首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Experimental mycology》1986,10(2):131-143
The enzyme trehalase II ofDictyostelium discoideum is efficiently secreted into the matrix of sori along with seven known lysosomal enzymes. The vegetative form of the enzyme, trehalase I, is particulate but the enzyme is secreted prior to cell aggregation or when cells are starved in phosphate buffer under standard secretion conditions. The secreted enzyme possesses properties common to lysosomal enzymes. Polyclonal and monoclonal antibodies raised against purified lysosomalN-acetylglucosaminidase precipitate the enzyme. The enzyme is released efficiently and about 62% of the initial cellular enzyme becomes extracellular. The secretion of trehalase is slightly sensitive to cycloheximide and completely blocked by sodium azide. Secretion is enhanced in the presence of disaccharides such as sucrose, lactose, and trehalose. Electrophoretograms of intracellular and secreted enzyme reveal no major processing of the enzyme during secretion. The pI of the trehalases has been estimated to be less than 2.5.  相似文献   

2.
Two filamentous fungi, the white-rot fungus Trametes versicolor and the soil fungus and potential biocontrol organism Trichoderma harzianum, have been grown in pure and mixed cultures on low-N (0.4 mM) and high-N (4 mM) defined synthetic media to determine the activities of selected wood-degrading enzymes such as cellobiase, cellulase, laccase, and peroxidases. Growth characteristics and enzyme activities were examined for potential correlations. Such correlations would allow the use of simple enzyme assays for measuring biomass development and would facilitate predictions about competitiveness of species in mixed fungal cultures. Our results show that while laccase and Poly Red-478 peroxidase activities indicate survival of the decay fungus, none of the monitored extracellular enzymes can serve as a quantitative indicator for biomass accumulation. As expected, the level of available nitrogen affected the production of the enzymes monitored: in low-N media, specific cellobiase, specific cellulase, and peroxidase activities were enhanced, while laccase activities were reduced. Most importantly, laccase activities of Trametes versicolor, and to a smaller extent, cellobiase activities of both fungi, were significantly induced in mixed cultures of Trametes versicolor and Trichoderma harzianum.  相似文献   

3.
Summary The mode of action of the cellulolytic enzymes of two strong cellulose decomposing fungi, Penicillium oxalicum Curie et Thom and Helminthosporium cyclops Drechsler, was studied. The culture filtrates and enzyme preparations obtained from them showed high cellulase activity and very weak cellobiase activity. The cellulolytic system of both experimental organisms seems to be multicomponent. The cellulase component showed its activity mainly extracellulary and the cellobiase component, mainly intracellulary. It seems, therefore, that during growth of both fungi on a cellulose medium, the extracellular cellulase acts hydrolytically on the cellulose substrate forming cellobiose which is further acted upon by intracellular cellobiase to form glucose. Paper chromatographic assay of the products of the enzymatic reaction sub-stantiated this conclusion.  相似文献   

4.
Regulatory mode of secretion of proteins was detected for the industrial glycosidase, cellobiase, under secreting conditions (in presence of TCA cycle intermediates like succinate etc.) in the filamentous fungus Termitomyces clypeatus. The titers of key metabolic enzymes were investigated under secreting and non-secreting conditions of growth and compared to the corresponding production of intra and extracellular levels of cellobiase. Results were compared in presence of 2-deoxy-d-glucose, a potent glycosylation inhibitor in the secreting media. Inclusion of 2-deoxy-d-glucose in presence of succinate caused about 10 to 100 times decrease in titers of the metabolic enzymes hexokinase, fructose-1,6-bisphosphatase, isocitrate lyase and malate dehydrogenase leading to increased secretion of cellobiase by more than 100 times. The intracellular concentration of cAMP (86-fold decrease in presence of 2-deoxy-d-glucose under secreting conditions) and turnover rate of proteins also dropped significantly. In this suppressed metabolic state, a 10-fold increase in the titer of the secreted cellobiase was noticed. The results indicated elucidation of carbon catabolite repression like phenomenon in the fungus under secreting conditions which was more pronounced by 2-deoxy-d-glucose. The interdependence between secretion and regulation of metabolic enzymes will help in better understanding of the physiology of these highly adapted organisms for increasing their secretion potential of glycosidases like cellobiase with high industrial value.  相似文献   

5.
To characterize the interactions of RNA polymerase with DNA, we have investigated the thermal transitions of poly[d(A-T] bound to RNA polymerase from Escherichia coli and the aggregation properties of the enzyme with DNA. The melting curve of the DNA-enzyme complex demonstrates a sharply lowered melting temperature for part of the DNA, whereas for another fraction the double helix is stabilized. This indicates that the DNA-binding site of RNA polymerase serves two functions: (1) to disrupt the double helix at one point, and (2) to maintain the duplex form at other points. The aggregation of DNA and RNA polymerase has been monitored by turbidity measurements, and conditions have been delineated under which aggregation is minimized. Holoenzyme added to double-stranded DNA or single-stranded DNA has little or no tendency to aggregate under most conditions. Core enzyme, on the other hand, aggregates extensively with double-stranded DNA, and only under conditions of low salt (10 mM KCl), without Mg2+, or at high salt (300 mM KCl), with or without Mg2+, can this aggregation be eliminated. Core enzyme also does not aggregate in the presence of single-stranded DNA. These aggregation properties are interpreted as evidence for more than one DNA-binding site on RNA polymerase.  相似文献   

6.
The extracellular cellobiase (EC 3.2.1.21) of Termitomyces clypeatus separated in two protein fractions when culture filtrate or ammonium sulfate precipitated proteins were chromatographed on BioGel P-200 column. During purification of cellobiase (CBS) from the lower molar mass (LMM) protein fraction, the enzyme behaved like a low molecular weight multimeric protein. The purified enzyme gave a single 56 kDa band in SDS-PAGE but ladderlike bands (14, 28, 42, and 56 kDa) on denaturation by reducing-SDS and urea. The protein, however, dissociated on dilution and protomeric (14 kDa) and multimeric forms (28 and 60 kDa) were eluted separately during HPGPLC. Specific activity of CBS gradually decreased as the molar mass of the enzyme was lowered in different eluted peaks. Protein present in all CBS pool fractions had the same amino acid composition and all displayed the same, single protein peak in reverse-phase HPLC and 56 kDa band in SDS-PAGE. Thus, T. clypeatus CBS was a multimeric 14 kDa protein that was optimally active as a tetramer. CBS purified from the higher molar mass fraction (HMM) as a SDS-PAGE homogeneous 110-kDa protein did not dissociate on dilution or by SDS-urea. The purified protein was a protein aggregate as CBS consistently contained 20 +/- 5% sucrase (SUC) Units in the preparation. The aggregate resolved during reverse-phase chromatography on a C(4) column, and an additional protein peak other than CBS was detected. The aggregated CBS had a higher temperature optimum and was more stable toward thermal and chemical denaturations than SUC-free CBS. Increase of stability and catalytic activity of CBS by aggregation with SUC was much higher than those by the multimerization of CBS itself. All of these observations for the first time suggested that the heterologous protein-protein aggregation, observed for a long time for fungal enzymes, might have a significant role in modulating physicochemical properties of the extracellular enzyme.  相似文献   

7.
《Insect Biochemistry》1990,20(8):839-847
Acetylglucosaminidase, amylase, cellobiase and maltase are more active in anterior midgut cells, whereas aminopeptidase, carboxypeptidase and trypsin are more active in posterior midgut cells of Tenebrio molitor larvae. Differential centrifugation of midgut homogenates prepared in saline (or mannitol) isotonic buffered solutions revealed that aminopeptidase is associated with membranes, which occur in subcellular fractions displaying many microvilli. Carboxypeptidase, trypsin and the carbohydrases are mostly found in the soluble fraction, although significant amounts sediment together with cell vesicles. Data on differential calcium precipitation of midgut homogenates and on partial ultrasound disruption of midgut tissue suggest that aminopeptidase is a microvillar enzyme and that the digestive enzymes recovered in the soluble fraction of cells are loosely bound to the cell glycocalyx. About 5% of the non-absorbable dye amaranth fed to T. molitor larvae remains in the midgut tissue after rinsing. Most dye was recovered in the soluble fraction of midgut cells. This provided further support for the hypothesis that the digestive enzymes found in the soluble fraction are actually extracellular and that the true intracellular enzymes are those associated with cell vesicles. The results suggest that the carbohydrases are secreted by exocytosis from the anterior midgut and carboxypeptidase and trypsin from the posterior midgut.  相似文献   

8.
Regulated secretory proteins are sorted via selective co-aggregation in eukaryotes. Cellobiase (C) of the filamentous fungus Termitomyces clypeatus remained co-aggregated with sucrase (S), and only one isoform of each of the enzymes was present in intra- and extracellular extracts. Kinetics of secretion of sucrase increased in vivo and in vitro in secreting (Sc) medium and decreased under non-secreting (NSc) conditions similar to those observed for cellobiase. In the Sc condition, total enzyme production and activity ratios of cellobiase and sucrase (C/S) in cell-bound, extra- and intracellular preparations increased with time and were significantly higher from those obtained in non-secretory media. It was concluded that secretion of sucrase in culture medium is under same cellular regulation as that of cellobiase, and sucrase is involved in regulating extracellular release of cellobiase through co-aggregation in the fungus. Received: 27 August 2001 / Accepted: 1 November 2001  相似文献   

9.
Regulatory mode of secretion of proteins was detected for the industrial glycosidase, cellobiase, under secreting conditions (in presence of TCA cycle intermediates like succinate etc.) in the filamentous fungus Termitomyces clypeatus. The titers of key metabolic enzymes were investigated under secreting and non-secreting conditions of growth and compared to the corresponding production of intra and extracellular levels of cellobiase. Results were compared in presence of 2-deoxy-D-glucose, a potent glycosylation inhibitor in the secreting media. Inclusion of 2-deoxy-D-glucose in presence of succinate caused about 10 to 100 times decrease in titers of the metabolic enzymes hexokinase, fructose-1,6-bisphosphatase, isocitrate lyase and malate dehydrogenase leading to increased secretion of cellobiase by more than 100 times. The intracellular concentration of cAMP (86-fold decrease in presence of 2-deoxy-D-glucose under secreting conditions) and turnover rate of proteins also dropped significantly. In this suppressed metabolic state, a 10-fold increase in the titer of the secreted cellobiase was noticed. The results indicated elucidation of carbon catabolite repression like phenomenon in the fungus under secreting conditions which was more pronounced by 2-deoxy-D-glucose. The interdependence between secretion and regulation of metabolic enzymes will help in better understanding of the physiology of these highly adapted organisms for increasing their secretion potential of glycosidases like cellobiase with high industrial value.  相似文献   

10.
Mechanisms of enzyme inactivation and aggregation are still poorly understood. In this work, we are considering the characterisation of both inactivation and aggregation in stirred tank reactor, with lysozyme as the model enzyme.

The inactivation kinetics are first order. For stirring speeds in the range of 0–700 rpm, the kinetic constant is found to be proportional to the power brought by the impeller. It suggests that inactivation depends on collisions between enzyme molecules. Efficient collisions between native and inactive molecules induce native molecules to turn into inactive molecules and lead to lysozyme aggregation.

During inactivation, enzymes are found to aggregate as shown by light scattering measurements. The structure of aggregates was studied on samples treated for chemical denaturation and reduction. The aggregates are supramolecular edifices, mainly made up of inactivated enzymes linked by weak forces. But aggregates are also made up of dimers and trimers of lysozyme, linked by disulfide bridges. Dimers and trimers are 18% and 5%, respectively, of the total amount of lysozyme aggregates.

Whatever the stage of aggregate formation and the initial enzyme concentration are, these aggregates are irreversibly inactivated. Enzyme activity is definitely lost even if stirring is stopped and/or temperature decreased.

This study points out the importance of hydrodynamics in bioreactors and highlights the nature of the aggregates resulting from the interactions between native and inactive enzymes.  相似文献   


11.
Acetyl esterase (AE) activity present in the culture filtrate of Termitomyces clypeatus was separated into lower molar mass (LMM) and higher molar mass (HMM) protein fractions during BioGel P-200 gel chromatography. AE was purified as a 30 kDa nonglycosylated protein from LMM fractions by CM-Sepharose ion exchange chromatography and HPGPLC. Although the HMM fraction had a number of enzyme activities (sucrase, beta-xylosidase, beta-glucosidase, and alpha-L-arabinofuranosidase) other than AE, protein present in the fraction was eluted as a single protein peak in HPGPLC and gave a single band in native PAGE. The fraction, subsequently purified by DEAE-Sephadex chromatography, was a SDS-PAGE homogeneous 80 kDa glycoprotein, but with both AE and cellobiase activities. The aggregate dissociated during ConA-Sepharose chromatography and 30 kDa AE and 56 kDa glycosylated cellobiase were purified separately. The dissociation caused significant loss of cellobiase activity but not that of AE. AE purified from both HMM and LMM fractions was characterized to be the same enzyme in terms of molar masses, pI (7.3), and other physicochemical properties. AE as an aggregate with cellobiase showed higher thermostability, temperature optimum, and resistance toward chemical denaturants than those of purified AE. Compared to cellobiase purified earlier from the same fungus, the enzyme present with AE in the aggregate also showed higher catalytic activity, thermostability, and temperature optimum. The study indicated that the formation of such SDS-resistant enzyme aggregate was associated with significant changes in the physicochemical properties of the enzymes, mainly toward improvement of rigidity of enzymes, and sometimes with the improvement of catalytic activity.  相似文献   

12.
We have investigated the aggregation of protein L in 25% (vol/vol) TFE and 10 mM HCl. Under both conditions, aggregates adopt a fibrillar structure and bind dyes Congo Red and Thioflavin T consistent with the presence of amyloid fibrils. The kinetics of aggregation in 25% TFE suggest a linear-elongation mechanism with critical nucleus size of either two or three monomers. Aggregation kinetics in 10 mM HCl show a prolonged lag phase prior to a rapid increase in aggregation. The lag phase is time-dependent, but the time dependence can be eliminated by the addition of pre-formed seeds. Disaggregation studies show that for aggregates formed in TFE, aggregate stability is a strong function of aggregate age. For example, after 200 min of aggregation, 40% of the aggregation reaction is irreversible, while after 3 days over 60% is irreversible. When the final concentration of the denaturant, TFE, is reduced from 5% to 0, the amount of reversible aggregation doubles. Disaggregation studies of aggregates formed in TFE and 10 mM HCl reveal a complicated effect of pH on aggregate stability.  相似文献   

13.
Human lysosomal alpha-galactosidase A (alpha-Gal A) was stably overexpressed in CHO cells and its biosynthesis and targeting were investigated. Clone AGA5.3-1000Mx, which was the highest enzyme overexpressor, produced intracellular alpha-Gal A levels of 20,900 U/mg (approximately 100 micrograms of enzyme/10(7) cells) and secreted approximately 13,000 U (or 75 micrograms/10(7) cells) per day. Ultrastructural examination of these cells revealed numerous 0.25-1.5 microns crystalline structures in dilated trans-Golgi network (TGN) and in lysosomes which stained with immunogold particles using affinity-purified anti-human alpha-Gal A antibodies. Pulse-chase studies revealed that approximately 65% of the total enzyme synthesized was secreted, while endogenous CHO lysosomal enzymes were not, indicating that the alpha-Gal A secretion was specific. The recombinant intracellular and secreted enzyme forms were normally processed and phosphorylated; the secreted enzyme had mannose-6-phosphate moieties and bound the immobilized 215-kD mannose-6-phosphate receptor (M6PR). Thus, the overexpressed enzyme's selective secretion did not result from oversaturation of the M6PR-mediated pathway or abnormal binding to the M6PR. Of note, the secreted alpha-Gal A was sulfated and the percent of enzyme sulfation decreased with increasing amplification, presumably due to the inaccessibility of the enzyme's tyrosine residues for the sulfotransferase in the TGN. Overexpression of human lysosomal alpha-N-acetylgalactosaminidase and acid sphingomyelinase in CHO cell lines also resulted in their respective selective secretion. In vitro studies revealed that purified secreted alpha-Gal A was precipitated as a function of enzyme concentration and pH, with 30% of the soluble enzyme being precipitated when 10 mg/ml of enzyme was incubated at pH 5.0. Thus, it is hypothesized that these overexpressed lysosomal enzymes are normally modified until they reach the TGN where the more acidic environment of this compartment causes the formation of soluble and particulate enzyme aggregates. A significant proportion of these enzyme aggregates are unable to bind the M6PR and are selectively secreted via the constitutive secretory pathway, while endogenous lysosomal enzymes bind the M6PRs and are transported to lysosomes.  相似文献   

14.

Background

Multicellularity in cellular slime molds is achieved by aggregation of several hundreds to thousands of cells. In the model slime mold Dictyostelium discoideum, adenosine is known to increase the aggregate size and its antagonist caffeine reduces the aggregate size. However, it is not clear if the actions of adenosine and caffeine are evolutionarily conserved among other slime molds known to use structurally unrelated chemoattractants. We have examined how the known factors affecting aggregate size are modulated by adenosine and caffeine.

Result

Adenosine and caffeine induced the formation of large and small aggregates respectively, in evolutionarily distinct slime molds known to use diverse chemoattractants for their aggregation. Due to its genetic tractability, we chose D. discoideum to further investigate the factors affecting aggregate size. The changes in aggregate size are caused by the effect of the compounds on several parameters such as cell number and size, cell-cell adhesion, cAMP signal relay and cell counting mechanisms. While some of the effects of these two compounds are opposite to each other, interestingly, both compounds increase the intracellular glucose level and strengthen cell-cell adhesion. These compounds also inhibit the synthesis of cAMP phosphodiesterase (PdsA), weakening the relay of extracellular cAMP signal. Adenosine as well as caffeine rescue mutants impaired in stream formation (pde4 - and pdiA - ) and colony size (smlA - and ctnA - ) and restore their parental aggregate size.

Conclusion

Adenosine increased the cell division timings thereby making large number of cells available for aggregation and also it marginally increased the cell size contributing to large aggregate size. Reduced cell division rates and decreased cell size in the presence of caffeine makes the aggregates smaller than controls. Both the compounds altered the speed of the chemotactic amoebae causing a variation in aggregate size. Our data strongly suggests that cytosolic glucose and extracellular cAMP levels are the other major determinants regulating aggregate size and pattern. Importantly, the aggregation process is conserved among different lineages of cellular slime molds despite using unrelated signalling molecules for aggregation.  相似文献   

15.
Lipase from Thermomyces lanuginosus was assembled into multiple layers on polyethylenimine treated cotton flannel cloth, utilising the enzymes property of forming bimolecular aggregates via layer-by-layer (LBL) immobilization technique. An increase in lipase activity with increasing enzyme layers confirmed lipase aggregation. A study to compare the activity of enzyme bound by classical LBL technique, containing alternate layers of polyethylenimine and lipase and the modified approach indicated above, showed that more enzyme was bound to cloth in the modified approach. A total of 13 U/cm2 of enzyme were bound to cloth till the fifth layer whereas only 10.2 U/cm2 were bound till the fifth bilayer in the classical approach. The successful assembly of lipase molecules has shown that this modified technique is a promising approach to immobilize enzymes that aggregate through hydrophobic interactions as nano-films on cloth.  相似文献   

16.
Chitin is an important component of the exoskeleton and peritrophic matrix in insects. Its bio-degradation is initiated by the endo-splitting chitinase. We cloned an ORF cDNA encoding chitinase from the last instar larva of the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), into E. coli to confirm its functionality. Its amino acid sequence was compared with previously described lepidopteran chitinases. S. exigua chitinase expression enhanced cell growth approx. 1.5 fold in transformed E. coli than in the wild strain in a 1% colloidal chitin-containing medium with insufficient regular nutrients. Compared with the wild strain, the two intracellular chitin degradation derivatives, glucosamine and N-acetylglucosamine, increased approx. 5.8 and 1.5 fold, respectively, and extracellular chitinase activity in the transformed strain was about 1.6 fold higher. The ORF of S. exigua chitinase-encoding cDNA including stop codon was composed of 1674 bp nucleotides and the calculated molecular weight of the deduced 557 amino acid residues was about 62.6 kDa. The ORF consisted of an N-terminal leading signal peptide (AA 1-20), a catalytic domain (AA 21-392), a linker region (AA 393-493), and a C-terminal chitin-binding domain (AA 494-557) showing a typical molting fluid chitinase structure. Phylogenetic analysis determined that all 5 noctuid chitinases were grouped together, while two bombycid enzymes and one tortricid enzyme mapped together in one lineage. In the noctuid group, the sub-lineages reflected their taxonomic relationships at the Genus level.  相似文献   

17.
An unknown species of Alternaria, when grown on a medium containing carboxymethylcellulose as a carbon source produced a mixture of extracellular enzymes which solubilized acid-swollen cellulose. The product of the hydrolysis was a 1:2 molar mixture of cellobiose and glucose. The organism apparently produced no cellobiase. It is suggested that the mixture of cellulolytic enzymes contains at least two different enzymes which degrade cellulose in an endwise manner.  相似文献   

18.
Brettanomyces lambicus was isolated and identified from a typical overattenuating Belgian lambic beer and exhibited extracellular and intracellular alpha-glucosidase activities. Production of the intracellular enzyme was higher than production of the extracellular enzyme, and localization studies showed that the intracellular alpha-glucosidase is mostly soluble and partially cell wall bound. Both intracellular and extracellular enzymes were purified by ammonium sulfate precipitation, gel filtration (Sephadex G-150, Sephadex G-200, Ultrogel AcA-44), and ion-exchange chromatography (sulfopropyl-Sephadex C-50, (carboxymethyl-Sephadex C-50). The intracellular alpha-glucosidase exhibited optimum activity at 39 degrees C and pH 6.2. The extracellular enzyme exhibited optimum catalytic activity at 40 degrees C and pH 6.0. The molecular masses of purified intracellular and extracellular alpha-glucosidases, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, were 72,500 and 77,250, respectively. For both enzymes there was a decrease in the rate of hydrolysis with an increase in the degree of polymerization, and both enzymes hydrolyzed dextrins isolated from lambic wort (degrees of polymerization, 3 to 9 and more than 9). The K(m) values for p-nitrophenyl-alpha-d-glucopyranoside, maltose, and maltotriose for the intracellular enzyme were 0.9, 3.4, and 3.7 mM, respectively. The K(i) values for both enzymes were between 28.5 and 57 muM for acarbose and between 7.45 and 15.7 mM for Tris. These enzymes are probably involved in the overattenuation of spontaneously fermented lambic beer.  相似文献   

19.
Vegetative microplasmodia of the slime mold, Physarum polycephalum, produce an intracellular β-N-acetylhexosaminidase enzyme when grown on a medium containing 1% glucose, 0.15% yeast extract, and 1% peptone. When early log-phase microplasmodia are induced to differentiate to spherules by starvation in a salts medium, they excrete an extracellular β-N-acetylhexosaminidase. Both of these enzymes have been purified to apparent homogeneity. Characterization studies showed that the extracellular enzyme was nonidentical to the preexisting, vegetative enzyme and the enzyme in completed spherules. Evidence demonstrating dissimilarities between the two proteins included marked differences in (i) specificities for several natural and synthetic substrates, (ii) various kinetic parameters, (iii) relative net charges as evidenced by different elution behavior from similar DE-52 cellulose chromatography columns, (iv) carbohydrate contents, and (v) subunit polypeptide molecular weights. Conclusive evidence for their nonidentity was shown in their respective amino acid compositions and divergent immunological properties. The extracellular β-N-acetylhexosaminidase demonstrated a subunit molecular weight of 25,300; the intracellular enzyme subunit molecular weight was 40,500. The extracellular enzyme, with the smaller polypeptide subunit, contained 1.79 times as many aromatic amino acid residues in tyrosine, phenylalanine, and tryptophan as the intracellular enzyme. Thus, the extracellular enzyme could not have been comprised of subunits derived from limited proteolytic hydrolysis of the larger subunits of the intracellular enzyme. Rabbit antisera prepared against each purified β-N-acetylhexosaminidase failed to yield precipitin bands with the heterologous antigen in immunodiffusion tests. Thus, apparently distinct structural genes code for these two enzymes and they may serve different, but unidentified, physiological functions.  相似文献   

20.
Recapture of lysosomal enzymes secreted by fibroblasts was inhibited by growing the cells in the presence of either free or immobilized antibodies against lysosomal enzymes or in the presence of phosphorylated carbohydrates known to interact with the cell-surface receptors for lysosomal enzymes. The following results were obtained. 1. Conditions that prevent recapture of released lysosomal enzymes increase the rate of extracellular accumulation of these enzymes up to twice that of controls. 2. Growing cells for 12 days in the presence of 0.5mm-mannose 6-phosphate, which decreases β-N-acetylglucosaminidase endocytosis to less than 10% of that of controls, has no effect on the intracellular activity of this and four other lysosomal enzymes. 3. Growing cells for 4 days in the presence of 50mm-mannose 6-phosphate, which is a 1000-fold higher concentration than that required for 50% inhibition of lysosomal enzyme endocytosis, leads to a 4-fold increase in extracellular β-N-acetylglucosaminidase accumulation and a decrease in intracellular enzyme. These results give evidence that, in fibroblasts, transfer of lysosomal enzymes into lysosomes does not require secretion before a receptor-mediated recapture [Hickman & Neufeld (1972) Biochem. Biophys. Res. Commun. 49, 992–999]. We propose that (a) lysosomal enzymes are present in a receptor-bound form in those vesicles that fuse with the cell membrane, (b) the major part of the lysosomal enzyme cycles via the cell surface in a receptor-bound form and (c) only a minor part of the lysosomal enzyme is released into the extracellular space during its life cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号