首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biodiesel, a renewable alternative to fossil energy, has shown great prospects for global proliferation in the past decade. Lipase catalyzed transesterification for biodiesel production, as a biological process with many advantages has drawn increasing attention. As a by-product, glycerol accounts for about 10% w/w of biodiesel during the process of biodiesel production. As a result, the conversion of glycerol has become a common problem which has to be resolved if considering large amount of biodiesel production. Glycerol can be fermented into 1,3-propanediol, a high value added chemical with a promising future in the polymers, for example, polytrimethylene terephthalate, and also fermentation approaches for 1,3-propanediol production which have drawn more and more attention due to advantages such as relatively low investment, mild reaction conditions and using renewable sources as the starting materials. Based on the latest technology advancements in lipase-mediated transformation for biodiesel production, the aerobic fermentation technology and genetic engineering for 1,3-propanediol production, and the integrated production of 1,3-propanediol from crude glycerol could be a promising way to improve the profit of the whole process during biodiesel production.  相似文献   

2.
ABSTRACT: The considerable increase in biodiesel production worldwide in the last 5 years resulted in astoichiometric increased coproduction of crude glycerol. As an excess of crude glycerol hasbeen produced, its value on market was reduced and it is becoming a "waste-stream" insteadof a valuable "coproduct". The development of biorefineries, i.e. production of chemicals andpower integrated with conversion processes of biomass into biofuels, has been singled out asa way to achieve economically viable production chains, valorize residues and coproducts,and reduce industrial waste disposal. In this sense, several alternatives aimed at the use ofcrude glycerol to produce fuels and chemicals by microbial fermentation have beenevaluated. This review summarizes different strategies employed to produce biofuels andchemicals (1,3-propanediol, 2,3-butanediol, ethanol, n-butanol, organic acids, polyols andothers) by microbial fermentation of glycerol. Initially, the industrial use of each chemical isbriefly presented; then we systematically summarize and discuss the different strategies toproduce each chemical, including selection and genetic engineering of producers, andoptimization of process conditions to improve yield and productivity. Finally, the impact ofthe developments obtained until now are placed in perspective and opportunities andchallenges for using crude glycerol to the development of biodiesel-based biorefineries areconsidered. In conclusion, the microbial fermentation of glycerol represents a remarkablealternative to add value to the biodiesel production chain helping the development ofbiorefineries, which will allow this biofuel to be more competitive.  相似文献   

3.
Production of microbial lipids using crude glycerol from the biodiesel industry is reviewed in this paper. Approximately 10 wt.% of crude glycerol is obtained for every batch of biodiesel. The crude glycerol accumulated contains various impurities and hence cannot be used for any commercial applications without further purification. Its conversion via biological and chemical routes into valuable products has been studied by different researchers. Varieties of fungal, yeasts, and algal species have been used to produce microbial lipids from crude glycerol. However, research focus on screening a robust industrial oleaginous strain capable of doing this is still on-going. Due to its chemical similarity to vegetable oils, microbial lipids are considered a potential renewable feedstock for biodiesel production and for applications in food and pharmaceutical industries. Its conversion to polyols and subsequently to biobased polymers is also being explored. The rising price of vegetable oils, increasing energy demands, growing environmental concerns, and availability of crude glycerol as a cheap carbon substrate result in considerable potential for the application of these processes in the future.  相似文献   

4.
Biodiesel has emerged as a potential alternate renewable liquid fuel in the past two decades. Total annual production of biodiesel stands at 6.96 million tons and 11.2 million tons in USA and Europe, respectively. In other countries, Asia and Latin America, biodiesel production has increased at unprecedented rate. Despite this, the economy of biodiesel is not attractive. An obvious solution for boosting the economy of the biodiesel industry is to look for markets for side products of the transesterification process of biodiesel synthesis. The main by-product is glycerol. However, this glycerol is contaminated with alkali/acid catalyst and alcohol, and thus, is not useful for conventional applications such as in toothpaste, drugs, paints and cosmetics. Conversion of this glycerol to value-added product is a viable solution for effective and economic utilization, which would also generate additional revenue for the biodiesel industry. Intensive research has taken place in area of conversion of glycerol to numerous products. The conventional catalytic route of glycerol transformation employs prohibitively harsh conditions of temperature and pressure, and thus, has slim potential for large-scale implementation. In addition, the selectivity of the process is rather small with formation of many undesired side products. The bioconversion processes, on the other hand, are highly selective although with slower kinetics. In this review, we have given an assessment and overview of the literature on bioconversion of glycerol. We have assessed as many as 23 products from glycerol bioconversion, and have reviewed the literature in terms of microorganism used, mode of fermentation, type of fermentor, yield and productivity of the process and recovery/purification of the products. The metabolic pathway of conversion of glycerol to various products has been discussed. We have also pondered over economic and engineering issues of large-scale implementation of process and have outlined the constraints and limitations of the process. We hope that this review will be a useful source of information for biochemists, biotechnologists, microbiologists and chemical engineers working in the area of glycerol bioconversion.  相似文献   

5.
Biodiesel has emerged as a potential alternate renewable liquid fuel in the past two decades. Total annual production of biodiesel stands at 6.96 million tons and 11.2 million tons in USA and Europe, respectively. In other countries, Asia and Latin America, biodiesel production has increased at unprecedented rate. Despite this, the economy of biodiesel is not attractive. An obvious solution for boosting the economy of the biodiesel industry is to look for markets for side products of the transesterification process of biodiesel synthesis. The main by-product is glycerol. However, this glycerol is contaminated with alkali/acid catalyst and alcohol, and thus, is not useful for conventional applications such as in toothpaste, drugs, paints and cosmetics. Conversion of this glycerol to value-added product is a viable solution for effective and economic utilization, which would also generate additional revenue for the biodiesel industry. Intensive research has taken place in area of conversion of glycerol to numerous products. The conventional catalytic route of glycerol transformation employs prohibitively harsh conditions of temperature and pressure, and thus, has slim potential for large-scale implementation. In addition, the selectivity of the process is rather small with formation of many undesired side products. The bioconversion processes, on the other hand, are highly selective although with slower kinetics. In this review, we have given an assessment and overview of the literature on bioconversion of glycerol. We have assessed as many as 23 products from glycerol bioconversion, and have reviewed the literature in terms of microorganism used, mode of fermentation, type of fermentor, yield and productivity of the process and recovery/purification of the products. The metabolic pathway of conversion of glycerol to various products has been discussed. We have also pondered over economic and engineering issues of large-scale implementation of process and have outlined the constraints and limitations of the process. We hope that this review will be a useful source of information for biochemists, biotechnologists, microbiologists and chemical engineers working in the area of glycerol bioconversion.  相似文献   

6.
Direct utilization of crude glycerol, a major byproduct in biodiesel industry, becomes imperative, because its production has outpaced the demand recently. We demonstrated that the oleaginous yeast Rhodosporidium toruloides Y4 had a great capacity to convert glycerol into lipids with high yield using the two-stage production process. Significantly higher cell mass and lipid yield were observed when the media were made with synthetic crude glycerol than pure glycerol. The process achieved a lipid yield of 0.22 g g−1 glycerol, which was comparable with the lipid yield using glucose as the substrate. Lipid samples showed similar fatty acid compositional profiles to those of vegetable oils, suggesting that such microbial lipids were potential feedstock for biodiesel production. Our data provided an attractive route to integrate biodiesel production with microbial lipid technology for better resource efficiency and economical viability.  相似文献   

7.
The enzymatic coproduction of biodiesel and glycerol carbonate by the transesterification of soybean oil was studied using lipase as catalyst in organic solvent. To produce biodiesel and glycerol carbonate simultaneously, experiments were designed sequentially. Enzyme screening, the molar ratio of dimethyl carbonate (DMC) to soybean oil, reaction temperature and solvent effects were investigated. The results of enzyme screening, at 100 g/L Novozym 435 (immobilized Candida antarctica lipase B), biodiesel and glycerol carbonate showed conversions of 58.7% and 50.7%, respectively. The optimal conditions were 60 °C, 100 g/L Novozym 435, 6.0:1 molar ratio with tert-butanol as solvent: 84.9% biodiesel and 92.0% glycerol carbonate production was achieved.  相似文献   

8.
The rapid development of biodiesel production technology has led to the generation of tremendous quantities of glycerol wastes, as the main by-product of the process. Stoichiometrically, it has been calculated that for every 100 kg of biodiesel, 10 kg of glycerol are produced. Based on the technology imposed by various biodiesel plants, glycerol wastes may contain numerous kinds of impurities such as methanol, salts, soaps, heavy metals, and residual fatty acids. This fact often renders biodiesel-derived glycerol unprofitable for further purification. Therefore, the utilization of crude glycerol though biotechnological means represents a promising alternative for the effective management of this industrial waste. This review summarizes the effect of various impurities-contaminants that are found in biodiesel-derived crude glycerol upon its conversion by microbial strains in biotechnological processes. Insights are given concerning the technologies that are currently applied in biodiesel production, with emphasis to the impurities that are added in the composition of crude glycerol, through each step of the production process. Moreover, extensive discussion is made in relation with the impact of the nature of impurities upon the performances of prokaryotic and eukaryotic microorganisms, during crude glycerol bioconversions into a variety of high added-value metabolic products. Finally, aspects concerning ways of crude glycerol treatment for the removal of inhibitory contaminants as reported in the literature are given and comprehensively discussed.  相似文献   

9.
The rapidly growing biodiesel industry has created a scenario, where it is both important and challenging to deal with the enormous amount of crude glycerol generated as an inherent by-product. With every 100 gallons of biodiesel produced, 5-10 gallons of the crude glycerol is left behind containing several impurities which makes its disposal difficult. The objective of the present investigation was to evaluate the impact of biodiesel-derived crude glycerol upon microbial growth and production of 1,3-propanediol by Citrobacter freundii. Five different grades of crude glycerol (obtained from biodiesel preparation using jatropha, soybean, sunflower, rice bran and linseed oils) were used. Crude glycerol caused significant inhibition of microbial growth and subsequently 1,3-propanediol production as compared to pure glycerol. Therefore, a process was developed for the treatment of crude glycerol using solvents before fermentation wherein four different non-polar solvents were examined yielding different grades of pretreated glycerol. Subsequently, the potential toxic effects of pretreated glycerol on the growth and 1,3-propanediol production by C. freundii was evaluated. In case of petroleum ether-treated crude glycerol obtained from jatropha & linseed and hexane-treated crude glycerol obtained from rice bran, the yields obtained were comparable to the pure glycerol. Similarly, soybean-derived glycerol gave comparable results after treatment with either hexane or petroleum ether.  相似文献   

10.
A process model to estimate biodiesel production costs   总被引:10,自引:0,他引:10  
'Biodiesel' is the name given to a renewable diesel fuel that is produced from fats and oils. It consists of the simple alkyl esters of fatty acids, most typically the methyl esters. We have developed a computer model to estimate the capital and operating costs of a moderately-sized industrial biodiesel production facility. The major process operations in the plant were continuous-process vegetable oil transesterification, and ester and glycerol recovery. The model was designed using contemporary process simulation software, and current reagent, equipment and supply costs, following current production practices. Crude, degummed soybean oil was specified as the feedstock. Annual production capacity of the plant was set at 37,854,118 l (10 x 10(6)gal). Facility construction costs were calculated to be US dollar 11.3 million. The largest contributors to the equipment cost, accounting for nearly one third of expenditures, were storage tanks to contain a 25 day capacity of feedstock and product. At a value of US dollar 0.52/kg (dollar 0.236/lb) for feedstock soybean oil, a biodiesel production cost of US dollar 0.53/l (dollar 2.00/gal) was predicted. The single greatest contributor to this value was the cost of the oil feedstock, which accounted for 88% of total estimated production costs. An analysis of the dependence of production costs on the cost of the feedstock indicated a direct linear relationship between the two, with a change of US dollar 0.020/l (dollar 0.075/gal) in product cost per US dollar 0.022/kg (dollar 0.01/lb) change in oil cost. Process economics included the recovery of coproduct glycerol generated during biodiesel production, and its sale into the commercial glycerol market as an 80% w/w aqueous solution, which reduced production costs by approximately 6%. The production cost of biodiesel was found to vary inversely and linearly with variations in the market value of glycerol, increasing by US dollar 0.0022/l (dollar 0.0085/gal) for every US dollar 0.022/kg (dollar 0.01/lb) reduction in glycerol value. The model is flexible in that it can be modified to calculate the effects on capital and production costs of changes in feedstock cost, changes in the type of feedstock employed, changes in the value of the glycerol coproduct, and changes in process chemistry and technology.  相似文献   

11.
Abstract

Crude glycerol is becoming a financial and environmental liability due to its surplus production from biodiesel industry, and its utilization as a fermentation feedstock for value-added chemicals production has been widely studied. In present work, the capacity of an endophytic fungus, Chaetomium globosum CGMCC 6882, using glycerol and crude glycerol for polysaccharide production was investigated. Results showed that the polysaccharide titers from glucose and glycerol were 1.85 and 3.8?g/L, respectively. Moreover, spore morphology of C. globosum CGMCC 6882 was favorable for polysaccharide production. Meanwhile, impurities in crude glycerol have no effect on polysaccharide production by C. globosum CGMCC 6882. Finally, characteristic results of polysaccharides produced from glucose, glycerol, and crude glycerol have suggested that metabolic flux might be a determinant factor on polysaccharide structure. Taken together, this research provided an innovative approach of utilizing crude glycerol produced from the biodiesel production process.  相似文献   

12.
在生物柴油的生产过程中,最高可得到约10%的副产物甘油,副产物甘油的去向将成为生物柴油大规模产业化发展所面临的严峻问题。以生物柴油副产物甘油为原料耦合生产1,3-丙二醇,不仅解决了生物柴油副产物甘油的出路问题,同时降低了1,3-丙二醇的生产成本。本研究在前期工作的基础上,分别获得了来源于肺炎克雷伯氏茵的甘油脱水酶编码基因dhaB和来源于大肠杆菌的1,3-PD氧化还原酶同工酶编码基因yqhD,利用表达载体pEtac串联构建了重组质粒pEtac—dhaB—tac—yqhD,将其转化大肠杆菌得到产1,3-丙二醇重组大肠杆菌JM109(pEtac—dhaB-tac—yqhD),降低了代谢中间产物3-羟基丙醛的积累,提高了1,3-丙二醇的产量。  相似文献   

13.
Lately, the price of liquid formulated lipase enzymes, usable in biodiesel production, has been significantly reduced. This enables one-time use of these enzymes for transesterification, and the process is used industrially. However, the process suffers a drawback by leaving 2−3 % free fatty acids in the crude biodiesel, which reduces the profitability. This article discusses a novel enzymatic FFA esterification reaction utilizing liquid lipase B from Candida antarctica (CALB) along with glycerol at low water concentrations to eliminate the residual FFA. The reaction setup was found able to reduce the free fatty acid concentration to within biodiesel specifications of < 0.25 wt.% FFA. Additionally, two alternative process setups are proposed, which were both found viable through a combination of experiments and simulations, and can be developed into full-scale processes. The resulting two-step enzymatic biodiesel process - transesterification followed by esterification - provides a potential process layout for the industrial production of biodiesel.  相似文献   

14.
Ye J  Sha Y  Zhang Y  Yuan Y  Wu H 《Bioresource technology》2011,102(7):4759-4765
By means of utilizing sunflower oil and Jatropha oil as raw oil respectively, the biodiesel transesterification production and the multi-stage extracting separation were carried out experimentally. Results indicate that dealcoholized crude glycerol can be utilized as the extracting agent to achieve effective separation of methanol from the methyl ester phase, and the glycerol content in the dealcoholized methyl esters is as low as 0.02 wt.%. For the biodiesel separation process utilizing glycerol extracting dealcoholization, its technical and equipment information were acquired through the rigorous process simulation in contrast to the traditional biodiesel distillation separation process, and results show that its energy consumption decrease about 35% in contrast to that of the distillation separation process. The glycerol extracting dealcoholization has sufficient feasibility and superiority for the biodiesel separation process.  相似文献   

15.
1,3-propanediol (1,3-PD) is a chemical compound of immense importance primarily used as a raw material for fiber and textile industry. It can be produced by the fermentation of glycerol available abundantly as a by-product from the biodiesel plant. The present study was aimed at determination of key kinetic parameters of 1,3-PD fermentation by Clostridium diolis. Initial experiments on microbial growth inhibition were followed by optimization of nutrient medium recipe by statistical means. Batch kinetic data from studies in bioreactor using optimum concentration of variables obtained from statistical medium design was used for estimation of kinetic parameters of 1,3-PD production. Direct use of raw glycerol from biodiesel plant without any pre-treatment for 1,3-PD production using this strain investigated for the first time in this work gave results comparable to commercial glycerol. The parameter values obtained in this study would be used to develop a mathematical model for 1,3-PD to be used as a guide for designing various reactor operating strategies for further improving 1,3-PD production. An outline of protocol for model development has been discussed in the present work.  相似文献   

16.
The recent rapid growth of the biodiesel industry has generated a significant amount of glycerol as a byproduct. As a result, the price of glycerol is currently relatively low, making it an attractive starting material for the production of chemicals with higher values. Crude glycerol can be directly converted through microbial fermentation into various chemicals such as hydrogen. In this study, we optimized immobilization of a facultative hydrogen producing microorganism, Enterobacter aerogenes, with the goal of developing biocatalysts that was appropriate for the continuous hydrogen production from glycerol. Several carriers were tested and agar was found to be the most effective. In addition, it was clearly shown that variables such as the carrier content and cell loading should be controlled for the immobilization of biocatalysts with high hydrogen productivity, stability, and reusability. After optimization of these variables, we were able to obtain reusable biocatalysts that could directly convert the byproduct stream from biodiesel processes into hydrogen in continuous processes.  相似文献   

17.
Although biofuels such as biodiesel and bioethanol represent a secure, renewable and environmentally safe alternative to fossil fuels, their economic viability is a major concern. The implementation of biorefineries that co-produce higher value products along with biofuels has been proposed as a solution to this problem. The biorefinery model would be especially advantageous if the conversion of byproducts or waste streams generated during biofuel production were considered. Glycerol-rich streams generated in large amounts by the biofuels industry, especially during the production of biodiesel, present an excellent opportunity to establish biorefineries. Once considered a valuable 'co-product', crude glycerol is rapidly becoming a 'waste product' with a disposal cost attributed to it. Given the highly reduced nature of carbon in glycerol and the cost advantage of anaerobic processes, fermentative metabolism of glycerol is of special interest. This review covers the anaerobic fermentation of glycerol in microbes and the harnessing of this metabolic process to convert abundant and low-priced glycerol streams into higher value products, thus creating a path to viability for the biofuels industry. Special attention is given to products whose synthesis from glycerol would be advantageous when compared with their production from common sugars.  相似文献   

18.
Assessment of four biodiesel production processes using HYSYS.Plant   总被引:4,自引:1,他引:3  
Four continuous biodiesel processes were designed and simulated in HYSYS. The first two employed traditional homogeneous alkali and acid catalysts. The third and fourth processes used a heterogeneous acid catalyst and a supercritical method to convert a waste vegetable oil feedstock into biodiesel. While all four processes were capable of producing biodiesel at high purity, the heterogeneous and supercritical processes were the least complex and had the smallest number of unit operations. Material and energy flows, as well as sized unit operation blocks, were used to conduct an economic assessment of each process. Total capital investment, total manufacturing cost and after tax rate-of-return were calculated for each process. The heterogeneous acid catalyst process had the lowest total capital investment and manufacturing costs, and had the only positive after tax rate-of-return.  相似文献   

19.
In this study, several methods were devised and evaluated to enhance biodiesel production by whole cells immobilized onto the polyurethane foam coated with activated carbon. Biodiesel conversion was increased to 76.4% with the increase in the number of polyurethane foam until it occupied 18.0 or 2.4% of reaction mixture based on apparent or actual volume of supports, respectively. Stepwise methanol addition to prevent methanol inhibition on the immobilized whole cells was optimized in terms of number of aliquot and feeding interval. When 4.5 molar ratio of methanol to soybean oil was divided into 4 equal aliquots and each aliquot was fed to the reaction mixture every 24 h, the highest final biodiesel conversion of 82.4% was achieved. Chemical treatment of the immobilized cells with 0.1% of chloroform for 2 h enhanced biodiesel conversion to 90.5%. The initial addition of 5% glycerol in the fresh reaction mixture increased biodiesel conversion to 90.3% while the removal of glycerol during biodiesel production barely increased biodiesel conversion. The biodiesel conversion was increased with the increase of initial water content in the fresh reaction mixture and the highest value was 92.7% at 3.0% of water content, but decreased thereafter. The effects of co-addition of glycerol and water on biodiesel production were also investigated, and the co-addition of 3.125% of glycerol and 1.875% of water relative to soybean oil substantially increased biodiesel conversion to 95.0%. By these optimization of reaction conditions and co-adding glycerol and water, initial biodiesel production rate and final biodiesel conversion were remarkably enhanced by 26.8 and 24.1%, respectively.  相似文献   

20.
粗甘油是生物柴油生产中的主要副产物,一些微生物可将甘油转化为重要化工原料1,3-丙二醇(1,3-PD),而利用这些微生物野生菌株生物合成1,3-PD会存在一些局限性,如底物抑制、产物抑制等。文中从1,3-丙二醇的甘油生物转化途径与这些局限性出发,总结了生物合成中存在的问题,并针对这些问题提出了一些基于基因敲除或基因过表达等基因工程技术的改造方法,综述了利用基因工程菌生物转化甘油生成1,3-丙二醇的最新研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号