首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
丙型肝炎病毒基因组结构及功能   总被引:1,自引:0,他引:1  
丙型肝炎病毒(hepatitis C virus, HCV)是单股正链的RNA 病毒,全长为9.6 kb,包括1个大的开放阅读框(ORF)和两侧的5′,3′非编码区(UTRs).核糖体通过进入HCV 5′UTR 端的内部核糖体进入位点(IRES),将HCV基因组翻译成1个聚蛋白前体.前体聚蛋白被宿主和病毒的蛋白酶共同切割成为若干个具有独立功能的HCV蛋白,根据功能的不同分别命名为C、E1、E2、p7、NS2、NS3、NS4A、NS4B、NS5A 和NS5B,它们不但在HCV的生活史中发挥着重要的作用,也影响着宿主细胞的信号传导、凋亡及物质代谢等一系列生化过程.近年来,随着HCV体外细胞摸型的不断发展,其病毒分子生物学方面的研究取得了很大的进展.本文从基因组结构及其编码的蛋白功能等方面阐述了HCV病毒的研究进展,为致病机理的研究及抗HCV药物的开发和疫苗研制等提供理论基础.  相似文献   

2.
Growing experimental evidence indicates that, in addition to the physical virion components, the non-structural proteins of hepatitis C virus (HCV) are intimately involved in orchestrating morphogenesis. Since it is dispensable for HCV RNA replication, the non-structural viral protein NS2 is suggested to play a central role in HCV particle assembly. However, despite genetic evidences, we have almost no understanding about NS2 protein-protein interactions and their role in the production of infectious particles. Here, we used co-immunoprecipitation and/or fluorescence resonance energy transfer with fluorescence lifetime imaging microscopy analyses to study the interactions between NS2 and the viroporin p7 and the HCV glycoprotein E2. In addition, we used alanine scanning insertion mutagenesis as well as other mutations in the context of an infectious virus to investigate the functional role of NS2 in HCV assembly. Finally, the subcellular localization of NS2 and several mutants was analyzed by confocal microscopy. Our data demonstrate molecular interactions between NS2 and p7 and E2. Furthermore, we show that, in the context of an infectious virus, NS2 accumulates over time in endoplasmic reticulum-derived dotted structures and colocalizes with both the envelope glycoproteins and components of the replication complex in close proximity to the HCV core protein and lipid droplets, a location that has been shown to be essential for virus assembly. We show that NS2 transmembrane region is crucial for both E2 interaction and subcellular localization. Moreover, specific mutations in core, envelope proteins, p7 and NS5A reported to abolish viral assembly changed the subcellular localization of NS2 protein. Together, these observations indicate that NS2 protein attracts the envelope proteins at the assembly site and it crosstalks with non-structural proteins for virus assembly.  相似文献   

3.
The nonstructural proteins of hepatitis C virus (HCV) have been shown previously to localize to the endoplasmic reticulum (ER) when expressed singly or in the context of other HCV proteins. To determine whether the expression of HCV nonstructural proteins alters ER function, we tested the effect of expression of NS2/3/4A, NS4A, NS4B, NS4A/B, NS4B/5A, NS5A, and NS5B from genotype 1b HCV on anterograde traffic from the ER to the Golgi apparatus. Only the nominal precursor protein NS4A/B affected the rate of ER-to-Golgi traffic, slowing the rate of Golgi-specific modification of the vesicular stomatitis virus G protein expressed by transfection by approximately threefold. This inhibition of ER-to-Golgi traffic was not observed upon expression of the processed proteins NS4A and NS4B, singly or in combination. To determine whether secretion of other cargo proteins was inhibited by NS4A/B expression, we monitored the appearance of newly synthesized proteins on the cell surface in the presence and absence of NS4A/B expression; levels of all were reduced in the presence of NS4A/B. This reduction is also seen in cells that contain genome length HCV replicons: the rate of appearance of major histocompatibility complex class I (MHC-I) on the cell surface was reduced by three- to fivefold compared to that for a cured cell line. The inhibition of protein secretion caused by NS4A/B does not correlate with the ultrastructural changes leading to the formation a "membranous web" (D. Egger et al., J. Virol. 76:5974-5984, 2002), which can be caused by expression of NS4B alone. Inhibition of global ER-to-Golgi traffic could, by reducing cytokine secretion, MHC-I presentation, and transport of labile membrane proteins to the cell surface, have significant effects on the host immune response to HCV infection.  相似文献   

4.
We developed an in vitro translation extract from Krebs-2 cells that translates the entire open reading frame of the hepatitis C virus (HCV) strain H77 and properly processes the viral protein precursors when supplemented with canine microsomal membranes (CMMs). Translation of the C-terminal portion of the viral polyprotein in this system is documented by the synthesis of NS5B. Evidence for posttranslational modification of the viral proteins, the N-terminal glycosylation of E1 and the E2 precursor (E2-p7), and phosphorylation of NS5A is presented. With the exception of NS3, efficient generation of all virus-specific proteins is CMM dependent. A time course of the appearance of HCV products indicates that the viral polyprotein is cleaved cotranslationally. A competitive inhibitor of the NS3 protease inhibited accumulation of NS3, NS4B, NS5A, and NS5B, but not that of NS2 or structural proteins. CMMs also stabilized HCV mRNA during translation. Finally, the formyl-[35S]methionyl moiety of the initiator tRNA(Met) was incorporated exclusively into the core protein portion of the polyprotein, demonstrating that translation initiation in this system occurs with high fidelity.  相似文献   

5.
Li R  Qin Y  He Y  Tao W  Zhang N  Tsai C  Zhou P  Zhong J 《Journal of virology》2011,85(5):2138-2147
Hepatitis C virus (HCV) infection is a major worldwide health problem. The envelope glycoproteins are the major components of viral particles. Here we developed a trans-complementation system that allows the production of infectious HCV particles in whose genome the regions encoding envelope proteins are deleted (HCVΔE). The lack of envelope proteins could be efficiently complemented by the expression of homologous envelope proteins in trans. HCVΔE production could be enhanced significantly by previously described adaptive mutations in NS3 and NS5A. Moreover, HCVΔE could be propagated and passaged in packaging cells stably expressing HCV envelope proteins, resulting in only single-round infection in wild-type cells. Interestingly, we found that vesicular stomatitis virus (VSV) glycoproteins could efficiently rescue the production of HCV lacking endogenous envelope proteins, which no longer required apolipoprotein E for virus production. VSV glycoprotein-mediated viral entry could allow for the bypass of the natural HCV entry process and the delivery of HCV replicon RNA into HCV receptor-deficient cells. Our development provides a new tool for the production of single-cycle infectious HCV particles, which should be useful for studying individual steps of the HCV life cycle and may also provide a new strategy for HCV vaccine development.  相似文献   

6.
Hepatitis C virus (HCV) encodes a polyprotein consisting of core, envelope (E1, E2, p7), and nonstructural polypeptides (NS2, NS3, NS4A, NS4B, NS5A, NS5B). The serine protease (NS3/NS4A), helicase (NS3), and polymerase (NS5B) constitute valid targets for antiviral therapy. We engineered BH3 interacting domain death agonist (BID), an apoptosis-inducing molecule, to contain a specific cleavage site recognized by the NS3/NS4A protease. Cleavage of the BID precursor molecule by the viral protease activated downstream apoptotic molecules of the mitochondrial pathway and triggered cell death. We extended this concept to cells transfected with an infectious HCV genome, hepatocytes containing HCV replicons, a Sindbis virus model for HCV, and finally HCV-infected mice with chimeric human livers. Infected mice injected with an adenovirus vector expressing modified BID exhibited HCV-dependent apoptosis in the human liver xenograft and considerable declines in serum HCV titers.  相似文献   

7.
The hepatitis C virus genome encodes a polyprotein precursor that is co- and post-translationally processed by cellular and viral proteases to yield 10 mature protein products (C, E1, E2, p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B). Although most cleavages in hepatitis C virus polyprotein precursor proceed to completion during or immediately after translation, the cleavages mediated by a host cell signal peptidase are partial at the E2/p7 and p7/NS2 sites, leading to the production of an E2p7NS2 precursor. The sequences located immediately N-terminally of E2/p7 and p7/NS2 cleavage sites can function as signal peptides. When fused to a reporter protein, the signal peptides of p7 and NS2 were efficiently cleaved. However, when full-length p7 was fused to the reporter protein, partial cleavage was observed, indicating that a sequence located N-terminally of the signal peptide reduces the efficiency of p7/NS2 cleavage. Sequence analyses and mutagenesis studies have also identified structural determinants responsible for the partial cleavage at both the E2/p7 and p7/NS2 sites. Finally, the short distance between the cleavage site of E2/p7 or p7/NS2 and the predicted transmembrane alpha-helix within the P' region might impose additional structural constraints to the cleavage sites. The insertion of a linker polypeptide sequence between P-3' and P-4' of the cleavage site released these constraints and led to improved cleavage efficiency. Such constraints in the processing of a polyprotein precursor are likely essential for hepatitis C virus to post-translationally regulate the kinetics and/or the level of expression of p7 as well as NS2 and E2 mature proteins.  相似文献   

8.
More effective therapies are urgently needed against hepatitis C virus (HCV), a major cause of viral hepatitis. We used in vitro protein expression and microfluidic affinity analysis to study RNA binding by the HCV transmembrane protein NS4B, which plays an essential role in HCV RNA replication. We show that HCV NS4B binds RNA and that this binding is specific for the 3' terminus of the negative strand of the viral genome with a dissociation constant (Kd) of approximately 3.4 nM. A high-throughput microfluidic screen of a compound library identified 18 compounds that substantially inhibited binding of RNA by NS4B. One of these compounds, clemizole hydrochloride, was found to inhibit HCV RNA replication in cell culture that was mediated by its suppression of NS4B's RNA binding, with little toxicity for the host cell. These results yield new insight into the HCV life cycle and provide a candidate compound for pharmaceutical development.  相似文献   

9.
Hepatitis C virus (HCV) NS5B protein has been shown to have RNA-dependent RNA polymerase (RdRp) activity by itself and is a key enzyme involved in viral replication. Using analyses with the yeast two-hybrid system and in vitro binding assay, we found that human eukaryotic initiation factor 4AII (heIF4AII), which is a component of the eIF4F complex and RNA-dependent ATPase/helicase, interacted with NS5B protein. These two proteins were shown to be partially colocalized in the perinuclear region. The binding site in HCV NS5B protein was localized within amino acid residues 495 to 537 near the C terminus. Since eIF4A has a helicase activity and functions in a bidirectional manner, the binding of HCV NS5B protein to heIF4AII raises the possibility that heIF4AII facilitates the genomic RNA synthesis of NS5B protein by unwinding the secondary structure of the HCV genome and is a host component of viral replication complex.  相似文献   

10.
Jiang J  Luo G 《Journal of virology》2012,86(17):8987-8997
Recent genetic studies suggested that viral nonstructural (NS) proteins play important roles in morphogenesis of flaviviruses, particularly hepatitis C virus (HCV). Adaptive and compensatory mutations occurring in different NS proteins were demonstrated to promote HCV production in cell culture. However, the underlying molecular mechanism of NS proteins in HCV morphogenesis is poorly understood. We have isolated a cell culture-adapted HCV of genotype 2a (JFH1) which grew to an infectious titer 3 orders of magnitude higher than that of wild-type virus. Sequence analysis identified a total of 16 amino acid mutations in core (C), E1, NS2, NS3, NS5A, and NS5B, with the majority of mutations clustered in NS5A. Reverse genetic analysis of these mutations individually or in different combinations demonstrated that amino acid mutations in NS2 and NS5A markedly enhanced HCV production. Additionally, mutations in C, E1, NS3, and NS5B synergistically promoted HCV production in the background of NS2 and NS5A mutations. Adaptive mutations in NS5A domains I, II, and III independently enhanced HCV production, suggesting that all three domains of NS5A are important for HCV morphogenesis. More importantly, adaptive mutations greatly enhanced physical interactions among HCV structural and NS proteins, as determined by studies with coimmunoprecipitation and mammalian two-hybrid assays. Collectively, these findings demonstrate that adaptive mutations can enhance specific protein-protein interactions among viral structural and NS proteins and therefore promote the assembly of infectious HCV particles.  相似文献   

11.
The hepatitis C virus (HCV) NS2 protein is essential for particle assembly, but its function in this process is unknown. We previously identified critical genetic interactions between NS2 and the viral E1-E2 glycoprotein and NS3-NS4A enzyme complexes. Based on these data, we hypothesized that interactions between these viral proteins are essential for HCV particle assembly. To identify interaction partners of NS2, we developed methods to site-specifically biotinylate NS2 in vivo and affinity capture NS2-containing protein complexes from virus-producing cells with streptavidin magnetic beads. By using these methods, we confirmed that NS2 physically interacts with E1, E2, and NS3 but did not stably interact with viral core or NS5A proteins. We further characterized these protein complexes by blue native polyacrylamide gel electrophoresis and identified ≈ 520-kDa and ≈ 680-kDa complexes containing E2, NS2, and NS3. The formation of NS2 protein complexes was dependent on coexpression of the viral p7 protein and enhanced by cotranslation of viral proteins as a polyprotein. Further characterization indicated that the glycoprotein complex interacts with NS2 via E2, and the pattern of N-linked glycosylation on E1 and E2 suggested that these interactions occur in the early secretory pathway. Importantly, several mutations that inhibited virus assembly were shown to inhibit NS2 protein complex formation, and NS2 was essential for mediating the interaction between E2 and NS3. These studies demonstrate that NS2 plays a central organizing role in HCV particle assembly by bringing together viral structural and nonstructural proteins.  相似文献   

12.
Hepatitis C virus (HCV) poses a global threat to public health. HCV envelop protein E2 is the major component on the virus envelope, which plays an important role in virus entry and morphogenesis. Here, for the first time, we affinity purified E2 complex formed in HCV-infected human hepatoma cells and conducted comparative mass spectrometric analyses. 85 cellular proteins and three viral proteins were successfully identified in three independent trials, among which alphafetoprotein (AFP), UDP-glucose: glycoprotein glucosyltransferase 1 (UGT1) and HCV NS4B were further validated as novel E2 binding partners. Subsequent functional characterization demonstrated that gene silencing of UGT1 in human hepatoma cell line Huh7.5.1 markedly decreased the production of infectious HCV, indicating a regulatory role of UGT1 in viral lifecycle. Domain mapping experiments showed that HCV E2-NS4B interaction requires the transmembrane domains of the two proteins. Altogether, our proteomics study has uncovered key viral and cellular factors that interact with E2 and provided new insights into our understanding of HCV infection.  相似文献   

13.
Kai Lin 《中国病毒学》2010,25(4):246-266
Over 170 million people worldwide are infected with hepatitis C virus (HCV), a major cause of liver diseases. Current interferon-based therapy is of limited efficacy and has significant side effects and more effective and better tolerated therapies are urgently needed. HCV is a positive, single-stranded RNA virus with a 9.6 kb genome that encodes ten viral proteins. Among them, the NS3 protease and the NSSB polymerase are essential for viral replication and have been the main focus of drug discovery efforts. Aided by structure-based drug design,potent and specific inhibitors of NS3 and NSSB have been identified, some of which are in late stage clinical trials and may significantly improve current HCV treatment. Inhibitors of other viral targets such as NSSA are also being pursued. However, HCV is an RNA virus characterized by high replication and mutation rates and consequently, resistance emerges quickly in patients treated with specific antivirals as monotherapy. A complementary approach is to target host factors such as cyclophilins that are also essential for viral replication and may present a higher genetic barrier to resistance. Combinations of these inhibitors of different mechanism are likely to become the essential components of future HCV therapies in order to maximize antiviral efficacy and prevent the emergence of resistance.  相似文献   

14.
Li S  Yu X  Guo Y  Kong L 《Cellular microbiology》2012,14(7):994-1002
Hepatitis C virus (HCV) is an important human pathogen infecting more than 170 million people worldwide with approximately three million new cases each year. HCV depends heavily on interactions between viral proteins and host factors for its survival and propagation. Among HCV viral proteins, the HCV non-structural protein 4B (NS4B) has been shown to mediate virus-host interactions that are essential for HCV replication and pathogenesis and emerged as the target for anti-HCV therapy. Here, we reviewed recent knowledge about the NS4B interaction networks with host factors and its possible regulatory mechanisms, which will both advance our understanding of the role of NS4B in HCV life cycle and illuminate potential viral and host therapeutic targets.  相似文献   

15.
GB virus B (GBV-B) is a recently discovered virus responsible for hepatitis in tamarins (Saguinus species). GBV-B belongs to the Flaviviridae family and is closely related to the human pathogen hepatitis C virus (HCV). Nonstructural protein 3 (NS3) of HCV has been shown to encompass a serine protease domain required for viral maturation. GBV-B and HCV share only about 30% of the amino acid sequence within the NS3 protease domain. The catalytic triad is conserved, and the residue Phe-154, presumed to be a crucial amino acid for determining the S1 specificity pocket of the HCV NS3 protease, is also conserved. We have expressed a synthetic gene encoding the GBV-B NS3 protease domain in Escherichia coli and have characterized the purified recombinant protein for its activity on HCV substrates. We have shown that the NS3 region of the GBV-B genome actually encodes a serine protease that, despite the low sequence homology, shares substrate specificity with the HCV NS3 protease.  相似文献   

16.
The p7 protein of hepatitis C virus (HCV) is a viroporin that is dispensable for viral genome replication but plays a critical role in virus morphogenesis. In this study, we generated a JFH1-based intergenotypic chimeric genome that encoded a heterologous genotype 1b (GT1b) p7. The parental intergenotypic chimeric genome was nonviable in human hepatoma cells, and infectious chimeric virions were produced only when cells transfected with the chimeric genomes were passaged several times. Sequence analysis of the entire polyprotein-coding region of the recovered chimeric virus revealed one predominant amino acid substitution in nonstructural protein 2 (NS2), T23N, and one in NS5B, K151R. Forward genetic analysis demonstrated that each of these mutations per se restored the infectivity of the parental chimeric genome, suggesting that interactions between p7, NS2, and NS5B were required for virion assembly/maturation. p7 and NS5B colocalized in cellular compartments, and the NS5B mutation did not affect the colocalization pattern. The NS5B K151R mutation neither increased viral RNA replication in human hepatoma cells nor altered the polymerase activity of NS5B in an in vitro assay. In conclusion, this study suggests that HCV NS5B is involved in virus morphogenesis.  相似文献   

17.
18.
Antiviral immunity requires recognition of viral pathogens and activation of cytotoxic and Th cells by innate immune cells. In this study, we demonstrate that hepatitis C virus (HCV) core and nonstructural protein 3 (NS3), but not envelope 2 proteins (E2), activate monocytes and myeloid dendritic cells (DCs) and partially reproduce abnormalities found in chronic HCV infection. HCV core or NS3 (not E2) triggered inflammatory cytokine mRNA and TNF-alpha production in monocytes. Degradation of I-kappa B alpha suggested involvement of NF-kappa B activation. HCV core and NS3 induced production of the anti-inflammatory cytokine, IL-10. Both monocyte TNF-alpha and IL-10 levels were higher upon HCV core and NS3 protein stimulation in HCV-infected patients than in normals. HCV core and NS3 (not E2) inhibited differentiation and allostimulatory capacity of immature DCs similar to defects in HCV infection. This was associated with elevated IL-10 and decreased IL-2 levels during T cell proliferation. Increased IL-10 was produced by HCV patients' DCs and by core- or NS3-treated normal DCs, while IL-12 was decreased only in HCV DCs. Addition of anti-IL-10 Ab, not IL-12, ameliorated T cell proliferation with HCV core- or NS3-treated DCs. Reduced allostimulatory capacity in HCV core- and NS3-treated immature DCs, but not in DCs of HCV patients, was reversed by LPS maturation, suggesting more complex DC defects in vivo than those mediated by core or NS3 proteins. Our results reveal that HCV core and NS3 proteins activate monocytes and inhibit DC differentiation in the absence of the intact virus and mediate some of the immunoinhibitory effects of HCV via IL-10 induction.  相似文献   

19.
Kohara M  Inoue K 《Uirusu》2004,54(2):197-204
One of the prominent features of hepatitis C virus (HCV) is persistent infection, which is assumed to be a crucial event as a result of evading host defense system. Type I interferon beta (IFN- beta) system is induced rapidly after viral infection and plays a central role in innate immunity. Upon immediate induction of type I IFN as host first defense line, interferon regulatory factor-3 (IRF-3) is phosphorylated, formed of homodimer and translocates to nucleus. IFN-beta induction due to new castle disease virus (NDV) was significantly decreasd after the expression of full HCV genome (HCR6-Rz). Similar modification was observed in cell line expressing core to the NS2 protein region (HCR6-Fse). However, this decreasing was not observed in cell line expressing NS2 to the NS5B region (HCR6-Age). IRF-3 dimer formation induced by NDV infection was also suppressed after the expression of HCR6-Rz and HCR6-Fse, but not HCR6-Age. We further analyzed using transiently expressed HCV core, E1 or E2 in HepG2 cells. The suppression of IRF-3 dimer formation was caused by HCV core protein alone. These results indicated that a new crucial biological function of HCV core protein that may be related to persistence and pathogenesis of HCV.  相似文献   

20.
Lai CK  Jeng KS  Machida K  Lai MM 《Journal of virology》2008,82(17):8838-8848
The hepatitis C virus (HCV) RNA replication complex (RC), which is composed of viral nonstructural (NS) proteins and host cellular proteins, replicates the viral RNA genome in association with intracellular membranes. Two viral NS proteins, NS3 and NS5A, are essential elements of the RC. Here, by using immunoprecipitation and fluorescence resonance energy transfer assays, we demonstrated that NS3 and NS5A interact with tubulin and actin. Furthermore, immunofluorescence microscopy and electron microscopy revealed that HCV RCs were aligned along microtubules and actin filaments in both HCV replicon cells and HCV-infected cells. In addition, the movement of RCs was inhibited when microtubules or actin filaments were depolymerized by colchicine and cytochalasin B, respectively. Based on our observations, we propose that microtubules and actin filaments provide the tracks for the movement of HCV RCs to other regions in the cell, and the molecular interactions between RCs and microtubules, or RCs and actin filaments, are mediated by NS3 and NS5A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号