首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Missing marker and segregation distortion are commonly encountered in actual quantitative trait locus (QTL) mapping populations. Our objective in this study was to investigate the impact of the two factors on QTL mapping through computer simulations. Results indicate that detection power decreases with increasing levels of missing markers, and the false discovery rate increases. Missing markers have greater effects on smaller effect QTL and smaller size populations. The effect of missing markers can be quantified by a population with a reduced size similar to the marker missing rate. As for segregation distortion, if the distorted marker is not closely linked with any QTL, it will not have significant impact on QTL mapping; otherwise, the impact of the distortion will depend on the degree of dominance of QTL, frequencies of the three marker types, the linkage distance between the distorted marker and QTL, and the mapping population size. Sometimes, the distortion can result in a higher genetic variance than that of non-distortion, and therefore benefits the detection of linked QTL. A formula of the ratio of genetic variance explained by QTL under distortion and non-distortion was given in this study, so as to easily determine whether the segregation distortion marker (SDM) increases or decreases the QTL detection power. The effect of SDM decreases rapidly as its linkage relationship with QTL becomes looser. In general, distorted markers will not have a great effect on the position and effect estimations of QTL, and their effects can be ignored in large-size mapping populations.  相似文献   

2.
Mayer M 《Heredity》2005,94(6):599-605
Regression interval mapping and multiple interval mapping are compared with regard to mapping linked quantitative trait loci (QTL) in inbred-line cross experiments. For that purpose, a simulation study was performed using genetic models with two linked QTL. Data were simulated for F(2) populations of different sizes and with all QTL and marker alleles fixed for alternative alleles in the parental lines. The criteria for comparison are power of QTL identification and the accuracy of the QTL position and effect estimates. Further, the estimates of the relative QTL variance are assessed. There are distinct differences in the QTL position estimates between the two methods. Multiple interval mapping tends to be more powerful as compared to regression interval mapping. Multiple interval mapping further leads to more accurate QTL position and QTL effect estimates. The superiority increased with wider marker intervals and larger population sizes. If QTL are in repulsion, the differences between the two methods are very pronounced. For both methods, the reduction of the marker interval size from 10 to 5 cM increases power and greatly improves QTL parameter estimates. This contrasts with findings in the literature for single QTL scenarios, where a marker density of 10 cM is generally considered as sufficient. The use of standard (asymptotic) statistical theory for the computation of the standard errors of the QTL position and effect estimates proves to give much too optimistic standard errors for regression interval mapping as well as for multiple interval mapping.  相似文献   

3.
Klasen JR  Piepho HP  Stich B 《Heredity》2012,108(6):626-632
A major goal of today's biology is to understand the genetic basis of quantitative traits. This can be achieved by statistical methods that evaluate the association between molecular marker variation and phenotypic variation in different types of mapping populations. The objective of this work was to evaluate the statistical power of quantitative trait loci (QTL) detection of various multi-parental mating designs, as well as to assess the reasons for the observed differences. Our study was based on an empirical data of 20 Arabidopsis thaliana accessions, which have been selected to capture the maximum genetic diversity. The examined mating designs differed strongly with respect to the statistical power to detect QTL. We observed the highest power to detect QTL for the diallel cross with random mating design. The results of our study suggested that performing sibling mating within subpopulations of joint-linkage mapping populations has the potential to considerably increase the power for QTL detection. Our results, however, revealed that using designs in which more than two parental alleles segregate in each subpopulation increases the power even more.  相似文献   

4.
S. Xu  W. R. Atchley 《Genetics》1995,141(3):1189-1197
Mapping quantitative trait loci in outbred populations is important because many populations of organisms are noninbred. Unfortunately, information about the genetic architecture of the trait may not be available in outbred populations. Thus, the allelic effects of genes can not be estimated with ease. In addition, under linkage equilibrium, marker genotypes provide no information about the genotype of a QTL (our terminology for a single quantitative trait locus is QTL while multiple loci are referred to as QTLs). To circumvent this problem, an interval mapping procedure based on a random model approach is described. Under a random model, instead of estimating the effects, segregating variances of QTLs are estimated by a maximum likelihood method. Estimation of the variance component of a QTL depends on the proportion of genes identical-by-descent (IBD) shared by relatives at the locus, which is predicted by the IBD of two markers flanking the QTL. The marker IBD shared by two relatives are inferred from the observed marker genotypes. The procedure offers an advantage over the regression interval mapping in terms of high power and small estimation errors and provides flexibility for large sibships, irregular pedigree relationships and incorporation of common environmental and fixed effects.  相似文献   

5.
Dole J  Weber DF 《Genetics》2007,177(4):2309-2319
The genetic basis of variation in recombination in higher plants is polygenic and poorly understood, despite its theoretical and practical importance. Here a method of detecting quantitative trait loci (QTL) influencing recombination in recombinant inbred lines (RILs) is proposed that relies upon the fact that genotype data within RILs carry the signature of past recombination. Behavior of the segregational genetic variance in numbers of chromosomal crossovers (recombination) over generations is described for self-, full-sib-, and half-sib-generated RILs with no dominance in true crossovers. This genetic variance, which as a fraction of the total phenotypic variance contributes to the statistical power of the method, was asymptotically greatest with half sibbing, less with sibbing, and least with selfing. The statistical power to detect a recombination QTL declined with diminishing QTL effect, genome target size, and marker density. For reasonably tight marker linkage power was greater with less intense inbreeding for later generations and vice versa for early generations. Generational optima for segregation variance and statistical power were found, whose onset and narrowness varied with marker density and mating design, being more pronounced for looser marker linkage. Application of this method to a maize RIL population derived from inbred lines Mo17 and B73 and developed by selfing suggested two putative QTL (LOD > 2.4) affecting certain chromosomes, and using a canonical transformation another putative QTL was detected. However, permutation tests failed to support their presence (experimentwise alpha = 0.05). Other populations with more statistical power and chosen specifically for recombination QTL segregation would be more effective.  相似文献   

6.
Approaches like multiple interval mapping using a multiple-QTL model for simultaneously mapping QTL can aid the identification of multiple QTL, improve the precision of estimating QTL positions and effects, and are able to identify patterns and individual elements of QTL epistasis. Because of the statistical problems in analytically deriving the standard errors and the distributional form of the estimates and because the use of resampling techniques is not feasible for several linked QTL, there is the need to perform large-scale simulation studies in order to evaluate the accuracy of multiple interval mapping for linked QTL and to assess confidence intervals based on the standard statistical theory. From our simulation study it can be concluded that in comparison with a monogenetic background a reliable and accurate estimation of QTL positions and QTL effects of multiple QTL in a linkage group requires much more information from the data. The reduction of the marker interval size from 10 cM to 5 cM led to a higher power in QTL detection and to a remarkable improvement of the QTL position as well as the QTL effect estimates. This is different from the findings for (single) interval mapping. The empirical standard deviations of the genetic effect estimates were generally large and they were the largest for the epistatic effects. These of the dominance effects were larger than those of the additive effects. The asymptotic standard deviation of the position estimates was not a good criterion for the accuracy of the position estimates and confidence intervals based on the standard statistical theory had a clearly smaller empirical coverage probability as compared to the nominal probability. Furthermore the asymptotic standard deviation of the additive, dominance and epistatic effects did not reflect the empirical standard deviations of the estimates very well, when the relative QTL variance was smaller/equal to 0.5. The implications of the above findings are discussed.  相似文献   

7.
Traditional quantitative trait loci (QTL) mapping approaches are typically based on early or advanced generation analysis of bi-parental populations. A limitation associated with this methodology is the fact that mapping populations rarely give rise to new cultivars. Additionally, markers linked to the QTL of interest are often not immediately available for use in breeding and they may not be useful within diverse genetic backgrounds. Use of breeding populations for simultaneous QTL mapping, marker validation, marker assisted selection (MAS), and cultivar release has recently caught the attention of plant breeders to circumvent the weaknesses of conventional QTL mapping. The first objective of this study was to test the feasibility of using family-pedigree based QTL mapping techniques generally used with humans and animals within plant breeding populations (PBPs). The second objective was to evaluate two methods (linkage and association) to detect marker-QTL associations. The techniques described in this study were applied to map the well characterized QTL, Fhb1 for Fusarium head blight resistance in wheat (Triticum aestivum L.). The experimental populations consisted of 82 families and 793 individuals. The QTL was mapped using both linkage (variance component and pedigree-wide regression) and association (using quantitative transmission disequilibrium test, QTDT) approaches developed for extended family-pedigrees. Each approach successfully identified the known QTL location with a high probability value. Markers linked to the QTL explained 40–50% of the phenotypic variation. These results show the usefulness of a human genetics approach to detect QTL in PBPs and subsequent use in MAS.  相似文献   

8.
Partial resistance to Phytophthora sojae in soybean is controlled by multiple quantitative trait loci (QTL). With traditional QTL mapping approaches, power to detect such QTL, frequently of small effect, can be limited by population size. Joint linkage QTL analysis of nested recombinant inbred line (RIL) populations provides improved power to detect QTL through increased population size, recombination, and allelic diversity. However, uniform development and phenotyping of multiple RIL populations can prove difficult. In this study, the effectiveness of joint linkage QTL analysis was evaluated on combinations of two to six nested RIL populations differing in inbreeding generation, phenotypic assay method, and/or marker set used in genotyping. In comparison to linkage analysis in a single population, identification of QTL by joint linkage analysis was only minimally affected by different phenotypic methods used among populations once phenotypic data were standardized. In contrast, genotyping of populations with only partially overlapping sets of markers had a marked negative effect on QTL detection by joint linkage analysis. In total, 16 genetic regions with QTL for partial resistance against P. sojae were identified, including four novel QTL on chromosomes 4, 9, 12, and 16, as well as significant genotype-by-isolate interactions. Resistance alleles from PI 427106 or PI 427105B contributed to a major QTL on chromosome 18, explaining 10–45 % of the phenotypic variance. This case study provides guidance on the application of joint linkage QTL analysis of data collected from populations with heterogeneous assay conditions and a genetic framework for partial resistance to P. sojae.  相似文献   

9.
Epistasis is a commonly observed genetic phenomenon and an important source of variation of complex traits,which could maintain additive variance and therefore assure the long-term genetic gain in breeding.Inclusive composite interval mapping(ICIM) is able to identify epistatic quantitative trait loci(QTLs) no matter whether the two interacting QTLs have any additive effects.In this article,we conducted a simulation study to evaluate detection power and false discovery rate(FDR) of ICIM epistatic mapping,by considering F2 and doubled haploid(DH) populations,different F2 segregation ratios and population sizes.Results indicated that estimations of QTL locations and effects were unbiased,and the detection power of epistatic mapping was largely affected by population size,heritability of epistasis,and the amount and distribution of genetic effects.When the same likelihood of odd(LOD) threshold was used,detection power of QTL was higher in F2 population than power in DH population;meanwhile FDR in F2 was also higher than that in DH.The increase of marker density from 10 cM to 5 cM led to similar detection power but higher FDR.In simulated populations,ICIM achieved better mapping results than multiple interval mapping(MIM) in estimation of QTL positions and effect.At the end,we gave epistatic mapping results of ICIM in one actual population in rice(Oryza sativa L.).  相似文献   

10.
A modified algorithm for the improvement of composite interval mapping   总被引:27,自引:0,他引:27       下载免费PDF全文
Li H  Ye G  Wang J 《Genetics》2007,175(1):361-374
Composite interval mapping (CIM) is the most commonly used method for mapping quantitative trait loci (QTL) with populations derived from biparental crosses. However, the algorithm implemented in the popular QTL Cartographer software may not completely ensure all its advantageous properties. In addition, different background marker selection methods may give very different mapping results, and the nature of the preferred method is not clear. A modified algorithm called inclusive composite interval mapping (ICIM) is proposed in this article. In ICIM, marker selection is conducted only once through stepwise regression by considering all marker information simultaneously, and the phenotypic values are then adjusted by all markers retained in the regression equation except the two markers flanking the current mapping interval. The adjusted phenotypic values are finally used in interval mapping (IM). The modified algorithm has a simpler form than that used in CIM, but a faster convergence speed. ICIM retains all advantages of CIM over IM and avoids the possible increase of sampling variance and the complicated background marker selection process in CIM. Extensive simulations using two genomes and various genetic models indicated that ICIM has increased detection power, a reduced false detection rate, and less biased estimates of QTL effects.  相似文献   

11.
Quantitative genetic dissection of complex traits in a QTL-mapping pedigree   总被引:1,自引:0,他引:1  
This paper summarizes and modifies quantitative genetic analyses on a pedigree used to map genetic factors (i.e., QTLs) underlying a complex trait. The total genetic variance can be exactly estimated based on the F2 family derived from two homozygous parents for alternative alleles at all QTLs of interest. The parents, F1 hybrids, and two backcrosses are combined to each parent, and the total number of QTLs and the number of dominant QTLs are estimated under the assumptions of gene association with the two parents, equal gene effect, no linkage, and no epistasis among QTLs. Further relaxation for each of the assumptions are made in detail. The biometric estimator for the QTL number and action mode averaged over the entire genome could provide some basic and complementary information to QTL mapping designed to detect the effect and location of specific genetic factors.  相似文献   

12.
The aim of this study was to explore, by computer simulation, the mapping of QTLs in a realistic but complex situation of many (linked) QTLs with different effects, and to compare two QTL mapping methods. A novel method to dissect genetic variation on multiple chromosomes using molecular markers in backcross and F2 populations derived from inbred lines was suggested, and its properties tested using simulations. The rationale for this sequential testing method was to explicitly test for alternative genetic models. The method consists of a series of four basic statistical tests to decide whether variance was due to a single QTL, two QTLs, multiple QTLs, or polygenes, starting with a test to detect genetic variance associated with a particular chromosome. The method was able to distinguish between different QTL configurations, in that the probability to `detect' the correct model was high, varying from 0.75 to 1. For example, for a backcross population of 200 and an overall heritability of 50%, in 78% of replicates a polygenic model was detected when that was the underlying true model. To test the method for multiple chromosomes, QTLs were simulated on 10 chromosomes, following a geometric series of allele effects, assuming positive alleles were in coupling in the founder lines For these simulations, the sequential testing method was compared to the established Multiple QTL Mapping (MQM) method. For a backcross population of 400 individuals, power to detect genetic variance was low with both methods when the heritability was 0.40. For example, the power to detect genetic variation on a chromosome on which 6 QTLs explained 12.6% of the genetic variance, was less than 60% for both methods. For a large heritability (0.90), the power of MQM to detect genetic variance and to dissect QTL configurations was generally better, due to the simultaneous fitting of markers on all chromosomes. It is concluded that when testing different QTL configurations on a single chromosome using the sequential testing procedure, regions of other chromosomes which explain a significant amount of variation should be fitted in the model of analysis. This study reinforces the need for large experiments in plants and other species if the aim of a genome scan is to dissect quantitative genetic variation.  相似文献   

13.
Mapping epistatic quantitative trait loci with one-dimensional genome searches   总被引:14,自引:0,他引:14  
Jannink JL  Jansen R 《Genetics》2001,157(1):445-454
The discovery of epistatically interacting QTL is hampered by the intractability and low power to detect QTL in multidimensional genome searches. We describe a new method that maps epistatic QTL by identifying loci of high QTL by genetic background interaction. This approach allows detection of QTL involved not only in pairwise but also higher-order interaction, and does so with one-dimensional genome searches. The approach requires large populations derived from multiple related inbred-line crosses as is more typically available for plants. Using maximum likelihood, the method contrasts models in which QTL allelic values are either nested within, or fixed over, populations. We apply the method to simulated doubled-haploid populations derived from a diallel among three inbred parents and illustrate the power of the method to detect QTL of different effect size and different levels of QTL by genetic background interaction. Further, we show how the method can be used in conjunction with standard two-locus QTL detection models that use two-dimensional genome searches and find that the method may double the power to detect first-order epistasis.  相似文献   

14.
Dominant phenotype of a genetic marker provides incomplete information about the marker genotype of an individual. A consequence of using this incomplete information for mapping quantitative trait loci (QTL) is that the inference of the genotype of a putative QTL flanked by a marker with dominant phenotype will depend on the genotype or phenotype of the next marker. This dependence can be extended further until a marker genotype is fully observed. A general algorithm is derived to calculate the probability distribution of the genotype of a putative QTL at a given genomic position, conditional on all observed marker phenotypes in the region with dominant and missing marker information for an individual. The algorithm is implemented for various populations stemming from two inbred lines in the context of mapping QTL. Simulation results show that if only a proportion of markers contain missing or dominant phenotypes, QTL mapping can be almost as efficient as if there were no missing information in the data. The efficiency of the analysis, however, may decrease substantially when a very large proportion of markers contain missing or dominant phenotypes and a genetic map has to be reconstructed first on the same data as well. So it is important to combine dominant markers with codominant markers in a QTL mapping study. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Kao CH 《Genetics》2004,167(4):1987-2002
Endosperm traits are trisomic inheritant and are of great economic importance because they are usually directly related to grain quality. Mapping for quantitative trait loci (QTL) underlying endosperm traits can provide an efficient way to genetically improve grain quality. As the traditional QTL mapping methods (diploid methods) are usually designed for traits under diploid control, they are not the ideal approaches to map endosperm traits because they ignore the triploid nature of endosperm. In this article, a statistical method considering the triploid nature of endosperm (triploid method) is developed on the basis of multiple-interval mapping (MIM) to map for the underlying QTL. The proposed triploid MIM method is derived to broadly use the marker information either from only the maternal plants or from both the maternal plants and their embryos in the backcross and F2 populations for mapping endosperm traits. Due to the use of multiple intervals simultaneously to take multiple QTL into account, the triploid MIM method can provide better detection power and estimation precision, and as shown in this article it is capable of analyzing and searching for epistatic QTL directly as compared to the traditional diploid methods and current triploid methods using only one (or two) interval(s). Several important issues in endosperm trait mapping, such as the relation and differences between the diploid and triploid methods, variance components of genetic variation, and the problems if effects are present and ignored, are also addressed. Simulations are performed to further explore these issues, to investigate the relative efficiency of different experimental designs, and to evaluate the performance of the proposed and current methods in mapping endosperm traits. The MIM-based triploid method can provide a powerful tool to estimate the genetic architecture of endosperm traits and to assist the marker-assisted selection for the improvement of grain quality in crop science. The triploid MIM FORTRAN program for mapping endosperm traits is available on the worldwide web (http://www.stat.sinica.edu.tw/chkao/).  相似文献   

16.
Composite interval mapping (CIM) has been successfully applied to the detection of QTL in experimental animals and plants. However, practical analyses based on CIM have been reported mainly for populations derived from cross between inbred lines. There are few studies on QTL analyses with CIM in outbred populations. To evaluate the applicability of CIM to outbred populations is prerequisite for the fine mapping of QTL in industrial animals such as pig and chicken. Some markers are usually not fully informative in outbred populations. In application of CIM to outbred populations, the influence of inclusion of such uninformative markers used as covariates on the efficiency of CIM should be investigated. In this paper a least-squares method for CIM was formalized in an F(2) population derived by crossing two outbred lines. The efficiencies of CIM were evaluated for outbred populations in comparison with simple interval mapping (SIM) for several cases of marker informativeness using simulations. By incorporating markers linked to a tested position as well as those unlinked, CIM showed a higher efficiency to separate two linked QTL over SIM. The efficiency of dissection was enhanced as the marker informativeness was increased. The power of CIM to detect an isolated QTL was improved by excluding markers linked to a tested position from covariates and higher than SIM regardless of marker informativeness. In conclusion, CIM is a useful procedure for the analysis of QTL in outbred populations even under low marker informativeness.  相似文献   

17.
Recently, the use of linkage disequilibrium (LD) to locate genes which affect quantitative traits (QTL) has received an increasing interest, but the plausibility of fine mapping using linkage disequilibrium techniques for QTL has not been well studied. The main objectives of this work were to (1) measure the extent and pattern of LD between a putative QTL and nearby markers in finite populations and (2) investigate the usefulness of LD in fine mapping QTL in simulated populations using a dense map of multiallelic or biallelic marker loci. The test of association between a marker and QTL and the power of the test were calculated based on single-marker regression analysis. The results show the presence of substantial linkage disequilibrium with closely linked marker loci after 100 to 200 generations of random mating. Although the power to test the association with a frequent QTL of large effect was satisfactory, the power was low for the QTL with a small effect and/or low frequency. More powerful, multi-locus methods may be required to map low frequent QTL with small genetic effects, as well as combining both linkage and linkage disequilibrium information. The results also showed that multiallelic markers are more useful than biallelic markers to detect linkage disequilibrium and association at an equal distance.  相似文献   

18.
High-density genotyping is extensively exploited in genome-wide association mapping studies and genomic selection in maize. By contrast, linkage mapping studies were until now mostly based on low-density genetic maps and theoretical results suggested this to be sufficient. This raises the question, if an increase in marker density would be an overkill for linkage mapping in biparental populations, or if important QTL mapping parameters would benefit from it. In this study, we addressed this question using experimental data and a simulation based on linkage maps with marker densities of 1, 2, and 5 cM. QTL mapping was performed for six diverse traits in a biparental population with 204 doubled haploid maize lines and in a simulation study with varying QTL effects and closely linked QTL for different population sizes. Our results showed that high-density maps neither improved the QTL detection power nor the predictive power for the proportion of explained genotypic variance. By contrast, the precision of QTL localization, the precision of effect estimates of detected QTL, especially for small and medium sized QTL, as well as the power to resolve closely linked QTL profited from an increase in marker density from 5 to 1 cM. In conclusion, the higher costs for high-density genotyping are compensated for by more precise estimates of parameters relevant for knowledge-based breeding, thus making an increase in marker density for linkage mapping attractive.  相似文献   

19.
Mathematically-derived traits from two or more component traits, either by addition, subtraction, multiplication, or division, have been frequently used in genetics and breeding. When used in quantitative trait locus (QTL) mapping, derived traits sometimes show discrepancy with QTL identified for the component traits. We used three QTL distributions and three genetic effects models, and an actual maize mapping population, to investigate the efficiency of using derived traits in QTL mapping, and to understand the genetic and biological basis of derived-only QTL, i.e., QTL identified for a derived trait but not for any component trait. Results indicated that the detection power of the four putative QTL was consistently greater than 90% for component traits in simulated populations, each consisting of 200 recombinant inbred lines. Lower detection power and higher false discovery rate (FDR) were observed when derived traits were used. In an actual maize population, simulations were designed based on the observed QTL distributions and effects. When derived traits were used, QTL detected for both component and derived traits had comparable power, but those detected for component traits but not for derived traits had low detection power. The FDR from subtraction and division in the maize population were higher than the FDR from addition and multiplication. The use of derived traits increased the gene number, caused higher-order gene interactions than observed in component traits, and possibly complicated the linkage relationship between QTL as well. The increased complexity of the genetic architecture with derived traits may be responsible for the reduced detection power and the increased FDR. Derived-only QTL identified in practical genetic populations can be explained either as minor QTL that are not significant in QTL mapping of component traits, or as false positives.  相似文献   

20.
 A common problem in mapping quantitative trait loci (QTLs) is that marker data are often incomplete. This includes missing data, dominant markers, and partially informative markers, arising in outbred populations. Here we briefly present an iteratively re-weighted least square method (IRWLS) to incorporate dominant and missing markers for mapping QTLs in four-way crosses under a heterogeneous variance model. The algorithm uses information from all markers in a linkage group to infer the QTL genotype. Monte Carlo simulations indicate that with half dominant markers, QTL detection is almost as efficient as with all co-dominant markers. However, the precision of the estimated QTL parameters generally decreases as more markers become missing or dominant. Notable differences are observed on the standard deviation of the estimated QTL position for varying levels of marker information content. The method is relatively simple so that more complex models including multiple QTLs or fixed effects can be fitted. Finally, the method can be readily extended to QTL mapping in full-sib families. Received: 16 June 1998 / Accepted: 29 September 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号