共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A novel B-cell precursor (BCP) acute lymphoblastic leukemia (ALL) cell line, NALM-35, was established from the peripheral blood of a 40-year-old woman at diagnosis of ALL. Imunophenotyping showed BCP type III characteristics including expression of TdT, CD10, CD19, CD22, CD79a and HLA class II. T-cell and myeloid-associated antigens tested were negative except CD5 and CD28. The surrogate light chains CD179a and CD179b were positive. NALM-35 cells have the morphological appearance of lymphoblasts. Cytogenetic analysis of NALM-35 revealed an abnormal karyotype with 46, XX, add(9)(p11). Southern blot analysis of the immunoglobulin genes status of NALM-35 at 10 months after establishment showed germ line configuration of the kappa and lambda light chain genes, and rearrangement of the mu heavy chain gene. DNA fingerprinting, chromosomal analysis and immunophenotyping proved that NALM-35 was clonally derived from the primary leukemia cells. The established cell line may provide a useful model system and unprecedented opportunities for analyzing the multitude of biological aspects of normal and neoplastic B-lymphocytes and their precursors. 相似文献
3.
The MOPC 104E cell line has been adapted to grow in vitro using a combination of feeder layer and growth factor(s). The growth of this myeloma cell line is dependent on the presence of growth factor(s). Growth-promoting activity generated from T-cell-mitogen-stimulated, Corynebacterium parvum-stimulated spleen cell culture supernatant, and peritoneal adherent cell culture supernatants gives dose-dependent proliferation. Generation of growth factors in the serum-free bovine serum albumin-substituted media and a rapid assay system based on [3H]thymidine uptake for the quantitation of growth promoting activity are described. 相似文献
4.
Lee YL Lee KF Xu JS Wang YL Tsao SW Yeung WS 《Molecular reproduction and development》2001,59(4):400-409
Human oviductal cells stimulate embryo development in vitro partly by the production of embryotrophic glycoproteins. The identity of these glycoproteins is not yet known mainly because oviductal samples are limited and that the cultured parental oviductal cells cannot produce sufficient amount of embryotrophic factors for characterization. In this study, human oviductal epithelial cells (OE) were immortalized by HPV 16 E6/E7 open reading frame (ORF) by retroviral expression. The characteristics of this immortalized cell line (OE-E6/E7) were compared to the parental OE. HPV 16 E6/E7 DNA was found only in OE-E6/E7 but not in OE. Human oviduct-specific glycoprotein, estrogen receptors, and cytokeratin were found in both cell types. Both OE and OE-E6/E7 possessed telomerase activities but the former had much lower activity. OE-E6/E7 also produced glycoproteins with chromatographic behavior similar to the embryotrophic glycoproteins derived from OE. These results showed that OE-E6/E7 retained a number of characteristics of OE. The development of preimplantation mouse embryo was significantly better after coculture with OE-E6/E7 when compared to medium alone culture in term of blastulation rates (52% vs. 32%) and blastocyst diameter (113.0 +/- 2.07 microm vs. 83.9 +/- 5.23 microm). This immortalized cell line can be used as a continuous and stable in vitro system for the study of the oviductal embryotrophic activity. Mol. Reprod. Dev. 59: 400-409, 2001. 相似文献
5.
The stimulation of DNA synthesis by epidermal growth factor (EGF) has been studied for a cell line having properties useful for investigating the mechanism of action of EGF in epithelial cell populations. These studies employ a mouse keratinocyte cell line (MK), isolated by Weissman and Aaronson (1983), which is stringently dependent on exogenous EGF for growth in serum containing medium. The studies reported here characterize the compliment of EGR receptors present on the surface of MK cells and demonstrate the regulatory influence of other hormones on the capacity of EGF to stimulate DNA synthesis. Up-regulated MK cells contain approximately 22,000 EGF receptors per cell, but when the cells are grown in the presence of EGF the receptor number is reduced to about 4,000. It is estimated that only a small number of high-affinity receptors (less than 500) are required for EGF-dependent cell proliferation. In contrast to its action in fibroblastic cells, dexamethasone is a strong inhibitor of EGF-stimulated DNA synthesis of MK cells. Insulin at high concentrations, or insulin-like growth factors I or II (IGF-I, IGF-II) at physiological concentrations, synergistically enhance the EGF response. Interestingly, insulin or IGF-I or II are also able to reverse most of the dexamethasone inhibition of DNA synthesis. Transforming growth factor-beta (TGF-beta) inhibits, in reversible manner, the EGF stimulation of DNA synthesis and this inhibition is not overcome by insulin. TGF-beta receptors have been measured in MK cells and Scatchard analysis indicates approximately 20,000 receptors per cell. None of the modulatory hormones (insulin, dexamethasone, TGF-beta) significantly altered 125I-EGF binding characteristics in MK cells, suggesting a point of action distal to 125I-EGF binding. 相似文献
6.
Masahiro Hiratochi Akiyori Fujiwara Hiroshi Kitani Taisen Iguchi Teruyo Sakakura Yasuhiro Tomooka 《Development, growth & differentiation》1998,40(1):59-65
Mouse neural precursor cells (NPC) were dissociated from fetal heads at the 10th day of gestation. When clumps of NPC were cultured in collagen gel, they grew and reorganized neural tube-like structures in medium containing fetal calf serum at 10% and supplemented with insulin, transferrin, cholera toxin and selenite. However, dissociated NPC died when they were cultured in collagen gel at low density in the same medium. Addition of fibroblast growth factor-2 (FGF-2) to this culture stimulated growth of NPC and formation of neural tube-like structures. The requirement for FGF-2 disappeared in high seeding density culture: they grew and formed neural tube-like structures without FGF-2. The structures formed in collagen gel were immunohistochemically positive against anti-FGF-2 antibody. The results show that the three-dimensional culture system provides a useful tool to study the roles of FGF-2 in morphogenesis of the central nervous system. 相似文献
7.
Leah S. Royce Bruce J. Baum 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1991,1092(3):401-403
An established line of human oral epithelial cells exhibits chemotaxis to epidermal growth factor (EGF). The directed migration of these cells is time dependent with an approximate 10-fold increase in the number of cells responding to the chemoattractant by 6 h. Cell migration occurs in a concentration dependent manner with maximal response at ≈ 1 ng/ml. This maximal chemotactic response occurs within the physiologic concentration range for EGF found in human saliva. These data suggest that EGF may be important for the maintenance of an intact oral epithelial (mucosal) barrier, and may play a vital role in oral mucosal wound healing. 相似文献
8.
J A Fernandez-Pol 《Journal of cellular biochemistry》1982,19(3):205-222
We have reported previously [6] that epidermal growth factor (EGF)-induced down regulation of EGF receptors in normal rat kidney (NRK) cells results in a selective decrease in the in vitro EGF-dependent 32P-phosphorylation of two membrane phosphoproteins of Mr I70K and Mr I50K. In this report, we further characterized the modulation of 32P-phosphorylation of the 170K- and 150K-dalton proteins by down regulation with EGF in NRK cells. While EGF binding to its receptors was a necessary condition to induce loss of EGF-dependent phosphorylation of the 170K- and 150K-dalton proteins, it was not sufficient. Thus, reduction in the temperature of the incubation of cells with EGF from 37°C to 4°C abolished the loss of EGF-dependent phosphorylation of the 170K- and 150K-dalton membrane proteins. When EGF was removed from the medium the EGF-dependent phosphorylation of the 170K- and l50K-dalton proteins was quickly replenished; by 3 hr one-half of the “down regulated” phosphorylation was restored. All EGF-dependent phosphorylating capacity of the 170K- and l50K-dalton protein bands returned by 6 hr after removal of the growth factor. The loss of EGF-dependent phosphorylation of the 170K- and I50K-dalton proteins occurred at physiological EGF concentrations (0.25–25 ng/ml) that span the concentration range which is mitogenic for NRK cells. Exposure of confluent nondividing NRK cells to 1 ng/ml EGF, followed by incubation for 5 hr at 37°C. led to a 50% reduction in the EGF-dependent phosphorylation of the 170K- and 150K-dalton proteins. Maximal reduction (~95%) in the EGF-dependent phosphorylation of the 170K- and 150K-dalton proteins was noted with 10 ng/ml EGF for 5 hr. The EGF-induced loss of EGF-dependent phosphorylation was specific: several other growth factors did not produce phosphorylation loss of the 170K- 相似文献
9.
10.
Alokail MS 《Cell biochemistry and function》2005,23(3):157-161
Epidermal growth factor receptor (EGFR) is activated by autocrine growth factors in many types of tumours, including breast tumours. This receptor has been linked to a poor prognosis in breast cancer and may promote proliferation, migration, invasion, and cell survival as well as inhibition of apoptosis. Human breast ductal carcinoma MCF7 cells were transfected using FuGENE 6 with 1 microg of pcDNA3-EGFR containing the full-length human EGFR promoter or 1 microg of the vectors alone (pcDNA3). The transfected cells were transferred into a 25-cm2 flask containing growth medium and G418. Confluent cultures were lysed, total protein levels measured and electrophoresed. The electrophoresed samples were transferred to nitrocellulose and incubated overnight at 4 degrees C with either anti-EGFR or anti-phospho-ERK and immunoreactive bands were visualized using HRP-linked secondary antibody. We created a model system of EGFR overexpression in MCF7 clones with stably transfected pcDNA3/EGFR plasmid. These cells have been shown to promote substantial phosphorylation of both ERK1 and ERK2. The high level of EGFR and ERK1/2 phosphorylation was not seen in the pcDNA3 vector control cells or in non-transfected cells. In this article we describe successful transient transfection experiments on MCF7 cells using the FuGENE 6 Transfection Reagent. The overexpression of EGFR could be a mediated stress response and a survival signal that involves ERK1 and ERK2 phosphorylation. 相似文献
11.
Nonylphenol induces the death of neural stem cells due to activation of the caspase cascade and regulation of the cell cycle 总被引:6,自引:0,他引:6
Kudo C Wada K Masuda T Yonemura T Shibuya A Fujimoto Y Nakajima A Niwa H Kamisaki Y 《Journal of neurochemistry》2004,88(6):1416-1423
Endocrine disruptors (EDs) are a great concern throughout the world, because they have adverse effects on human health and wildlife. In the present study, we investigated the effects of EDs on the proliferation and survival of murine neural stem cells (NSCs). In contrast to bisphenol A, phthalic acid benzyl n-butyl ester, phthalic acid di-n-butyl ester and phthalic acid di(2-ethylhexyl) ester, the treatment of NSCs with 4-nonylphenol for 24 h inhibited cell growth in a concentration-dependent manner. In addition, treatment with 4-nonylphenol resulted in nuclear condensation and DNA fragmentation (morphological changes due to apoptosis) in NSCs after 12 h of exposure, and activated caspase-3 after 6 h and 9 h of exposure. Furthermore, an exposure to 4-nonylphenol led to the accumulation of cells at the G2/M phase interface and down-regulated the protein levels of cyclin A and B1, which are the major regulatory proteins at the G2 to M transition of the cell cycle. Together, these results indicate that, in contrast to other EDs, 4-nonylphenol may exhibit a potent cytotoxicity through apoptosis via the caspase cascade and cell cycle arrest at the G2/M phase, and suggest that 4-nonylphenol may affect neurogenesis in the CNS. 相似文献
12.
Bruce Dickstein Eva M. Valverius Katja Wosikowski Miguel Saceda Jack W. Pearson Mary Beth Martin Susan E. Bates 《Journal of cellular physiology》1993,157(1):110-118
We examined the expression of the estrogen and epidermal growth factor (EGF) receptors in a drug-resistant subline of MCF-7 cells in order to study potential alterations in hormone dependence or in the growth factor pathway that could be related to the development of drug resistance in human breast cancer. The drug-resistant subline was derived from MCF-7 cells by selection with Adriamycin in the presence of the P-giycoprotein antagonist, verapamil, to prevent acquisition of the classical multidrug resistance phenotype. The Adriamycin-resistant cells retain estrogen-binding, estrogen-responsive monolayer growth, and estrogen-dependent tumorigenesis. Estrogen-binding studies demonstrate 1.4 × 106 sites per cell with unaltered affinity when compared to parental MCF-7 cells, which have 2.7 × 105 sites per cell. An increase in expression of EGF receptor, eight to 12-fold, occurred early in the selection for drug resistance, and appears to be unrelated to verapamil exposure, since cells maintained in Adriamycin without verapamil also have increased EGF receptor expression. Partially drug-sensitive revertants carried a verapamil, but out of Adriamycin, demonstrate a decline in EGF receptor expression. We postulate that activation of growth factor pathways in drug-resistant cells may enhance mechanisms of drug resistance, or provide mitogenic stimuli for cells to recover after damage by drug exposure. © 1993 Wiley-Liss, Inc. 相似文献
13.
The receptor for epidermal growth factor (EGF) is a glycosylated transmembrane phosphoprotein that exhibits EGF-stimulable protein tyrosine kinase activity. On EGF stimulation, the receptor undergoes a self-phosphorylation reaction at tyrosine residues located primarily in the extreme carboxyl-terminal region of the protein. Using enzymatically active EGF receptor purified by immunoaffinity chromatography from A431 human epidermoid carcinoma cells, the self-phosphorylation reaction has been characterized as a rapid, intramolecular process which is maximal at 30-37 degrees C and exhibits a very low Km for ATP (0.2 microM). When phosphorylation of exogenous peptide substrates was measured as a function of receptor self-phosphorylation, tyrosine kinase activity was found to be enhanced two to threefold at 1-2 mol of phosphate per mol of receptor. Analysis of the dependence of the tyrosine kinase activity on ATP concentration yielded hyperbolic kinetics when plotted in double-reciprocal fashion, indicating that ATP can serve as an activator of the enzyme. Higher concentrations of peptide substrates were found to inhibit both the self- and peptide phosphorylation, but this inhibition could be overcome by first self-phosphorylating the enzyme. These results suggest that self-phosphorylation can remove a competitive/inhibitory constraint so that certain exogenous substrates can have greater access to the enzyme active site. In addition to self-phosphorylation, the EGF receptor can be phosphorylated on threonine residues by the calcium- and phospholipid-dependent protein kinase C. The sites on the EGF receptor phosphorylated in vitro by protein kinase C are identical to the sites phosphorylated on the receptor isolated from A431 cells exposed to the tumor promoters 12-O-tetradecanoylphorbol 13-acetate or teleocidin. This phosphorylation of the EGF receptor results in a suppression of its tyrosine kinase and EGF binding activities both in vivo and in vitro. The EGF receptor can thus be variably regulated by phosphorylation: self-phosphorylation can enhance tyrosine kinase activity whereas protein kinase C-catalyzed phosphorylation can depress enzyme activity. Because these two phosphorylations account for only a fraction of the phosphate present in the EGF receptor in vivo, other protein kinases can apparently phosphorylate the receptor and these may exert additional controls on EGF receptor/kinase function. 相似文献
14.
Tomohiro Kaji Naoko Yoshida Kiyoshi Yamada Tatsuhiro Hisatsune Shuichi Kaminogawa 《Cytotechnology》2000,33(1-3):53-61
In the mammalian central nervous system, a complexcircuit of neurons contributes to higher behaviors.Each region of the brain has a unique function derivedfrom various types of neurons. Several neuralprecursor cell lines have been established from basalganglia of fetal brain. In this study, hippocampalneural precursor cell lines were established from thehippocampus of p53-/- embryos. By means ofintegration of a MycER regulatable oncoprotein intop53-/- neural precursor cells, several immortallines were established from embryonic hippocampalprimordium, with bFGF and estrogen continuouslysupplied for activation of the MycER protein. A dualluciferase study demonstrated that the MycER proteinblocked the expression of a glial cell marker protein,GFAP, probably contributing to the persistent celldivision of the immortalized neural precursor cells.These cell lines differentiate into neuronal and glialcell types after withdrawal of bFGF. The phenotype ofthe hippocampal cell lines differed from that of thebasal ganglia cell lines as observed in a clonaldensity culture. This result implies that each regionof the brain has a unique developmental program, thatmay be imprinted in each of the neural precursor cells. 相似文献
15.
Tomokiyo A Maeda H Fujii S Wada N Shima K Akamine A 《Differentiation; research in biological diversity》2008,76(4):337-347
Abstract The periodontal ligament (PDL) that anchors the tooth root to the alveolar bone influences the lifespan of the tooth, and PDL lost through periodontitis is difficult to regenerate. The development of new PDL-regenerative therapies requires the isolation of PDL stem cells. However, their characteristics are unclear due to the absence of somatic PDL stem cell lines and because PDL is composed of heterogeneous cell populations. Recently, we succeeded in immortalizing human PDL fibroblasts that retained the properties of the primary cells. Therefore, we aimed to establish a human PDL-committed stem cell line and investigate the effects of basic fibroblast growth factor (bFGF) on the osteoblastic differentiation of the cells. Here, we report the development of cell line 1–17, a multipotent clonal human PDL cell line that expresses the embryonic stem cell-related pluripotency genes Oct3/4 and Nanog , as well as the PDL-related molecules periostin and scleraxis. Continuous treatment of cell line 1–17 with bFGF in osteoblastic induction medium inhibited its calcification, with down-regulated expression of FGF-Receptor 1 ( FGF-R1 ), whereas later addition of bFGF potentiated its calcification. Furthermore, bFGF induced calcification of cell line 1–17 when it was co-cultured with osteoblastic cells. These results suggest that cell line 1–17 is a PDL-committed stem cell line and that bFGF exerts dualistic (i.e., promoting and inhibitory) effects on the osteoblastic differentiation of cell line 1–17 based on its differentiation stage. 相似文献
16.
A multipotent immature myeloid cell population was produced from a basic fibroblast growth factor (bFGF)-dependent hematopoietic stem cell line, A-6, when cultured with stem cell factor (SCF) replacing bFGF. Those cells were positive for stem cell markers, c-kit and CD34, and a myeloid cell marker, F4/80. Some cell fractions were also positive for Mac-1, a macrophage marker or Gr-1, a granulocytic maker, but negative for an erythroid marker TER119. They also showed the expression of mRNA for the myeloid-specific PU.1 but did not that for the erythroid-specific GATA-1. Among various cytokines, interleukin-3 (IL-3) induced erythroid precursor cells that expressed the erythroid-specific GATA-1 and beta-major globin. The quantitative analysis showed that erythroid precursor cells were newly produced from the immature myeloid cells by cultivation with IL-3. SCF and IL-3 induced stepwise generation of erythroid precursor cells from an A-6 hematopoietic stem cell line. 相似文献
17.
Adult neural precursor cells (NPCs) are predominantly located in the subventricular zone (SVZ) of the lateral ventricles or in the subgranular zone of the dentate gyrus. These NPCs produce neuroblasts that normally migrate and integrate into the olfactory bulb and hippocampus, respectively. Following CNS damage due to disease or injury, NPCs can also migrate to the site of damage. Enhancement of NPC migration to sites of neural damage may increase their potential for repair but requires an understanding of processes that regulate basal and injury-induced migration so we can harness this potential. This review highlights the extrinsic factors and major intrinsic signalling pathways that regulate endogenous basal NPC migration to the olfactory bulb and the role of inflammatory mediators and chemokines in disease and injury-induced NPC migration. 相似文献
18.
The rat pheochromocytoma clone PC12 responds to nerve growth factor through the expression of a number of differentiated neuronal properties. One of the most rapid changes is a large, transient increase in the activity of ornithine decarboxylase. These cells also show an increase in ornithine decarboxylase activity in response to the mitogen, epidermal growth factor, but do not respond morphologically as they do to nerve growth factor. Specific, high-affinity epidermal growth factor receptors are present on the cells. When the cells are differentiated with nerve growth factor, the response to epidermal growth factor is markedly diminished and there is a marked reduction in the binding of epidermal growth factor to the cells. 相似文献
19.
20.
Wright LS Li J Caldwell MA Wallace K Johnson JA Svendsen CN 《Journal of neurochemistry》2003,86(1):179-195
Human neural precursor cells grown in culture provide a source of tissue for drug screening, developmental studies and cell therapy. However, mechanisms underlying their growth and differentiation are poorly understood. We show that epidermal growth factor (EGF) responsive precursors derived from the developing human cortex undergo senescence after 30-40 population doublings. Leukemia inhibitory factor (LIF) increased overall expansion rates, prevented senescence and allowed the growth of a long-term self renewing neural stem cell (ltNSCctx) for up to 110 population doublings. We established basal gene expression in ltNSCctx using Affymetrix oligonucleotide microarrays that delineated specific members of important growth factor and signaling families consistently expressed across three separate lines. Following LIF withdrawal, 200 genes showed significant decreases. Protein analysis confirmed LIF-regulated expression of glial fibrillary acidic protein, CD44, and major histocompatibility complex I. This study provides the first molecular profile of human ltNSCctx cultures capable of long-term self renewal, and reveals specific sets of genes that are directly or indirectly regulated by LIF. 相似文献