首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Process Biochemistry》2010,45(7):1163-1167
The kinetically controlled synthesis of cephalexin in aqueous two-phase systems was studied, using immobilized penicillin acylase, 7-amino 3-desacetoxycephalosporanic acid as nucleophile and phenylglycine methyl ester as acyl donor. The organic phases used were 80% (v/v) polyethyleneglycol 400 and 600 and the aqueous phase was 2.5 M (NH4)2SO4. 7-amino 3-desacetoxycephalosporanic acid and cephalexin partition coefficients were determined at pH 7.4 and 7.8, at 14 °C and 20 °C. Highest partition coefficient for cephalexin was obtained for polyethyleneglycol 400–(NH4)2SO4 at pH 7.4 and 20 °C, while the lowest partition coefficient for 7-amino desacetoxycephalosporanic acid was obtained in the same system at pH 7.8 and 14 °C. No significant effect of pH was observed on conversion yield and productivity of cephalexin synthesis; however, higher values were obtained with polyethyleneglycol 400 as organic phase. Higher conversion yields with both biphasic systems were obtained at the lowest temperature, where product hydrolysis was lower; volumetric productivity was higher for the fully aqueous medium (control), being higher at 20 °C. All parameters of synthesis were improved at higher substrates concentrations, obtaining conversion yields of 78.2% and 65.4%, with 60 mM 7-amino desacetoxycephalosporanic acid for the polyethyleneglycol 400–(NH4)2SO4 system and the control, respectively.  相似文献   

2.
There is a marked trend in pharmaceutical industry towards the replacement of classical organic methods by “green” alternatives that minimize or eliminate the generation of waste and avoid, where possible, the use of toxic and/or hazardous reagents and solvents. In this work the kinetically controlled synthesis of cephalexin by soluble and penicillin G acylase immobilized in sol–gel micro‐particles with magnetic properties was performed in aqueous media with PGME and 7‐ADCA as substrates, at different concentrations of substrate, temperature, pH, enzyme to substrate ratio and acyl donor to nucleophile ratio. Excess acyl donor had a strong effect on cephalexin productivity. A PGME/7‐ADCA ratio of 3 was considered optimum. A maximum specific productivity of at 160 mM 7‐ADCA, 480 mM PGME and low enzyme to substrate ratio at 32.5 U mmol?1 7‐ADCA was obtained with immobilized PGA in full aqueous medium, suggesting that diffusional limitations were minimized when compared with other commercial biocatalysts. A half‐life of 133 h for the immobilized biocatalyst was estimated during cephalexin synthesis in the presence of 100 mM 7‐ADCA and 300 mM PGME, in 50 mM Tris/HCl at pH 7.2 and 14°C. These results compare quite favorably with those previously reported for the kinetically controlled synthesis of cephalexin. Biotechnol. Bioeng. 2010;107: 753–762. © 2010 Wiley Periodicals, Inc.  相似文献   

3.
An optimal way to design an enzymatic process for the production of betalactam antibiotics based on thermodynamic and kinetic studies is described. The study was performed on model reactions involving synthesis of cephalosporin-acids (cephalotin, cefazolin, cefoxitin) using immobilised cephalosporin-acid synthetase from Escherichia coli as biocatalyst, and aminocephalosporins (cephalexin) using immobilised cells of Xanthomonas rubrilineans containing the aminocephalosporin synthetase. The possibility of direct synthesis of cephalotin and cefoxitin was shown, the main equilibrium parameters were determined and the operation conditions were evaluated. The maximum key amino acid conversion to product of approximately 90% for cefoxitin and cephalotin was achieved using initial concentrations of the corresponding key amino acids of 0.05 &#117 M and, respectively, 2-fold and 4-fold molar excess of the carboxylic acids. Cefazolin and cephalexin production by enzymatic synthesis with using of corresponding biocatalyst with a mechanism of action involving the acylenzyme intermediate was shown possible. The kinetic parameters of the process were estimated and the relationship between the maximum antibiotic yield and the initial concentrations of the substrate and nucleophile in the kinetically controlled synthesis was determined. The technologies for cefazolin and cephalexin enzymatic synthesis were designed and the cefazolin technology was optimised. Maximum yields of cefazolin and cephalexin of more than 90% were predicted by the kinetic model using 4-6-fold molar excess of the acylating agents and maximum yields of approximately 85% were achieved in experiments.  相似文献   

4.
An optimal way to design an enzymatic process for the production of betalactam antibiotics based on thermodynamic and kinetic studies is described. The study was performed on model reactions involving synthesis of cephalosporin-acids (cephalotin, cefazolin, cefoxitin) using immobilised cephalosporin-acid synthetase from Escherichia coli as biocatalyst, and aminocephalosporins (cephalexin) using immobilised cells of Xanthomonas rubrilineans containing the aminocephalosporin synthetase. The possibility of direct synthesis of cephalotin and cefoxitin was shown, the main equilibrium parameters were determined and the operation conditions were evaluated. The maximum key amino acid conversion to product of approximately 90% for cefoxitin and cephalotin was achieved using initial concentrations of the corresponding key amino acids of 0.05 λM and, respectively, 2-fold and 4-fold molar excess of the carboxylic acids. Cefazolin and cephalexin production by enzymatic synthesis with using of corresponding biocatalyst with a mechanism of action involving the acylenzyme intermediate was shown possible. The kinetic parameters of the process were estimated and the relationship between the maximum antibiotic yield and the initial concentrations of the substrate and nucleophile in the kinetically controlled synthesis was determined. The technologies for cefazolin and cephalexin enzymatic synthesis were designed and the cefazolin technology was optimised. Maximum yields of cefazolin and cephalexin of more than 90% were predicted by the kinetic model using 4-6-fold molar excess of the acylating agents and maximum yields of approximately 85% were achieved in experiments.  相似文献   

5.
Enzymatic synthesis of arginine-based cationic surfactants   总被引:4,自引:0,他引:4  
A novel enzymatic approach for the synthesis of arginine N-alkyl amide and ester derivatives is reported. Papain deposited onto solid support materials was used as catalyst for the amide and ester bond formation between Z-Arg-OMe and various long-chain alkyl amines and alcohols (H2N-Cn2, HO-Cn; n = 8-16) in organic media. Changes in enzymatic activity and product yield were studied for the following variables: organic solvent, aqueous buffer content, support for the enzyme deposition, presence of additives, enzyme loading, substrate concentration, and reaction temperature. The best yields (81-89%) of arginine N-alkyl amide derivatives were obtained at 25 degrees C in acetonitrile with an aqueous buffer content ranging from 0 to 1% (v/v) depending on the substrate concentration. The synthesis of arginine alkyl ester derivatives was carried out in solvent-free systems at 50 or 65 degrees C depending on the fatty alcohol chain length. In this case, product yields ranging from 86 to 89% were obtained with a molar ratio Z-Arg-OMe/fatty alcohol of 0.01. Papain deposited onto polyamide gave, in all cases, both the highest enzymatic activities and yields. Under the best reaction conditions the syntheses were scaled up to the production of 2 g of final product. The overall yields, which include reaction, Nalpha-benzyloxycarbonyl group (Z) deprotection and purification, varied from 53 to 77% of pure (99.9% by HPLC) product.  相似文献   

6.
A basic possibility of enzymic synthesis of alkyl glycosides in a system of the Aerosol-OT (AOT) reverse micelles was studied. Octyl beta-D-galactopyranoside and octyl beta-D-glucopyranoside were synthesized from the corresponding sugars (lactose or glucose) and octyl alcohol under catalysis with glycolytic enzymes, beta-galactosidase and beta-glucosidase, respectively. The transglycosylation/hydrolysis ratio was shifted toward transglycosylation by using octyl alcohol, one of the substrates, as an organic solvent. The alkyl glycosides were thus obtained in one step from a hydrophilic mono- or disaccharide and a hydrophobic aliphatic alcohol. The direction of the reaction was shown to depend on the pH of aqueous solution immobilized in nerves micelles. The maximum yields were 45% and 40% for octyl galactoside and octyl glucoside, respectively; they markedly exceeded the yields of enzymic syntheses in a two-phase system reported previously.  相似文献   

7.
Advantages of performing penicillin G amidase catalysed synthesis of ampicillin and cephalexin by enzymatic acyl transfer to the β-lactam antibiotic nuclei in a highly condensed system using mainly undissolved substrates, with no apparent aqueous liquid phase, were demonstrated. It was shown that synthesis can be performed in the absence of a liquid phase formed by water or an organic co-solvent. This highly condensed system is formed by a liquid phase given by one of the reactant, the phenylglycine methyl ester (PGM), that remains liquid in these operative conditions and the partially dissolved β-lactam nucleus. Operating in such highly condensed system, the water that causes the hydrolysis of PGM is limited to the water hydrating the support on which the enzyme is covalently immobilised. In this way the reaction system is maintained at a controlled degree of hydration.

In the present work the reaction system was modulated by eliminating the solvent (aqueous or aqueous/organic), reducing the amount of water to the minimum for the biocatalytic activity and using PGM as solvent and reagent at the same time. The synthesis was conducted with equimolar amounts of PGM and the β-lactam nucleus, with a reduced hydrolysis of the activated acyl donor. We have also studied a simple and efficient method for the workup of the reaction where the unreacted reagents can be recovered after selective filtration and precipitation.  相似文献   


8.
Penicillin-G acylase (EC 3.5.1.11) from Escherichia coli catalyzed the synthesis of various beta-lactam antibiotics in ice at -20 degrees C with higher yields than obtained in solution at 20 degrees C. The initial ratio between aminolysis and hydrolysis of the acyl-enzyme complex in the synthesis of cephalexin increased from 1.3 at 20 degrees C to 25 at -20 degrees C. The effect on the other antibiotics studied was less, leading us to conclude that freezing of the reaction medium influences the hydrolysis of each nucleophile-acyl-enzyme complex to a different extent. Only free penicillin-G acylase could perform transformations in frozen media: immobilized preparations showed a low, predominantly hydrolytic activity under these conditions.  相似文献   

9.
Yields of kinetically controlled synthesis of antibiotics catalyzed by penicillin G acylase from Escherichia coli (PGA) have been greatly increased by continuous extraction of water soluble products (cephalexin) away from the surroundings of the enzyme. In this way its very rapid enzymatic hydrolysis has been avoided. Enzymes covalently immobilized inside porous supports acting in aqueous two-phase systems have been used to achieve such improvements of synthetic yields. Before the reaction is started, the porous structure of the biocatalyst can be washed and filled with one selected phase. In this way, when the pre-equilibrated biocatalyst is mixed with the second phase (where the reaction product will be extracted), the immobilized enzyme remains in the first selected phase in spite of its possibly different natural trend. Partition coefficients (K) of cephalexin in very different aqueous two-phase systems were firstly evaluated. High K values were obtained under drastic conditions. The best K value for cephalexin (23) was found in 100% PEG 600-3 M ammonium sulfate where cephalexin was extracted to the PEG phase. Pre-incubation of immobilized PGA derivatives in ammonium sulfate and further suspension with 100% PEG 600 allowed us to obtain a 90% synthetic yield of cephalexin from 150 mM phenylglycine methyl ester and 100 mM 7-amino desacetoxicephalosporanic acid (7-ADCA). In this reaction system, the immobilized enzyme remains in the ammonium sulfate phase and hydrolysis of the antibiotic becomes suppressed because of its continuous extraction to the PEG phase. On the contrary, synthetic yields of a similar process carried out in monophasic systems were much lower (55%) because of a rapid enzymatic hydrolysis of cephalexin.  相似文献   

10.
The enzymatic synthesis of N-acetyl-lactosamine (LacNAc) was studied in aqueous media with high substrate concentrations using the transgalactosylation of N-acetyl-D-glucosamine (GlcNAc), starting from lactose as a galactosyl donor. The efficiency and regioselectivity of the β-galactosidases from Kluyveromyces lactis (KlβGal) and Bacillus circulans (BcβGal) were compared. The reaction was optimized by varying the experimental conditions (pH, catalytic activity concentration, and mass concentration ratio of the substrates), which enhanced the synthesis yields with both enzymes and especially with BcβGal. BcβGal catalyzed the formation of the maximal LacNAc concentration obtained (101 mM or 39 g L(-1), corresponding to a yield of 11% on the basis of GlcNAc conversion), after 5 h at pH 6.5 and for a substrate mass concentration ratio of 1. This enzyme also gave an optimal synthesis yield of about 17.5%. No change in regioselectivity was observed when using KlβGal, whereas the regioselectivity of BcβGal proved to be subject to variations, the 1-4 and 1-6 linkages being favored under kinetic and thermodynamic control conditions, respectively. Finally, it was demonstrated that the N-acetyl-allolactosamine synthesized during the GlcNAc transgalactosylation catalyzed by BcβGal was a thermodynamic product and did not result from a chemical and/or enzymatic isomerization of LacNAc.  相似文献   

11.
Initial rates of peptide-bond synthesis catalyzed by poly(ethylene glycol)-modified chymotrypsin in benzene were determined using high-performance liquid chromatography. Enzymatic synthesis of N-benzoyl-L-tyrosyl-L-phenylalanine amide from N-benzoyl-L-tyrosine ethyl ester and L-phenylalanine amide was found to obey Michaelis-Menten kinetics an to be consistent with a ping-pong mechanism modified by a hydrolytic branch. The catalytic activity of modified chymotrypsin was dependent on both water concentration and type of organic solvent, the highest synthesis rate being obtained in toluene. Since the chymotrypsin specificity in the organic phase was actually altered, the enzyme's apparent kinetic parameters were determined for different substrates and compared to those obtained with other serine proteases in benzene. Both N-benzoyl-L-tyrosine ethyl ester and N-alpha-benzoyl-L-lysine methyl ester were comparable acyl donors in benzene and the (kcat/Km)app value of modified chymotrypsin was only 10-fold smaller than that obtained with poly(ethylene glycol)-modified trypsin in the synthesis of N-alpha-benzoyl-L-lysyl-L-phenylalanine amide. The change in chymotrypsin specificity was also confirmed through the binding of trypsin inhibitors in benzene. The overall results suggest that hydrophobic bonding between the enzyme and its substrate should not be taken into account during catalysis in the organic phase. In general, if hydrophobic interactions are involved in the binding of substrates to the active site in aqueous media, the replacement of water by hydrophobic solvents will induce some change in enzyme specificity. Moreover, secondary residues of enzyme-binding sites may also exert a significant influence on specificity since, as observed in this study, chymotrypsin exhibited high affinity for cationic substrates and cationic inhibitors as well in apolar solvents.  相似文献   

12.
Advantages of performing penicillin acylase-catalyzed synthesis of new penicillins and cephalosporins by enzymatic acyl transfer to the beta-lactam antibiotic nuclei in the supersaturated solutions of substrates have been demonstrated. It has been shown that the effective nucleophile reactivity of 6-aminopenicillanic (6-APA) and 7-aminodesacetoxycephalosporanic (7-ADCA) acids in their supersaturated solutions continue to grow proportionally to the nucleophile concentration. As a result, synthesis/hydrolysis ratio in the enzymatic synthesis can be significantly (up to three times) increased due to the nucleophile supersaturation. In the antibiotic nuclei conversion to the target antibiotic the remarkable improvement (up to 14%) has been gained. Methods of obtaining relatively stable supersaturated solutions of 6-APA, 7-ADCA, and D-p-hydroxyphenylglycine amide (D-HPGA) have been developed and syntheses of ampicillin, amoxicillin, and cephalexin starting from the supersaturated homogeneous solutions of substrates were performed. Higher synthetic efficiency and increased productivity of these reactions compared to the heterogeneous "aqueous solution-precipitate" systems were observed. The suggested approach seems to be an effective solution for the aqueous synthesis of the most widely requested beta-lactam antibiotics (i.e., amoxicillin, cephalexin, cephadroxil, cephaclor, etc.).  相似文献   

13.
11 amino acid derivatives were tested as alpha-chymotrypsin substrates in the esterification reaction with methanol in organic media. The reactions were carried out in water-saturated ethyl acetate and in acetonitrile containing 4% water. alpha-Chymotrypsin adsorbed on Celite was used as a catalyst. From initial reaction rate measurements, the Michaelis-Menten parameters Vmax and KM were determined. All the amino acid derivatives tested were esterified, and the highest values of kcat/KM were obtained with the N-acylated aromatic amino acids. Correlations between Michaelis-Menten parameters and physical properties of the substrates such as molar refractivity (MR) and log P were deduced. The results show that the specificity of the alpha-chymotrypsin towards the side chain of the amino acids in organic media is the same as that in aqueous media. However, the specificity towards the N-protecting group is opposite to that in water, so the reaction medium affects the interaction of this part of the molecule with the enzyme to a large extent.  相似文献   

14.
In this study the influence of diffusion limitation on enzymatic kinetically controlled cephalexin synthesis from phenylglycine amide and 7-aminodeacetoxycephalosporinic acid (7-ADCA) was investigated systematically. It was found that if diffusion limitation occurred, both the synthesis/hydrolysis ratio (S/H ratio) and the yield decreased, resulting in lower product and higher by-product concentrations. The effect of pH, enzyme loading, and temperature was investigated, their influence on the course of the reaction was evaluated, and eventually diffusion limitation was minimised. It was found that at pH >or=7 the effect of diffusion limitation was eminent; the difference in S/H ratio and yield between free and immobilised enzyme was considerable. At lower pH, the influence of diffusion limitation was minimal. At low temperature, high yields and S/H ratios were found for all enzymes tested because the hydrolysis reactions were suppressed and the synthesis reaction was hardly influenced by temperature. The enzyme loading influenced the S/H ratio and yield, as expected for diffusion-limited particles. For Assemblase 3750 (the number refers to the degree of enzyme loading), it was proven that both cephalexin synthesis and hydrolysis were diffusion limited. For Assemblase 7500, which carries double the enzyme load of Assemblase 3750, these reactions were also proven to be diffusion limited, together with the binding-step of the substrate phenylglycine amide to the enzyme. For an actual process, the effects of diffusion limitation should preferably be minimised. This can be achieved at low temperature, low pH, and high substrate concentrations. An optimum in S/H ratio and yield was found at pH 7.5 and low temperature, where a relatively low reaction pH can be combined with a relatively high solubility of 7-ADCA. When comparing the different enzymes at these conditions, the free enzyme gave slightly better results than both immobilised biocatalysts, but the effect of diffusion limitation was minimal.  相似文献   

15.
Cross-linked enzyme aggregates (CLEAs) are novel type biocatalysts well suited to catalyze reactions of organic synthesis. Penicillin acylase is a versatile enzyme that can both hydrolyze and synthesize β-lactam antibiotics. CLEAs and CLEAs covered with polyionic polymers (polyethyleneimine and dextran sulfate at two different enzyme to polymer ratios) were prepared at varying cross-linking agent to enzyme ratio: 0.15 and 0.25. Results are presented on the effect of such variables on immobilization yield, specific activity, stability and performance of penicillin acylase CLEAs in the kinetically controlled synthesis of cephalexin. The cross-linking agent to enzyme ratio had no significant effect on the specific activity of the CLEAs, but affected immobilization yield, stability in ethylene glycol medium and conversion yield and productivity in the synthesis of cephalexin, being always higher at the lower cross-linking agent to enzyme ratio. Best results were obtained with CLEAs at 0.15 glutaraldehyde to enzyme protein ratio: specific activity of hydrolysis and synthesis was 708 and 325 UI/gCLEA respectively, conversion yield was 87%, specific productivity was 5.4 mmol cephalexin/(gCLEA·h) and 90% of the enzyme remained active after 170 h at operating conditions.  相似文献   

16.
Lipase-catalyzed synthesis of sorbitol-fatty acid esters was performed in eutectic media with extremely high substrate concentrations. Homogeneous eutectic melts of sorbitol and fatty acids of C6-C16 were prepared using an adjuvant mixture. Enhanced homogeneity of mixtures was confirmed by X-ray diffraction analysis. The substrate concentration was 3.63-6.67 M in the eutectic media, whereas in organic media the concentration was below 0.10 M. Esters were synthesized with an immobilized Candida antarctica lipase, and optimum conditions were analyzed. Compared to reactions in organic media, the initial reaction rate of ester synthesis and the overall productivity were significantly enhanced in eutectic media while the conversion yields were similar. Based on the kinetic analysis, highly viscous eutectic media were shown to influence the initial reaction rate and the apparent activation energy resulting in diffusion limitations.  相似文献   

17.
Integrated process concepts for enzymatic cephalexin synthesis were investigated by our group, and this article focuses on the integration of reactions and product removal during the reactions. The last step in cephalexin production is the enzymatic kinetic coupling of activated phenylglycine (phenylglycine amide or phenylglycine methyl ester) and 7-aminodeacetoxycephalosporanic acid (7-ADCA). The traditional production of 7-ADCA takes place via a chemical ring expansion step and an enzymatic hydrolysis step starting from penicillin G. However, 7-ADCA can also be produced by the enzymatic hydrolysis of adipyl-7-ADCA. In this work, this reaction was combined with the enzymatic synthesis reaction and performed simultaneously (i.e., one-pot synthesis). Furthermore, in situ product removal by adsorption and complexation were investigated as means of preventing enzymatic hydrolysis of cephalexin. We found that adipyl-7-ADCA hydrolysis and cephalexin synthesis could be performed simultaneously. The maximum yield on conversion (reaction) of the combined process was very similar to the yield of the separate processes performed under the same reaction conditions with the enzyme concentrations adjusted correctly. This implied that the number of reaction steps in the cephalexin process could be reduced significantly. The removal of cephalexin by adsorption was not specific enough to be applied in situ. The adsorbents also bound the substrates and therewith caused lower yields. Complexation with beta-naphthol proved to be an effective removal technique; however, it also showed a drawback in that the activity of the cephalexin-synthesizing enzyme was influenced negatively. Complexation with beta-naphthol rendered a 50% higher cephalexin yield and considerably less byproduct formation (reduction of 40%) as compared to cephalexin synthesis only. If adipyl-7-ADCA hydrolysis and cephalexin synthesis were performed simultaneously and in combination with complexation with beta-naphthol, higher cephalexin concentrations also were found. In conclusion, a highly integrated process (two reactions simultaneously combined with in situ product removal) was shown possible, although further optimization is necessary.  相似文献   

18.
A cascade of two enzymatic transformations is employed in a one-pot synthesis of cephalexin. The nitrile hydratase (from R. rhodochrous MAWE)-catalyzed hydration of D-phenylglycine nitrile to the corresponding amide was combined with the penicillin G acylase (penicillin amidohydrolase, E.C. 3.5.1.11)-catalyzed acylation of 7-ADCA with the in situ-formed amide to afford a two-step, one-pot synthesis of cephalexin. D-Phenylglycine nitrile appeared to have a remarkable selective inhibitory effect on the penicillin G acylase, resulting in a threefold increase in the synthesis/hydrolysis (S/H) ratio. 1,5-Dihydroxynaphthalene, when added to the reaction mixture, cocrystallized with cephalexin. The resulting low cephalexin concentration prevented its chemical as well as enzymatic degradation; cephalexin was obtained at 79% yield with an S/H ratio of 7.7.  相似文献   

19.
Active site titrations provide essential information for studies of enzymes, e.g., functional purity and half-site reactivity. The use of a hitherto overlooked class of hydrolase substrates, the oxazolones, for an easy synthesis of reagents possessing desirable properties, e.g., specificity, solubility, and optical parameters, is described. The operational normality may be determined in aqueous media or organic solvents, e.g., dimethyl sulfoxide, which stabilize the enzymes for extended periods at room temperature. Absorbance or fluorescence measurements may be used for detection. The lower limit permitting analyses in this series was found to be 60 pmol of enzyme.  相似文献   

20.
In enzymatic synthesis of cephalexin from D-alpha-phenylglycine methyl ester (PGM) and 7-amino-3-deacetoxy-cephalosporanic acid (7-ADCA) using alpha-acylamino-beta-lactam acylhydrolase from Xanthomonas citri, it was found that this enzyme catalyzes all three reactions including PGM hydrolysis, cephalexin synthesis, and cephalexin hydrolysis. Based on our experimental results, a mechanistic kinetic model for cephalexin synthesizing enzyme system having acyl-enzyme intermediate was proposed. From this kinetic model, the reaction rate equations for three reactions were derived, and the kinetic parameters were evaluated. A good agreement between the simulation results and the experimental results was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号