首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the present study was to investigate the role and type of Ca2+ channels involved in the stimulatory effects of endothelin-1 (ET-1) on the Ca2+-dependent functional responses, p42/p44 MAP kinase phosphorylation, 20-kDa myosin light chain (MLC) phosphorylation and contraction, in rabbit iris sphincter, a nonvascular smooth muscle. ET-1 induced inositol phosphates production, MAP kinase phosphorylation, MLC phosphorylation (MLC20-P plus MLC20-2P) and contraction in a concentration-dependent manner with EC50 values of 71, 8, 6 and 25 nM, respectively. ET-1-induced MAP kinase phosphorylation, MLC phosphorylation and contraction were not significantly affected by nifedipine (1-60 microM), an L-type Ca2+ channel blocker, or by LOE 908 (1-100 microM), a blocker of Ca2+-permeable nonselective cation channels. However, SKF96365, a receptor-operated Ca2+ channel (ROCC) blocker, inhibited MAP kinase phosphorylation, MLC phosphorylation and contraction in a concentration-dependent manner with IC50 values of 28, 30 and 42 microM, respectively. 2-APB, a store-operated Ca2+ channel (SOCC) blocker, inhibited ET-1-induced MLC phosphorylation and contraction in a concentration-dependent manner with IC50 values of 12.7 and 19 microM, respectively, but was without effect on MAP kinase phosphorylation. The combined effects of submaximal concentrations of SKF96365 and 2-APB on ET-1-induced MLC phosphorylation and contraction were not additive, implying that their inhibitory actions could be mediated through a common Ca2+ entry channel. PD98059, a MAP kinase inhibitor, had no effect on ET-1-induced MLC phosphorylation and contraction, suggesting that these ET-1 effects in the rabbit iris muscle are MAP kinase-independent. In conclusion, the present study demonstrated for the first time that in rabbit iris sphincter (a) ET-1, through the ETA receptor, stimulates MAP kinase phosphorylation, MLC phosphorylation and contraction in a concentration-dependent manner, (b) that these Ca2+-dependent functional responses are not significantly affected by nifedipine or LOE908, and (c) that ET-1-induced MLC phosphorylation and contraction are inhibited by SKF96365 and 2-APB, suggesting that these effects are mainly due to store- and/or receptor Ca2+ entry.  相似文献   

2.
Protein kinase C of rabbit iris smooth muscle was purified by the sequential use of three chromatographic steps, i.e. anion-exchange (DEAE-cellulose), gel filtration (Sephadex G-150) and substrate affinity (protamine-agarose), and its properties were investigated by using as substrate myosin light-chain protein (MLC) isolated from the same tissue. The enzyme appeared as a single band on SDS/polyacrylamide-gel electrophoresis, with a molecular mass of approx. 80 kDa. Histone H-1 and iris muscle MLC, but not rabbit skeletal-muscle MLC, were effective substrates for the enzyme, with apparent Km values of 3.0 and 16.6 microM respectively. The enzyme, with MLC as substrate, had the following characteristics. (a) Its activity was dependent on Ca2+ and phosphatidylserine (PS). In the presence of Ca2+ and PS, diolein and phorbol dibutyrate (PDBu) increased its activity by 61 and 65% respectively. Half-maximal activation of the enzyme (Ka) occurred at 10 microM free Ca2+, and in the presence of diolein and PDBu the apparent Ka for Ca2+ was decreased to 3 microM and 2 microM respectively. (b) Studies on the relative potency of various cofactors in activating the enzyme revealed that PS, phorbol myristate acetate and 1-stearoyl-2-arachidonylglycerol were the most potent of the phospholipids, phorbol esters and diacylglycerols respectively. (c) H-7, a protein kinase C inhibitor, inhibited MLC phosphorylation in a dose-dependent manner, with 50% inhibition at 10 microM. (d) Addition of carbamoylcholine (for 1 min) or PDBu (for 25 min) to iris sphincter muscle prelabelled with [32P]Pi specifically increased MLC phosphorylation, and only the stimulatory effect of the muscarinic agonist was blocked by atropine. The data provide additional support for a role for protein kinase C in the contractile response of the iris smooth muscle.  相似文献   

3.
Direct protein kinase C (PKC) activation with phorbol myristate acetate (PMA) results in the loss of endothelial monolayer integrity in bovine lung endothelial cells (EC) but produces barrier enhancement in human lung endothelium. To extend these findings, we studied EC contractile events and observed a 40% increase in myosin light chain (MLC) phosphorylation in bovine endothelium following PMA challenge. The increase in PMA-mediated MLC phosphorylation occurred at sites distinct from Ser19/Thr18, sites catalyzed by MLC kinase (MLCK), and immunoblotting with antibodies specific to phosphorylated Ser19/Thr18 demonstrated profound time-dependent Ser19/Thr18 dephosphorylation. These events occurred in conjunction with rearrangement of stress fibers into a grid-like network, but without an increase in cellular contraction as measured by silicone membrane wrinkling assay. The PMA-induced MLC dephosphorylation was not due to kinase inhibition but, rather, correlated with rapid increases in myosin-associated phosphatase 1 (PPase 1) activity. These data suggest that PMA-mediated EC barrier regulation may involve dual mechanisms that alter MLC phosphorylation. The increase in bovine MLC phosphorylation likely occurs via direct PKC-dependent MLC phosphorylation in conjunction with decreases in Ser19/Thr18 phosphorylation catalyzed by MLCK due to PMA-induced increases in PPase 1 activity. Together, these events result in stress fiber destabilization and profound actin rearrangement in bovine endothelium, which may result in the physiological alterations observed in these models.  相似文献   

4.
The effects of leukotriene (LT) D4 on inositol trisphosphate (IP3) accumulation, cAMP formation, and contraction in the iris sphincter smooth muscle of different mammalian species were investigated and functional and biochemical reciprocal interactions between the IP3-Ca2+ and cAMP second messenger systems were demonstrated. The effects of the LT on the biochemical and pharmacological responses are dose- and time-dependent, and are not mediated through the release of acetylcholine or prostaglandins. Addition of LTD4 (0.1-1 microM) to cat and bovine iris sphincters increased IP3 accumulation by 60% of that of the control and induced muscle contraction (the EC50 value for the contractile response in the cat sphincter was 4.8 x 10(-9) M), but had no effect on cAMP formation in these species. In contrast, addition of LTD4 to dog, human, pig, and rabbit sphincters increased cAMP formation by 53-61% of their respective controls, but had no effect on IP3 accumulation and on the contractile state. The rates of formation of LTs in iris sphincters of the different species were found to increase in the following order: bovine less than cat less than human less than dog less than pig less than rabbit. This could suggest that desensitization of LT receptors may in part underlie the species differences observed in the effects of LTD4. We suggest that LTD4 may be involved in regulation of contraction and relaxation in the iris sphincter by increasing IP3 accumulation and consequently Ca2+ mobilization and muscle contraction, and by elevating the level of cAMP which in turn may be involved in the regulation of muscle tension.  相似文献   

5.
The effect of prostaglandin (PG) E2, F2 alpha, the thromboxane-A2 mimetic U46619 (9,11-dideoxy-9 alpha,11 alpha-methanoepoxy-prostaglandin F2 alpha) and the prostacyclin mimetic iloprost was investigated in cat middle cerebral and basilar arteries in vitro precontracted with 5-hydroxytryptamine (5-HT) (50nM) in the absence and presence of the cyclooxygenase inhibitor indomethacin or the thromboxane receptor blocker AH23848B [1 alpha (z),2 beta,5 alpha]-(+)-7-[5-[1,1'-(biphenyl)-4-yl] methoxy]-2-(4-morpholinyl)-3-oxocyclopentyl]-4-heptenoic acid). PGF2 alpha and U46619 both produced further concentration-related contractions of basilar and middle cerebral artery, U46619 being approximately 1,000 times more potent than PGF2 alpha. Iloprost produced concentration-related relaxations of precontracted basilar and middle cerebral artery, the mean maximum relaxations produced at a concentration of 1.3 microM being 57.3% and 80.6%, respectively of the contraction produced by 50nM 5-HT. PGE2, 100nM relaxed the basilar and middle cerebral artery, 46.7% and 38.5% respectively. However, at 1 microM, PGE2 caused contraction. Indomethacin, 2.8 microM had no effect on contractile or relaxant responses to any of the prostanoids. Oxyhaemoglobin inhibited the relaxation of both arterial preparations but had no effect on responses to PGE2 or iloprost. The thromboxane-receptor blocker AH23848B antagonised the contractile responses to U46619, PGF2 alpha and PGE2 and had no effect against relaxant responses to PGE2 or iloprost. It is concluded that both contraction- and relaxation-inducing prostanoid receptors are present in the in vitro preparation of feline basilar and middle cerebral artery. Under sustained tension conditions, endothelial factors do not appear to be involved in the responses to dilating prostanoids.  相似文献   

6.
The induction of cyclooxygenase is an important event in the pathophysiology of acute lung injury. The purpose of this study was to examine the synergistic effects of various cyclooxygenase products (PGE(2), PGI(2), PGF(2alpha)) on thromboxane A(2) (TxA(2))-mediated pulmonary microvascular dysfunction. The lungs of Sprague-Dawley rats were perfused ex vivo with Krebs-Henseleit buffer containing indomethacin and PGE(2) (5 x 10(-8) to 1 x 10(-7) M), PGF(2alpha) (7 x 10(-9) to 5 x 10(-6) M), or PGI(2) (5 x 10(-8) to 2 x 10(-5) M). The TxA(2)-receptor agonist U-46619 (7 x 10(-8) M) was then added to the perfusate, and then the capillary filtration coefficient (K(f)), pulmonary arterial pressure (Ppa), and total pulmonary vascular resistance (RT) were determined. The K(f) of lungs perfused with U-46619 was twice that of lungs perfused with buffer alone (P = 0.05). The presence of PGE(2), PGF(2alpha), and PGI(2) within the perfusate of lungs exposed to U-46619 caused 118, 65, and 68% increases in K(f), respectively, over that of lungs perfused with U-46619 alone (P < 0.03). The RT of lungs perfused with PGE(2) + U-46619 was approximately 30% greater than that of lungs exposed to either U-46619 (P < 0.02) or PGE(2) (P < 0.01) alone. When paired measurements of RT taken before and then 15 min after the addition of U-46619 were compared, PGI(2) was found to attenuate U-46619-induced increases in RT (P < 0.01). These data suggest that PGE(2), PGI(2), and PGF(2alpha) potentiate the effects of TxA(2)-receptor activation on pulmonary microvascular permeability.  相似文献   

7.
8.
Smooth muscle contraction is initiated by myosin light chain (MLC) phosphorylation catalyzed by the Ca(2+) dependent MLC kinase. However, many aspects of smooth muscle contraction cannot be accounted for by MLC phosphorylation. One hypothesis that has received experimental support involves the thin filament protein caldesmon. Caldesmon inhibits myosin ATPase activity; phosphorylation of caldesmon relieves this inhibitory effect. The primary candidates for catalysis of caldesmon phosphorylation are the p42/p44 ERK MAP kinases. However, we and others have shown that inhibition of the ERK MAP kinases has no effect on many smooth muscles. The goal of this study was to determine if evidence for a second endogenous caldesmon kinase may be obtained. We used Triton X-100 skinned and intact tissues of the swine carotid artery to address this goal. Caldesmon phosphorylation was evident in resting and Ca(2+) stimulated Triton X-100 skinned fibers. Ca(2+)-dependent caldesmon phosphorylation was partially sensitive to the ERK MAP kinase inhibitor PD98059, whereas all caldesmon phosphorylation was sensitive to the general kinase inhibitor, staurosporine. Histamine increased caldesmon phosphorylation levels in intact swine carotid artery, which was sensitive to both PD98059 and staurosporine. Histamine increased ERK MAP kinase activity, which was reversed by PD98059, staurosporine, and EGTA. Histamine-induced contractions were inhibited by staurosporine but not by PD98059. We interpret these results to suggest that although ERK MAP kinases catalyze caldesmon phosphorylation, a second staurosporine sensitive kinase is also important in caldesmon phosphorylation and it is this pathway that may be more important in contractile regulation.  相似文献   

9.
The receptors mediating prostanoid-induced contraction of guinea-pig isolated trachea have been characterised in terms of a recently proposed general classification of prostanoid receptors. Results obtained on the trachea were compared with those obtained on guinea-pig fundus, which contains a sub-type of PGE2-sensitive (EP-) receptor termed the EP1-receptor, and guinea-pig lung strip, which contains a thromboxane-sensitive or TP-receptor. The following agonists were studied, PGE2, PGF2 alpha and the thromboxane-like agonists U-46619 and Wy17186. The antagonists studied were SC-19220 which selectively blocks EP1-receptors, and AH19437 which selectively blocks TP-receptors. On guinea-pig fundus the rank order of agonist potency was PGE2 greater than PGF2 alpha greater than Wy-17186 approximately equal to U-46619, and responses to all agonists were antagonised by SC-19220 but not by AH19437. On guinea-pig lung strip the rank order of potency was U-46619 greater than Wy17186 much greater than PGF2 alpha greater than PGE2 and responses to all agonists tested were blocked by AH19437 but not by SC-19220. On the trachea, the rank order was PGE2 = U-46619 greater than Wy17186 = PGF2 alpha. SC-19220 antagonised responses to PGE2 and PGF2 alpha, but not those to U-46619 or Wy17186. Conversely, AH19437 antagonised responses to U-46619 and Wy17186 but not those to PGE2 or PGF2 alpha. It is concluded that prostanoid-induced contractions of guinea-pig trachea can be mediated by both EP1- and TP-receptors.  相似文献   

10.
Tsai MH  Jiang MJ 《Life sciences》2005,76(8):877-888
Smooth muscle contractility is regulated by both intracellular Ca2+ concentration ([Ca2+]i) and Ca2+ sensitivity of the contractile apparatus. Extracellular signal-regulated kinases1/2 (ERK1/2) have been implicated in modulating Ca2+ sensitivity of smooth muscle contraction but mechanisms of action remain elusive. This study investigated the roles of ERK1/2 in modulating [Ca2+]i, calcium sensitivity and the 20-kDa myosin light chain (MLC20) phosphorylation during contraction activated by alpha1-adrenoceptor agonist phenylephrine and thromboxane A2 mimetic U46619 in rat tail artery strips. A specific inhibitor for ERK1/2 activation, U0126, inhibited phenylephrine- and U46619-induced contraction, shifting both concentration-response curves rightward. During phenylephrine-stimulated contraction, U0126 exhibited concentration-dependent inhibition towards force but significant decreases in [Ca2+]i were detected only at higher concentration. Both phenylephrine and U46619 induced a transient activation of ERK1/2 which was abolished by U0126 but unaffected by a general tyrosine kinase inhibitor genistein or Rho kinase inhibitor Y27632 at concentrations inhibiting more than 50% force. Interestingly, U0126 had no effect on steady-state MLC20 phosphorylation levels stimulated by both receptor agonists. These results indicated that during contraction of rat tail artery smooth muscle activated by alpha1-adrenoceptor agonist or thromboxane A2 analogue, ERK1/2 increase Ca2+ sensitivity that does not involve the modulation of MLC20 phosphorylation.  相似文献   

11.
To more clearly define the physiologic roles of thromboxane (TX)A2 and primary prostaglandins (PG) in vascular tissue we examined vascular contractility, cell signaling, and growth responses. The growth-promoting effects of (15S)-hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5Z,13E-dienoic acid (U46619; TXA2 agonist), PGF2 alpha, and PGE2 consisted of protein synthesis and proto-oncogene expression, but not DNA synthesis or cell proliferation. U46619 contracted rat aortas and increased cultured rat aortic vascular smooth muscle cell intracellular free calcium concentration [Ca2+]i, [3H]inositol monophosphate (IP) accumulation, myosin light chain phosphorylation, and protein synthesis ([3H]leucine incorporation) with EC50 values ranging from 10 to 50 nM. Each of these responses was inhibitable with the TXA2 receptor antagonist [1S]1 alpha,2 beta(5Z),3 beta,4 alpha-7-(3-[2- [(phenylamino)carbonyl]hydrazino]methyl)-7-oxabicyclo[2.2.1]hept-2- yl-5-heptenoic acid (SQ29548). In contrast, PGF2 alpha increased [Ca2+]i, [3H]IP, and protein synthesis with EC50 values of 30-230 nM but contracted rat aortas with an EC50 of 4800 nM. PGE2 increased [Ca2+]i, [3H]IP accumulation, protein synthesis, and contracted rat aortas with EC50 values of 2.5-3.5 microM. TXA2 receptor blockade prevented PGF2 alpha- and PGE2-induced aortic contraction and cell myosin light chain phosphorylation, but not cell signaling or protein synthesis. Binding studies to vascular smooth muscle TXA2 receptors using 1S-[1 alpha,2 beta(5Z),3 alpha(1E,3S),4 alpha]-7-(3-[3-hydroxy-4-(p- [125I]iodophenoxy)-1-butenyl]7-oxabicyclo[2.2.1]hept-2-yl)-5-hepte noic acid ([125I]BOP) showed U46619, SQ29548, PGF2 alpha, and PGE2 competition for TXA2 receptor binding at concentrations similar to their EC50 values for aortic contraction, while binding competition with [3H]PGF2 alpha and [3H]PGE2 demonstrated the specificity of [125I]BOP and SQ29548 for TXA2 receptors. The results suggest that 1) PGF2 alpha- and E2-stimulated vessel contraction is due to cross-agonism at vascular TXA2 receptors; 2) PGF2 alpha stimulates TXA2 receptor-independent vascular smooth muscle protein synthesis at nanomolar concentrations, consistent with an interaction at its primary receptor; and 3) TXA2 is a potent stimulus for vascular smooth muscle contraction and protein synthesis. We suggest that the main physiologic effect of PGF2 alpha may be as a stimulus for vascular smooth muscle cell hypertrophy, not as a contractile agonist.  相似文献   

12.
Y Takayama  K Mizumachi 《FEBS letters》2001,508(1):111-116
When fibroblasts are plated on a type I collagen gel they reduce the size of the gel and the extent of collagen gel contraction reflects the motile activity of the fibroblasts. We found that both bovine and human lactoferrin (Lf) enhanced the collagen gel contractile activity of WI-38 human fibroblasts. Rho inhibitor (exoenzyme C3), Rho kinase inhibitor (Y-27632), myosin light chain kinase inhibitor (ML-7), MEK inhibitor (PD98059) and Src family tyrosine kinase inhibitor inhibited the Lf-enhanced collagen gel contraction. Treatment of fibroblasts with Lf induced the phosphorylation of myosin light chain (MLC) within 30 min. Lf-enhanced MLC phosphorylation was inhibited by Y-27632 and ML-7. These results suggest that Lf promotes the motility of fibroblasts by regulating MLC phosphorylation.  相似文献   

13.
It is well established now that activation of Ca2+ -mobilizing receptors results in the phosphodiesteratic breakdown of phosphatidylinositol 4,5-bisphosphate (PIP2), instead of phosphatidylinositol (PI), into myoinositol 1,4,5-trisphosphate (IP3) and 1,2-diacylglycerol (DG). There is also accumulating experimental evidence which indicates that IP3 and DG may function as second messengers, the former to mobilize Ca2+ from intracellular sites and the latter to activate protein kinase C (PKC). In this review, I have recounted our early studies, which began in 1975 with the original observation that activation of muscarinic cholinergic and adrenergic receptors in the rabbit iris smooth muscle leads to the breakdown of PIP2, instead of PI, and culminated in 1979 in the discovery that the stimulated hydrolysis of PIP2 results in the release of IP3 and DG and that this PIP2 breakdown is involved in the mechanism of smooth muscle contraction. In addition, I have summarized more recent work on the effects of carbachol, norepinephrine, substance P, the platelet-activating factor, prostaglandins, and isoproterenol on PIP2 hydrolysis, IP3 accumulation, DG formation, myosin light chain (MLC) phosphorylation, cyclic AMP production, arachidonic acid release (AA) and muscle contraction in the iris sphincter muscle. These studies suggest: (a) that the IP3-Ca2+ signalling system, through the Ca2+ -dependent MLC phosphorylation pathway, is probably the primary determinant of the phasic component of the contractile response; (b) that the DG-PKC pathway may not be directly involved in the tonic component of muscle contraction, but may play a role in the regulation of IP3 generation; (c) that there are biochemical and functional interactions between the IP3-Ca2+ and the cAMP second messenger systems, cAMP may act as regulator of muscle responses to agonists that exert their action through the IP3-Ca2+ system; and (d) that enhanced PIP2 turnover is involved in desensitization and sensitization of alpha 1-adrenergic- and muscarinic cholinergic-mediated contractions of the dilator and sphincter muscles of the iris, respectively. The contractile response is a typical Ca2+ -dependent process, which makes smooth muscle an ideal tissue to investigate the second messenger functions of IP3 and DG and their interactions with the cAMP system.  相似文献   

14.
Rattan S  Fan YP  Puri RN 《Life sciences》2002,70(18):2147-2164
Studies were performed to compare the actions of Ang II in the internal anal sphincter (IAS) vs. lower esophageal sphincter (LES) smooth muscles in vitro, in opossum and rabbit. Studies also were carried out in isolated smooth muscle cells. In opossum, Ang II produced no discernible effects in the IAS, but did produce a concentration-dependent contraction in the LES. Conversely, in the rabbit, while Ang II caused a modest response in the LES, it caused a significant contraction in the IAS. The contractile responses of Ang II in the opossum LES were mostly resistant to different neurohumoral antagonists but were antagonized by AT1 antagonist losartan. AT2 antagonist PD 123,319, rather than inhibiting, prolonged the contractile action of Ang II. The contractile actions of Ang II in the opossum LES were not modified by the tyrosine kinase inhibitors (genistein and tyrphostin 1 x 10(-6) M) but were partially attenuated by the PKC inhibitor H-7 (1 x 10(-6) M), Ca2+ channel blocker nicardipine (1 x 10(-5) M), Rho kinase inhibitor HA-1077 (1 x 10(-7) M) or p(44/42) MAP kinase inhibitor PD 98059 (5 x 10(-5) M). The combination of HA-1077 and H-7 did not cause an additive attenuation of Ang II responses. Western blot analyses revealed the presence of both AT1 and AT2 receptors. We conclude that Ang lI-induced contraction of sphincteric smooth muscle occurs primarily by the activation of AT1 receptors at the smooth muscle cells and involves multiple pathways, influx of Ca2+, and PKC, Rho kinase and p(44/42) MAP kinase.  相似文献   

15.
Protein kinase C (PKC) has been implicated in lipopolysaccharide (LPS)-induced endothelial cell (EC) monolayer permeability. Myristoylated alanine-rich C kinase substrate (MARCKS), as a specific PKC substrate, appears to mediate PKC signaling by PKC-dependent phosphorylation of MARCKS and subsequent modification of the association of MARCKS with filamentous actin and calmodulin (CaM). Therefore, in the present study, we investigated LPS-induced MARCKS phosphorylation in bovine pulmonary artery EC (BPAEC). LPS potentiated MARCKS phosphorylation in BPAEC in a time- and dose-dependent manner. The PKC inhibitor, calphostin C, significantly decreased LPS-induced phosphorylation of MARCKS. In addition, downregulation of PKC with phorbol 12-myristate 13-acetate (PMA) did not affect the LPS-induced MARCKS phosphorylation, suggesting that LPS and PMA activate different isoforms of PKC. Pretreatment with SB203580, a specific inhibitor of p38 MAP kinase, or genistein, a tyrosine kinase inhibitor, prevented LPS-induced MARCKS phosphorylation. Phosphorylation at appropriate sites will induce translocation of MARCKS from the cell membrane to the cytosol. However, LPS, in contrast to PMA, did not generate MARCKS translocation in BPAEC, suggesting that MARCKS translocation may not play a role in LPS-induced actin rearrangement and EC permeability. LPS also enhanced both thrombin- and PMA-induced phosphorylation of MARCKS, suggesting that LPS was able to prime these signaling pathways in BPAEC. Because the CaM-dependent phosphorylation of myosin light chains (MLC) results in EC contraction, we studied the effect of LPS on MLC phosphorylation in BPAEC. LPS induced diphosphorylation of MLC in a time-dependent manner, which occurred at lower doses of LPS, than those required to induce MARCKS phosphorylation. In addition, there was no synergism between LPS and thrombin in the induction of MLC phosphorylation. These data indicate that MLC phosphorylation is independent of MARCKS phosphorylation. In conclusion, LPS stimulated MARCKS phosphorylation in BPAEC. This phosphorylation appears to involve activation of PKC, p38 MAP kinase, and tyrosine kinases. Further studies are needed to explore the role of MARCKS phosphorylation in LPS-induced actin rearrangement and EC permeability.  相似文献   

16.
Preliminary characterization indicated the presence of separate prostaglandin (PG)E1 and (PG)F2alpha binding sites in membrane fractions prepared from bovine corpora lutea. These differ in the rate and temperature dependence of the specific binding. Equilibrium binding data indicate the apparent dissociation constants as 1.32 x 10(-9)M and 1.1 x 10(-8)M for PGE1 and PGF2alpha, respectively. Competition of several natural prostaglandins for the PGE1 and PGF2alpha bovine luteal specific binding sites indicates specificity for the 9-keto or 9alpha-hydroxyl moiety, respectively. Differences in relative ability to inhibit 3H-PG binding were found due to sensitivity to the absence or presence of the 5, 6-cis-double bond as well. Bovine luteal function was affected following treatment of heifers with 25 mg PGF2alpha as measured by reduced estrous cycle length, decreased corpus luteum size and significantly decreased plasma progesterone levels. In contract, treatment with 25 mg PGE1 resulted in cycle lengths comparable to those of non-treated herdmates with no apparent modification in corpus luteum size. However, plasma progesterone levels were increased significantly following PGE1 treatment compared to pretreatment values. In so far as data obtained in vitro on PGF2alpha relative binding affinity to the bovine CL can be compared to data obtained independently in vitro on PGF2alpha induced luteolysis in the bovine, PGF2alpha relative binding to the CL and luteolysis appeared to be associated. By similar reasoning, there was no apparent relationship between PGE1 relative binding affinity in the luteal fractions and luteolysis in estrous cyclic cattle.  相似文献   

17.
We compared the effect of topical application of PGF2 alpha on cerebral arterioles in cats and rats equipped with an acutely implanted cranial window. Arterial diameter was measured using a microscope and image splitting device. PGF2 alpha in a concentration ranging from 10(-7) to 10(-5) M had no effect on large (greater than or equal to 100 microns) or small (less than 100 microns) cat pial arterioles, but induced a dose dependent constriction of rat pial arterioles with a maximum constriction to 76% of control diameter. Dilation of cat large cerebral arterioles by topically applied PGE2 was not affected by simultaneous application of PGF2 alpha and PGE2 induced dilation of small arterioles was decreased 3% by PGF2 alpha. While we and others have previously shown that both cat and rat brain can synthesize PGF2 alpha, it appears that PGF2 alpha is not likely to normally be a major modulator of cerebral arteriolar resistance in all species.  相似文献   

18.
Endothelial cell (EC) contraction results in intercellular gap formation and loss of the selective vascular barrier to circulating macromolecules. We tested the hypothesis that phosphorylation of regulatory myosin light chains (MLC) by Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) is critical to EC barrier dysfunction elicited by thrombin. Thrombin stimulated a rapid (<15 sec) increase in [Ca2+]i which preceded maximal MLC phosphorylation (60 sec) with a 6 to 8-fold increase above constitutive levels of phosphorylated MLC. Dramatic cellular shape changes indicative of contraction and gap formation were observed at 5 min with maximal increases in albumin permeability occurring by 10 min. Neither the Ca2+ ionophore, A23187, nor phorbol myristate acetate (PMA), a direct activator of protein kinase C (PKC), alone or in combination, produced MLC phosphorylation. The combination was synergistic, however, in stimulating EC contraction/gap formation and barrier dysfunction (3 to 4-fold increase). Down-regulation or inhibition of PKC activity attenuated thrombin-induced MLC phosphorylation (~40% inhibition) and both thrombin- and PMA-induced albumin clearance (~50% inhibition). Agents which augmented [cAMP]i partially blocked thrombin-induced MLC phosphorylation (~50%) and completely inhibited both thrombin- and PMA-induced EC permeability (100% inhibition). Furthermore, cAMP produced significant reduction in the basal levels of constitutive MLC phosphorylation. Finally, MLCK inhibition (with either ML-7 or KT 5926) or Ca2+/calmodulin antagonism (with either trifluoperazine or W-7) attenuated thrombin-induced MLC phosphorylation and barrier dysfunction. These results suggest a model wherein EC contractile events, gap formation and barrier dysfunction occur via MLCK-dependent and independent mechanisms and are significantly modulated by both PKC and cAMP-dependent protein kinase A activities. © 1995 Wiley-Liss, Inc.  相似文献   

19.
Contraction of esophageal (Eso) and lower esophageal sphincter (LES) circular muscle depends on distinct signal-transduction pathways. ACh-induced contraction of Eso muscle is linked to phosphatidylcholine metabolism, production of diacylglycerol and arachidonic acid (AA), and activation of the Ca(2+)-insensitive PKCepsilon. Although PKCepsilon does not require Ca(2+) for activation, either influx of extracellular Ca(2+) or release of Ca(2+) from stores is needed to activate the phospholipases responsible for hydrolysis of membrane phospholipids and production of second messengers, which activate PKCepsilon. In contrast, the LES uses two distinct intracellular pathways: 1) a PKC-dependent pathway activated by low doses of agonists or during maintenance of spontaneous tone, and 2) a Ca(2+)-calmodulin-myosin light chain kinase (MLCK)-dependent pathway activated in response to maximally effective doses of agonists during the initial phase of contraction. The Ca(2+) levels, released by agonist-induced activity of phospholipase C, determine which contractile pathway is activated in the LES. The Ca(2+)-calmodulin-MLCK-dependent contractile pathway has been well characterized in a variety of smooth muscles. The steps linking activation of PKC to myosin light chain (MLC20) phosphorylation and contraction, however, have not been clearly defined for LES, Eso, or other smooth muscles. In addition, in LES circular muscle, a low-molecular weight pancreatic-like phospholipase A2 (group I PLA2) causes production of AA, which is metabolized to prostaglandins and thromboxanes. These AA metabolites act on receptors linked to heterotrimeric G proteins to induce activation of phospholipases and production of second messengers to maintain contraction of LES circular muscle. We have examined the signal-transduction pathways activated by PGF(2alpha) and by thromboxane analogs during the initial contractile phase and found that these pathways are the same as those activated by other agonists. In response to low doses of agonists or during maintenance of tone, presumably due to low levels of calcium release, a PKC-dependent pathway is activated, whereas at high doses of PGF(2alpha) and thromboxane analogs, in the initial phase of contraction, calmodulin is activated, PKC activity is reduced, and contraction is mediated, in part, through a Ca(2+)-calmodulin-MLCK-dependent pathway. The PKC-dependent signaling pathways activated by PGF(2alpha) and by thromboxanes during sustained LES contraction, however, remain to be examined, but preliminary data indicate that a distinct PKC-dependent pathway may be activated during maintenance of tonic contraction, which is different from the one activated during the initial contractile response. The initial contractile response to low levels of agonists depends on activation of G(q). Sustained contraction in response to PGF(2alpha) may involve activation of the monomeric G protein RhoA, because the contraction is inhibited by the RhoA-kinase antagonist Y27632. This shift in signal-transduction pathways between initial and sustained contraction has been recently reported in intestinal smooth muscle.  相似文献   

20.
We have reported that prostaglandin F2(alpha) (PGF2(alpha)) activates p44/p42 mitogen-activated protein (MAP) kinase in osteoblast-like MC3T3-E1 cells, and that p44/p42 MAP kinase plays a role in the PGF2(alpha)-induced heat shock protein 27 (HSP27). In the present study, we investigated the involvement of stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), a member of the MAP kinase superfamily, in PGF2(alpha)-induced HSP27 in MC3T3-E1 cells. PGF2(alpha) time dependently induced the phosphorylation of SAPK/JNK. SP600125, a specific inhibitor of SAPK/JNK, markedly reduced the PGF2(alpha)-stimulated HSP27 accumulation. The inhibitory effect of SP600125 was dose dependent in the range between 0.1 and 30 microM. SP600125 reduced the PGF2(alpha)-increased level of HSP27 mRNA. SP600125 suppressed the phosphorylation of SAPK/JNK induced by PGF2(alpha), but did not affect the PGF2(alpha)-induced phosphorylation of p44/p42 MAP kinase. On the other hand, PD98059, a specific inhibitor of the upstream kinase of p44/p42 MAP kinase, which reduced the phosphorylation of p44/p42 MAP kinase stimulated by PGF2(alpha), had little effect on the PGF2(alpha)-induced phosphorylation of SAPK/JNK. These results strongly suggest that SAPK/JNK plays a part in PGF2(alpha)-induced HSP27 in addition to p44/p42 MAP kinase in osteoblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号