. By invoking the hydrodynamic theory of rising foam, we suggest a mechanism for the creation of internal reflux in foam fractionation. This method can give internal reflux rate as a function of bubble size. However, since the bubble size profile in a rising foam cannot be estimated, we cannot yet estimate how internal reflux varies with position in the column.  相似文献   

3.
Gas holdup data in multistage bubble column is analyzed through slip velocity incorporating pseudo hydrostatic effect, momentum transfer effect, particle-to-particle and particle-to-wall effects and coalescence effects. The bubble size, required for the estimation of single bubble rise velocity, is satisfactorily predicted using the model due to Molerus [9], and the influence of gas throughput, the perforation diameter and the free area of the horizontal plate, as well as the plate spacing on bubble size are examined.  相似文献   

4.
Enrichment and recovery of bovine serum albumin has been examined in a continuous foam separation column. The effects of the operating factors, superficial air velocity, feed flow rate, feed concentration and pH on the above characteristics was investigated. The protein enrichment decreased with the increase in the value of each of these parameters. Protein recovery increased with increasing air velocity, decreased with increasing feed flow rate and did not change very much with increasing feed concentration. Maximum protein recovery was obtained at the isoelectric point (pH 4.8) of the protein. Maximum protein recovery was found to be a strong function of the air velocity in the range 0.05-0.15 cm/s. Further increase in air velocity did not have much effect on recovery because of very large bubbles formed as a result of coalescence. Bubble size was determined as a function of the above factors in the liquid and foam sections of the column. It was found to be dependent on protein concentration, feed flow rate and solution pH. The effect was more significant in the foam section of the column. The bubbles in the foam section were significantly larger (about 3-10 times) than those in the liquid, with a sharp change at the foam-liquid interface. The bubble size measurements were used to calculate the interfacial area and it was shown that the rate of protein removal increases with increasing interfacial area.  相似文献   

5.
Protein enrichment and recovery were measured in a continuous foam concentration column for bovine serum albumin (BSA) for different pool heights, foam heights, superficial gas velocities, bubble sizes, feed flow rates, pH, and ionic strengths. Protein enrichment was found to decrease with an increase in pool height for low pool heights, reach a minimum at an intermediate pool height, and subsequently increase with pool height for sufficiently large pool heights eventually approaching an asymptotic value. Such a behavior was due to the combined effects of kinetics of adsorption of protein and coalescence. The increase in protein enrichment with pool height was due to the predominant effect of kinetics of adsorption of protein, whereas the opposite behavior at low pool heights was due to the predominant effect of coalescence in the foam. Protein enrichment was found to be higher for smaller feed concentrations, smaller gas velocities, larger bubble sizes, and larger foam heights. Enrichment at pH values different from the isoelectric point was found to be higher because of more coalescence. A model for foam concentration of proteins was employed to predict enrichment and recovery. The model predictions agreed well with the experimental data. (c) 1996 John Wiley & Sons, Inc.  相似文献   

6.
Measurements of local gas phase characteristics are obtained in an external-loop airlift reactor filled with newtonian or viscous non-newtonian liquids. A double-optical fiber probe technique is used. It allows the determination of the axial and radial profiles of gas hold-up, bubbling frequency, bubble size and velocity. In the case of air-water system, the results show a strong effect of radial liquid velocity variation on the gas flow characteristics at the bottom of the riser. In the case of highly viscous non-newtonian solution, the gas flow is strongly affected by the gas distribution just above the gas sparger. This study also points out the bubble coalescence and the break-up phenomena in different liquids and levels in the reactor. Furthermore, the local measurements of bubble size and velocity allows to gain more detailed information on the dynamics of the bubble-flow and shows a tendency of large bubbles to circulate in the column center.  相似文献   

7.
Summary A twin bubble column was used to measure the kLa values for oxygen in model and cultivation media using the steady state method described previously (Adler et al. 1980). Desmophen and soy oil were used as antifoam agents together with model and/or cultivation media for Chaetomium cellulotyticum, Trichoderma reesei, Hansenula polymorpha, Saccharomyces cerevisiae and Escherichia coli. The bubble coalescence behavior is mainly influenced by antifoam agents and somewhat by protein and alcohol additives. In the range investigated (0.01 to 0.1%.), the kLa values are not influenced by the Desmophen concentration and only slighthly by the soy oil concentration (0.5 to 1.5%.). The coalescence behaviour was characterized by the ratio mcorr=(kLa)corr/(kLa)ref. A nutrient salt solution with Desmophen was used as a reference. The kLa measured in the investigated media were corrected by considering the differences in kLa's in the investigated and reference media. These mcorr values can directly be used for bubble columns close to the optimum aeration rate.Symbols a Specific gas/liquid interfacial area - c Concentration - kL Mass transfer coefficient - kLa Volumetric mass transfer coefficient - WSG Superficial gas velocity - EG Relative gas hold-up  相似文献   

8.
Coalescing macroalgae are ecologically important members of intertidal and shallow subtidal communities. However, we still lack quantitative information on the demographic consequences of coalescence. Using demographic models developed for modular invertebrates, we studied the demography of settlement and early recruitment in the coalescing macroalga Mazzaella laminarioides (Bory) Fredericq. Permanently marked microscopic fields on laboratory‐incubated and field‐incubated plates were monitored regularly (at 15, 30, 45, and 60 d) using image analysis techniques to evaluate the relative importance of settler abundance, mortality, coalescence (fusion), and fission on the changes in size and numbers of recruits. On the plates, spores settled individually or in groups. Over time, spores in close proximity may coalesce, resulting in a mixture of unisporic and multisporic crusts. When new spores arrive, they may or may not coalesce with previously settled crusts. Coalescence and mortality reduce the number of sporelings, but coalescence increases the size of the sporelings, thereby reducing further probability of sporeling mortality. Crust fissions are negligible in frequency, while the frequency of coalescence increases from ~25% after only 3 d, to ~75% after 60 d. Thus, as a result of variable settlement, mortality, and coalescence, any area colonized by M. laminarioides would contain a mixture of crusts of different sizes, ages, and genetic constitution. The interactions between the above three processes create a more complex survivorship curve than the ones known for unitary organisms.  相似文献   

9.
Summary Volumetric mass transfer coefficients (kLa) were measured by a steady state method in a twin bubble column to characterize the coalescence behaviour of the medium. Employing Hansenula polymorpha cultivation broths, kLa values were compared with those measured in model media in the presence and absence of antifoam agents. The ratio of the volumetric mass transfer coefficient in the system investigated to that in water, , was employed to characterize the cultivation medium.Symbols a Specific gas/liquid interfacial area with regard to the liquid volume in reactor - de Dynamical equilibrium bubble diameter - dH Perforated plate hole diameter - dp Primary bubble diameter - dS Sauter bubble diameter - Fv Liquid feed rate - H Bubbling layer height - kL Gas/liquid mass transfer coefficient - kLa Volumetric mass transfer coefficient - m kLa/(kLa)r coalescence index - mcorr Corrected coalescence index [Eq. (3)] - OTR Oxygen transfer rate - PO Dissolved O2-partial pressure in BS2 - P1 Dissolved O2-partial pressure in BS1 - PO PO/PS relative oxygen saturation in BS2 - P1 P1/PS relative oxygen saturation in BS1 - PS Saturation dissolved oxygen partial pressure - Rc dnB/dt coalescence rate - S Substrate concentration - tF Time since the beginning of the cultivation - X Biomass concentration - V1 Liquid volume in BS1 - wSG Superficial gas velocity in BS1 - G Gas holdup in BS1 - 1 V1/Fv mean liquid residence time in BS1 - BS1 O2 absorber column - BS2 O2 desorber column - D Desmophen (antifoam agent) - NS Nutrient salt solution (Table 1)  相似文献   

10.
Artemisia annua hairy roots were grown in liquid-phase bubble column and gas-phase nutrient mist reactors. In most cases the bubble column reactor accumulated more biomass than the mist reactor; the highest final biomass concentrations observed were 15.3 g DW/L in the bubble column reactor and 14.4 g DW/L in the mist reactor. Further analysis showed that the average specific growth rate in the mist reactors was essentially constant and independent of the biomass concentration at the beginning of the mist mode. In contrast, at low packing densities the average growth rate in the bubble column reactors was higher than in the mist reactors, decreasing to comparable rates at high packing densities. Finally, an aerosol deposition model was used to compare the volume of medium captured by the root bed in the mist reactor to the volume of medium required to maintain a specified growth rate. The results suggest that under the current operating conditions, lower growth rates in the mist reactor may be due to insufficient nutrient availability.  相似文献   

11.
A pilot scale airlift reactor with multiple net draft tubes was developed. The reactor, 29?cm in diameter and 300?cm height, had four modules of double net draft tubes. Bubble size, bubble number, gas holdup, and volumetric mass transfer coefficient were measured under different superficial air velocities. The air velocity had little effect on bubble size but had significant influence on bubble number. A bubble column was also investigated for comparison. The airlift reactor had a higher gas holdup and volumetric mass transfer coefficient than those in the bubble column. The draft tubes in the airlift reactor substantially improved the reactor performance.  相似文献   

12.
The present paper makes a comparative analysis of the outdoor culture of H. pluvialis in a tubular photobioreactor and a bubble column. Both reactors had the same volume and were operated in the same way, thus allowing the influence of the reactor design to be analyzed. Due to the large changes in cell morphology and biochemical composition of H. pluvialis during outdoor culture, a new, faster methodology has been developed for their evaluation. Characterisation of the cultures is carried out on a macroscopic scale using a colorimetric method that allows the simultaneous determination of biomass concentration, and the chlorophyll, carotenoid and astaxanthin content of the biomass. On the microscopic scale, a method was developed based on the computer analysis of digital microscopic images. This method allows the quantification of cell population, average cell size and population homogeneity. The accuracy of the methods was verified during the operation of outdoor photobioreactors on a pilot plant scale. Data from the reactors showed tubular reactors to be more suitable for the production of H. pluvialis biomass and/or astaxanthin, due to their higher light availability. In the tubular photobioreactor biomass concentrations of 7.0 g/L (d.wt.) were reached after 16 days, with an overall biomass productivity of 0.41 g/L day. In the bubble column photobioreactor, on the other hand, the maximum biomass concentration reached was 1.4 g/L, with an overall biomass productivity of 0.06 g/L day. The maximum daily biomass productivity, 0.55 g/L day, was reached in the tubular photobioreactor for an average irradiance inside the culture of 130 microE/m2s. In addition, the carotenoid content of biomass from tubular photobioreactor increased up to 2.0%d.wt., whereas that of the biomass from the bubble column remained roughly constant at values of 0.5%d.wt. It should be noted that in the tubular photobioreactor under conditions of nitrate saturation, there was an accumulation of carotenoids due to the high irradiance in this reactor, their content in the biomass increasing from 0.5 to 1.0%d.wt. However, carotenoid accumulation mainly took place when nitrate concentration in the medium was below 5.0mM, conditions which were only observed in the tubular photobioreactor. A similar behaviour was observed for astaxanthin, with maximum values of 1.1 and 0.2%d.wt. measured in the tubular and bubble column photobioreactors, respectively. From these data astaxanthin productivities of 4.4 and 0.12 mg/L day were calculated for the tubular and the bubble column photobioreactors. Accumulation of carotenoids was also accompanied by an increase in cell size from 20 to 35 microm, which was only observed in the tubular photobioreactors. Thus it may be concluded that the methodology developed in the present study allows the monitoring of H. pluvialis cultures characterized by fast variations of cell morphology and biochemical composition, especially in outdoor conditions, and that tubular photobioreactors are preferable to bubble columns for the production of biomass and/or astaxanthin.  相似文献   

13.
The local properties of the dispersed gas phase (gasholdup, bubble diamater, and bubble velocity) were measured and evaluated at different positions in the riser and downcomer of a pilot plant reactor and, for comparison, in a laboratory reactor. These were described in Parts I and II of this series of articles during yeast cultivation and with model media. In the riser of the pilot plant reactor, the local gas holdup and bubble velocities varied only slightly in axial direction. The gas holdup increased considerably, while the bubble velocity increased only slightly with aeration rate. The bubble size diminished with increasing distance from the aerator in the riser, since the primary bubble size was larger than the equilibrium bubble size. In the downcomer, the mean bubble size was smaller than in the riser. The mean bubble size varied only slightly, the bubble velocity was accelerated, and the gas holdup decreased from top to bottom in the downcomer. In pilot plant at constant aeration rate, the properties of the dispersed phase were nearly constant during the batch cultivation, i.e., they depended only slightly on the cell concentration. In the laboratory reactor, the mean bubble sizes were much larger than in the pilot plant reactor. In the laboratory reactor, the bubble velocities in the riser and downcomer increased, and the mean gas holdup and bubble diameter in the downcomer remained constant as the aeration rate was increased.  相似文献   

14.
Internal loop airlift and bubble column photobioreactors (PBR) were compared with respect to their performances during cultivation of Artrospira platensis (Spirulina platensis). Culture conditions were kept the same and different parameters were examined through the experiments. It was observed that a higher dry biomass weight and chlorophyll-a concentration was obtained in the airlift PBR yielding a maximum growth rate of 0.45 day(-1), while 0.33 day(-1) was reached in the bubble column PBR. Subsequently, a 17-day of production was carried out in the selected PBR to fully determine the performance of the PBR. Maximum growth rate of 0.47 day(-1) was reached during long term cultivation.  相似文献   

15.
Gas holdup and oxygen transfer studies in non-Newtonian suspensions of cellulose fibres conducted in two large (0.098 m(3) each) reactors are described. Both reactors-a bubble column and a similar internal loop airlift-were unusual in that they had rectangular cross-sections. In all cases gas holdups and k(L)a(L) declined with increasing solid concentration and, under identical conditions, the bubble column performed better than the airlift. The fluid systems used were carefully selected to represent mould fermentation broths.The behavior of true mass transfer coeffcient k(L) with changes in bubble size is discussed for these systems.  相似文献   

16.
Abstract.— Coalescence theory predicts when genetic drift at nuclear loci will result in fixation of sequence differences to produce monophyletic gene trees. However, the theory is difficult to apply to particular taxa because it hinges on genetically effective population size, which is generally unknown. Neutral theory also predicts that evolution of monophyly will be four times slower in nuclear than in mitochondrial genes primarily because genetic drift is slower at nuclear loci. Variation in mitochondrial DNA (mtDNA) within and between species has been studied extensively, but can these mtDNA data be used to predict coalescence in nuclear loci? Comparison of neutral theories of coalescence of mitochondrial and nuclear loci suggests a simple rule of thumb. The “three‐times rule” states that, on average, most nuclear loci will be monophyletic when the branch length leading to the mtDNA sequences of a species is three times longer than the average mtDNA sequence diversity observed within that species. A test using mitochondrial and nuclear intron data from seven species of whales and dolphins suggests general agreement with predictions of the three‐times rule. We define the coalescence ratio as the mitochondrial branch length for a species divided by intraspecific mtDNA diversity. We show that species with high coalescence ratios show nuclear monophyly, whereas species with low ratios have polyphyletic nuclear gene trees. As expected, species with intermediate coalescence ratios show a variety of patterns. Especially at very high or low coalescence ratios, the three‐times rule predicts nuclear gene patterns that can help detect the action of selection. The three‐times rule may be useful as an empirical benchmark for evaluating evolutionary processes occurring at multiple loci.  相似文献   

17.
Coalescence of developing sporelings of Chondrus crispus Stackhouse was observed. Juvenile tetra-sporophytes showed a higher proportion of coalescence than developing gametophytes. Stages of complete coalescence between different sporelings are illustrated. Coalesced sporelings exhibit vertical and horizontal alignment of cells, as well as “cuticular” continuity and secondary pit connections between adjacent, coalesced sporelings. Ultimately the cells in the center of the coalesced sporelings produce upright, multiaxial fronds that grow more rapidly than fronds of non-coalesced sporelings. Other red algae, such as Gracilaria verrucosa (Hudson) Papenfuss and Gigartina stellata (Stackhouse) Batters also show a similar sequence of sporeling coalescence and enhanced growth. The ecological significance of sporeling coalescence is discussed.  相似文献   

18.
Fermentations of Xanthomonas campestris, NRRL B-1459, were carried out in a bubble column fermentor (BCF) and in a stirred tank fermentor (STF) to allow comparison of representative variables measured during the microbial growth and the gum production. The microbial growth phase was described by a logistic rate equation where maximum cell concentration was provided by nitrogenous compounds balance. The average value of the maximum specific growth rate was higher in the bubble column (μ M =0.5 h?1) than in the stirred reactor (μ M =0.4 h?1). The upper values of xanthan yield (Y g-x =0.65 kg xanthan/kg glucose; Y O 2?x xanthan/kg oxygen) and specific production rate (q x =0.26 kg xanthan/kg biomass · h) were measured when the oxygen transfer coefficient was kept up above 80 h?1 in the STF fermentor. In the bubble column the fermentation achieved in the same culture medium lasts two times longer than in the stirred aerated tank; this was attributed to the low value of the oxygen transfer coefficient (K L a =20 h?1) at the beginning of the gum synthesis phase. The results obtained in the stirred tank were the basis to estimate the optimal biomass concentration which enables to achieve a culture in non-limiting oxygen transfer conditions. Nevertheless, the transfer characteristics were more homogeneous in the bubble column than in the stirred tank where dead stagnant zones were observed. This is of primary importance when establishing fermentation kinetics models.  相似文献   

19.
The Multiple Air-lift Loop reactor (MAL) is a new type of bioreactor, in which a series of airlifts with internal loops is incorporated into one vessel. As such, the MAL is an approximation of an aerated plug-flow fermenter. Gas/liquid oxygen transfer was studied as a function of the gas flow rate in a MAL. The second MAL-compartment in the series was investigated in particular, and a Rectangular Air-lift Loop reactor (RAL) was used as a reference. Both a dynamic and a steady-state method were used for the determination of the overall volumetric oxygen-transfer coefficient. Both methods gave the same results. The oxygen transfer coefficient in the second MAL-compartment was low compared to that of conventional internal-loop reactors. Wall effects probably caused bubble coalescence and a reduction in the oxygen transfer. For the RAL it was found that oxygen transfer was comparable to that in a bubble column.  相似文献   

20.
The influence of short draft tubes covered by perforated plates on gas-liquid mass transfer was examined in external-loop airlift bioreactors. The volumetric mass transfer coefficients in a model external-loop airlift bioreactor were measured with water and non-Newtonian media. It was found that introduction of draft tubes covered with perforated plates in the riser significantly improved the mass transfer rate, particularly in higher viscous non-Newtonian fermentation media. The enhancement of mass transfer rate might be due mainly to an increase in bubble coalescence and redispersion. (c) 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号