首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dewanti AR  Duine JA 《Biochemistry》2000,39(31):9384-9392
Spectral and kinetic studies were performed on enzyme forms of soluble glucose dehydrogenase of the bacterium Acinetobacter calcoaceticus (sGDH) in which the PQQ-activating Ca(2+) was absent (Holo X) or was replaced with Ba(2+) (Ba-E) or in which PQQ was replaced with an analogue or a derivative called "nitroPQQ" (E-NPQ). Although exhibiting diminished rates, just like sGDH, all enzyme forms were able to oxidize a broad spectrum of aldose sugars, and their reduced forms could be oxidized with the usual artificial electron acceptor. On inspection of the plots for the reductive half-reaction, it appeared that the enzyme forms exhibited a negative cooperativity effect similar to that of sGDH itself under turnover conditions, supporting the view that simultaneous binding of substrate to the two subunits of sGDH causes the effect. Stopped-flow spectroscopy of the reductive half-reaction of Ba-E with glucose showed a fluorescing transient previously observed in the reaction of sGDH with glucose-1-d, whereas no intermediate was detected at all in the reactions of E-NPQ and Holo X. Using hydrazine as a probe, the fluorescing C5 adduct of PQQ and hydrazine was formed in sGDH, Ba-E, and Holo X, but E-NPQ did not react with hydrazine. When this is combined with other properties of E-NPQ and the behavior of enzyme forms containing a PQQ analogue, we concluded that the catalytic potential of the cofactor in the enzyme is not determined by its adduct-forming ability but by whether it is or can be activated with Ca(2+), activation being reflected by the large red shift of the absorption maximum induced by this metal ion when binding to the reduced cofactor in the enzyme. This conclusion, together with the observed deuterium kinetic isotope effect of 7.8 on transient formation in Ba-E, and that already known on transient decay, indicate that the sequential steps in the mechanism of sGDH must be (1) reversible substrate binding, (2) direct transfer of a hydride ion (reversible or irreversible) from the C1 position of the beta-anomer of glucose to the C5 of PQQ, (3) irreversible, rate-determining tautomerization of the fluorescing, C5-reduced PQQ to PQQH(2) and release (or earlier) of the product, D-glucono-delta-lactone, and (4) oxidation of PQQH(2) by an electron acceptor. The PQQ-activating Ca(2+) greatly facilitates the reactions occurring in step 2. His144 may also play a role in this by acting as a general base catalyst, initiating hydride transfer by abstracting a proton from the anomeric OH group of glucose. The validity of the proposed mechanism is discussed for other PQQ-containing dehydrogenases.  相似文献   

2.
Extraction of cyclopropanol-inactivated methanol dehydrogenase (MDH) gave a mixture of two interconverting compounds. The same compounds could be prepared from 2,7,9-tricarboxy-1H-pyrrolo[2,3-f]quinoline-4,5-dione (PQQ) and cyclopropanol using a metal oxide (e.g. Ag2O) as a catalyst. Structure elucidation revealed that a C5 3-propanal adduct of PQQ is formed which is present in the extract as a diastereoisomeric mixture of the ring-closed form. Cyclopropanone gave an analogous product, while cyclopropylmethanol behaved as a substrate and was oxidized by the enzyme without ring-opening. From the work described, several arguments can be derived to reject the idea that inactivation proceeds via formation of a pair of free radicals. The mechanism probably consists of a concerted proton abstraction, rearrangement of the cyclopropoxy anion to a ring-opened carbanion and attack of the latter on the electrophilic C5 of PQQ. The measured rate of inactivation (3.7 s-1) is in agreement with such a mechanism. The role of the metal oxide and the enzyme in this process is the catalysis of the addition step and possibly a positioning of the reactants. As only a sole type of quinoprotein alcohol dehydrogenase becomes inhibited, the cyclopropane derivatives studied here can be regarded as mechanism-based inhibitors. The modified PQQ in cyclopropanone-inactivated MDH is fluorescent. A fluorescent intermediate was also observed in the catalytic cycle of MDH with methanol as a substrate. Its rate of formation and decay and the strongly decreased level of fluorescence in the presence of activator are in accordance with the view that the fluorescing species is the previously found oxidized-MDH.substrate (MDHox.S) complex. Since the decomposition of this complex requires activator and model studies have failed so far to mimic the enzyme, it seems that the combination of enzyme and activator is essential for the oxidation of the alcohol substrate.  相似文献   

3.
Two proteins specifically involved in methanol oxidation in the methylotrophic bacterium Methylobacterium extorquens have been modified by site-directed mutagenesis. Mutation of the proposed active site base (Asp303) to glutamate in methanol dehydrogenase (MDH) gave an active enzyme (D303E-MDH) with a greatly reduced affinity for substrate and with a lower activation energy. Results of kinetic and deuterium isotope studies showed that the essential mechanism in the mutant protein was unchanged, and that the step requiring activation by ammonia remained rate limiting. No spectrally detectable intermediates could be observed during the reaction. The X-ray structure, determined to 3 A resolution, of D303E-MDH showed that the position and coordination geometry of the Ca2+ ion in the active site was altered; the larger Glu303 side chain was coordinated to the Ca2+ ion and also hydrogen bonded to the O5 atom of pyrroloquinoline quinone (PQQ). The properties and structure of the D303E-MDH are consistent with the previous proposal that the reaction in MDH is initiated by proton abstraction involving Asp303, and that the mechanism involves a direct hydride transfer reaction. Mutation of the two adjacent cysteine residues that make up the novel disulfide ring in the active site of MDH led to an inactive enzyme, confirming the essential role of this remarkable ring structure. Mutations of cytochrome c(L), which is the electron acceptor from MDH was used to identify Met109 as the sixth ligand to the heme.  相似文献   

4.
On the basis of crystal structures of the pyrroloquinoline quinone (PQQ) dependent enzymes methanol dehydrogenase (MDH) and soluble glucose dehydrogenase (s-GDH), different catalytic mechanisms have been proposed. However, several lines of biochemical and kinetic evidence are strikingly similar for both enzymes. To resolve this discrepancy, we have compared the structures of these enzymes in complex with their natural substrates in an attempt to bring them in line with a single reaction mechanism. In both proteins, PQQ is located in the center of the molecule near the axis of pseudo-symmetry. In spite of the absence of significant sequence homology, the overall binding of PQQ in the respective active sites is similar. Hydrogen bonding interactions are made with polar protein side chains in the plane of the cofactor, whereas hydrophobic stacking interactions are important below and above PQQ. One Arg side chain and one calcium ion are ligated to the ortho-quinone group of PQQ in an identical fashion in either active site, in agreement with their proposed catalytic function of polarizing the PQQ C5-O5 bond. The substrates are bound in a similar position above PQQ and within hydrogen bond distance of the putative general bases Asp297 (MDH) and His144 (s-GDH). On the basis of these similarities, we propose that MDH and s-GDH react with their substrates through an identical mechanism, comprising general base-catalyzed hydride transfer from the substrate to PQQ and subsequent tautomerization of the PQQ intermediate to reduced PQQ.  相似文献   

5.
Several mutants of quinoprotein glucose dehydrogenase (GDH) in Escherichia coli, located around its cofactor pyrroloquinoline quinone (PQQ), were constructed by site-specific mutagenesis and characterized by enzymatic and kinetic analyses. Of these, critical mutants were further characterized after purification or by different amino acid substitutions. H262A mutant showed reduced affinities both for glucose and PQQ without significant effect on glucose oxidase activity, indicating that His-262 occurs very close to PQQ and glucose, but is not the electron acceptor from PQQH(2). W404A and W404F showed pronounced reductions of affinity for PQQ, and the latter rather than the former had equivalent glucose oxidase activity to the wild type, suggesting that Trp-404 may be a support for PQQ and important for the positioning of PQQ. D466N, D466E, and K493A showed very low glucose oxidase activities without influence on the affinity for PQQ. Judging from the enzyme activities of D466E and K493A, as well as their absorption spectra of PQQ during glucose oxidation, we conclude that Asp-466 initiates glucose oxidation reaction by abstraction of a proton from glucose and Lys-493 is involved in electron transfer from PQQH(2).  相似文献   

6.
Abstract The grwoth of MTMl, a mutant of methylobacterium organophilum) blocked in the use of methanol as a carbon and energy source, was restored by addition of pyrroloquinoline quinone (PQQ) in the culture medium. No PQQ could be detected in crude medium. No PQQ could be of MTMl. Therefore, MTMl can be regarded as a mutant blocked in the biosynthesis of PQQ. Under the conditions of growth employed, growth rates of MTMl on methanol, comparable to those of the wild type, occured at a PQQ concentration of 1 μM. Since lower amounts of methanol dehydrogenase (MDH) wer found in cell-free extracts of PQQ-supplemented MTMl, the wild type strain synthesizes a surplus of MDH under these conditions. Growth of M. organophilum on ethanol proceeds via MDH as a catalyst for the first step, since (NAD(P) -dependent etanol. dehydrogenase was absent in cell-free extracts and growth of MTMl on ethanol only took place in the presence of PQQ. On the hand, growth of MTMl on mthylamine was unimpaired. This is in accordance with the fact that methylamine dehydrogenase was absent and N -methylamine mate dehydrogenase was present in cell-free extracts  相似文献   

7.
目的:从甲基营养菌MP681中扩增甲醇脱氢酶(MDH)基因,在大肠杆菌中表达并检测其活性,同时在MP681中考察该基因对吡咯喹啉醌(PQQ)产生的影响。方法:根据MP681基因组序列设计引物,PCR扩增靶基因mdh,构建表达载体,考察活性,利用接合转移转化至MP681,考察PQQ的合成。结果:扩增得到甲基营养菌MP681甲醇脱氢酶基因,在大肠杆菌中的表达产物能够催化甲醇脱氢;将携带mdh基因的质粒转入MP681后,PQQ产量略有提高。结论:获得编码MDH的基因,该基因能够在大肠杆菌中表达,且表达产物具有生物活性;甲醇脱氢酶基因表达对宿主菌的PQQ合成可能有一定影响。  相似文献   

8.
The enzymology of methanol utilization in thermotolerant methylotrophic Bacillus strains was investigated. In all strains an immunologically related NAD-dependent methanol dehydrogenase was involved in the initial oxidation of methanol. In cells of Bacillus sp. C1 grown under methanol-limiting conditions this enzyme constituted a high percentage of total soluble protein. The methanol dehydrogenase from this organism was purified to homogeneity and characterized. In cell-free extracts the enzyme displayed biphasic kinetics towards methanol, with apparent K m values of 3.8 and 166 mM. Carbon assimilation was by way of the fructose-1,6-bisphosphate aldolase cleavage and transketolase/transaldolase rearrangement variant of the RuMP cycle of formaldehyde fixation. The key enzymes of the RuMP cycle, hexulose-6-phosphate synthase (HPS) and hexulose-6-phosphate isomerase (HPI), were present at very high levels of activity. Failure of whole cells to oxidize formate, and the absence of formaldehyde-and formate dehydrogenases indicated the operation of a non-linear oxidation sequence for formaldehyde via HPS. A comparison of the levels of methanol dehydrogenase and HPS in cells of Bacillus sp. C1 grown on methanol and glucose suggested that the synthesis of these enzymes is not under coordinate control.Abbreviations RuMP ribulose monophosphate - HPS hexulose-6-phosphate synthase - HPI hexulose-6-phosphate isomerase - MDH methanol dehydrogenase - ADH acohol dehydrogenase - PQQ pyrroloquinoline, quinone - DTT dithiothreitol - NBT nitrobluetetrazolium - PMS phenazine methosulphate - DCPIP dichlorophenol indophenol  相似文献   

9.
采用甲基营养杆菌NO .2为实验菌株 ,经超声波破细胞 ,酸处理 ,DEAE 纤维素和CM 纤维素柱层析等改进的纯化程序 ,可得到比活力为 12 .5u/mg的甲醇脱氢酶 (MDH)样品。该酶在测活系统中除能氧化甲醇等醇类化合物外 ,还能以较大速率氧化氯化铵、甲胺、脲等物质 ,MDH对不同底物亲和力的差异性主要取决于其辅基吡咯喹啉醌 (PQQ)与底物的结合力。甲醇脱氢酶与底物结合前后在特定区域的光谱有一定的差异性  相似文献   

10.
目的:研究甲醇脱氢酶基因mpq1818在甲基营养菌MP688生长代谢中的作用。方法:利用同源重组原理构建中间为庆大霉素抗性基因Gmr、两侧mpq1818基因上下游序列同源的敲除载体pAK0-up-Gmr-down,接合转移导入MP688,通过庆大霉素抗性和组合PCR方法筛选基因敲除菌,并检测其生长、甲醇脱氢酶活性、甲醇利用及吡咯喹啉醌(PQQ)生物合成能力等方面的差异。结果:抗性和PCR验证显示mpq1818缺失株构建成功;与野生菌相比,缺失株的甲醇脱氢酶活力及利用甲醇的能力降低,而且菌株的生长和PQQ产量也有显著下降。结论:基因mpq1818的缺失影响菌株前期生长与PQQ合成。  相似文献   

11.
The reaction of PQQ-dependent methanol dehydrogenase (MDH) from Methylophilus methylotrophus has been studied by steady-state and stopped-flow kinetic methods, with particular reference to multiple ligand binding and the kinetic isotope effect (KIE) for PQQ reduction. Phenazine ethosulfate (PES; an artificial electron acceptor) and cyanide (a suppressant of endogenous activity), but not ammonium (an activator of MDH), compete for binding at the catalytic methanol-binding site. Cyanide does not activate turnover in M. methylotrophus MDH, as reported previously for the Paracoccus denitrificans enzyme. Activity is dependent on activation by ammonium but is inhibited at high ammonium concentrations. PES and methanol also influence the stimulatory and inhibitory effects of ammonium through competitive binding. Reaction profiles as a function of ammonium and PES concentration differ between methanol and deuterated methanol, owing to force constant effects on the binding of methanol to the stimulatory and inhibitory ammonium binding sites. Differential binding gives rise to unusual KIEs for PQQ reduction as a function of ammonium and PES concentration. The observed KIEs at different ligand concentrations are independent of temperature, consistent with their origin in differential binding affinities of protiated and deuterated substrate at the ammonium binding sites. Stopped-flow studies indicate that enzyme oxidation is not rate-limiting at low ammonium concentrations (<4 mM) during steady-state turnover. At higher ammonium concentrations (>20 mM), the low effective concentration of PES in the active site owing to the competitive binding of ammonium lowers the second-order rate constant for enzyme oxidation, and the oxidative half-reaction becomes more rate limiting. A sequential stopped-flow method is reported that has enabled, for the first time, a detailed study of the reductive half-reaction of MDH and comparison with steady-state data. The limiting rate of PQQ reduction (0.48 s(-1)) is less than the steady-state turnover number, and the observed KIE in stopped-flow studies is unity. Although catalytically active, we propose reduction of the oxidized enzyme generated in stopped-flow analyses is gated by conformational change or ligand exchange. Slow recovery from this trapped state on mixing with methanol accounts for the slow reduction of PQQ and a KIE of 1. This study emphasizes the need for caution in using inflated KIEs, and the temperature dependence of KIEs, as a probe for hydrogen tunneling.  相似文献   

12.
Abstract The quinoprotein methanol dehydrogenase (MDH) of the marine methylotroph Methylophaga marina is similar to that of other methylotrophs in being an α 2 β 2 tetramer containing two molecules of PQQ and a single atom of calcium. Its electron acceptor is cytochrome c L and interaction of the two proteins is by way of carboxylates on the cytochrome and lysyl residues on the α subunit of MDH. The reaction was not, however, sensitive to high ionic strength as was the reaction in non-halophilic bacteria. A red form of the enzyme was sometimes produced which had a low specific activity and a low calcium content. Activity was restored by incubation with Ca2+ which also produced the typical (green) enzyme, with a typical absorption spectrum. This provides the first demonstration of reconstitution of active MDH from enzyme lacking calcium isolated from a wild-type methylotroph.  相似文献   

13.
The cytoplasmic coenzyme NAD(+)-dependent alcohol (methanol) dehydrogenase (MDH) employed by Bacillus methanolicus during growth on C(1)-C(4) primary alcohols is a decameric protein with 1 Zn(2+)-ion and 1-2 Mg(2+)-ions plus a tightly bound NAD(H) cofactor per subunit (a nicotinoprotein). Mg(2+)-ions are essential for binding of NAD(H) cofactor in MDH protein expressed in Escherichia coli. The low coenzyme NAD(+)-dependent activity of MDH with C(1)-C(4) primary alcohols is strongly stimulated by a second B. methanolicus protein (ACT), provided that MDH contains NAD(H) cofactor and Mg(2+)-ions are present in the assay mixture. Characterization of the act gene revealed the presence of the highly conserved amino acid sequence motif typical of Nudix hydrolase proteins in the deduced ACT amino acid sequence. The act gene was successfully expressed in E. coli allowing purification and characterization of active ACT protein. MDH activation by ACT involved hydrolytic removal of the nicotinamide mononucleotide NMN(H) moiety of the NAD(H) cofactor of MDH, changing its Ping-Pong type of reaction mechanism into a ternary complex reaction mechanism. Increased cellular NADH/NAD(+) ratios may reduce the ACT-mediated activation of MDH, thus preventing accumulation of toxic aldehydes. This represents a novel mechanism for alcohol dehydrogenase activity regulation.  相似文献   

14.
Methanol dehydrogenase is a heterotetrameric enzyme containing the prosthetic group pyrroloquinoline quinone (PQQ), which catalyzes the oxidation of methanol to formaldehyde. The crystal structure of methanol dehydrogenase from Methylophilus W3A1, previously determined at high resolution, exhibits a non-planar configuration of the PQQ ring system and lends support for a hydride transfer mechanism of the enzymatic reaction catalyzed by the enzyme. To investigate why PQQ is in the C5-reduced form and to better understand the catalytic mechanism of the enzyme, three structures of this enzyme in a new crystal form have been determined at higher resolution. Two of the three crystals were grown in the presence of 1 and 50 mM methanol, respectively, both structures of which show non-planar configurations of the PQQ ring system, confirming the previous conclusion; the other was crystallized in the presence of 50 mM ethanol, the structure of which displays a planar ring system for PQQ. Comparison of these structures reveals that the configuration change of PQQ is induced by the enzymatic reaction. The reaction takes place and the C5-reduced PQQ intermediate is produced when the enzyme co-crystallizes with methanol, but the enzymatic reaction does not take place and the PQQ ring retains a planar configuration of the oxidized orthoquinone form when ethanol instead of methanol is present in the crystallization solution.  相似文献   

15.
甲醇和甲烷等一碳原料来源广泛,价格低廉,是生物制造的理想原料。甲醇脱氢酶(Methanol dehydrogenase,MDH)催化甲醇生成甲醛是一碳代谢的关键反应。目前已从天然甲基营养菌中发现了多种利用不同辅因子,具有不同酶学性质的MDH。其中,烟酰胺腺嘌呤双核苷酸(NAD)依赖型MDH被广泛应用于构建人工甲基营养菌。但是,NAD依赖型MDH的甲醇氧化活性较低,对甲醇的亲和力较差,导致甲醇氧化成为人工甲基营养菌代谢甲醇的限速步骤。为了提高甲醇氧化速率,进而提高人工甲基营养菌的甲醇利用效率,近年来大量研究集中于MDH的挖掘与改造研究。文中系统综述了不同类型MDH的发现、表征、改造以及在人工甲基营养菌中的应用进展,详细阐述了MDH的定向进化和多酶复合体的构建,并展望了通过细胞生长偶联的蛋白质进化和蛋白质理性设计获得高活性MDH的潜在策略。  相似文献   

16.
Cell-free extracts of methanol-grown Nocardia sp. 239 only show significant dye-linked methanol-oxidizing activity when NAD+ is added to the assay mixture. This activity resides in a multienzyme complex which could be resolved into 3 components, namely the methanol dehydrogenase, NAD-dependent aldehyde dehydrogenase and NADH dehydrogenase. In its dissociated form, the methanol dehydrogenase no longer shows dye reduction and although rises in the absorbance values around 340 nm are seen on addition of methanol plus NAD+ to the enzyme, this is not due to NADH production. However, dye reduction (NAD dependent) could be restored on incubating methanol dehydrogenase with the corresponding NADH dehydrogenase, obtained from the enzyme complex. It is concluded that this novel methanol dehydrogenase transfers the reducing equivalents, derived from methanol, directly to its associated NADH dehydrogenase via a mechanism in which NAD+ and PQQ are involved.  相似文献   

17.
This is a review of recent work on methanol dehydrogenase (MDH), a pyrroloquinoline quinone (PQQ)-containing enzyme catalysing the oxidation of methanol to formaldehyde in methylotrophic bacteria. Although it is the most extensively studied of this class of dehydrogenases, it is only recently that there has been any consensus about its mechanism. This is partly due to recent structural studies on normal and mutant enzymes and partly due to more definitive work on the mechanism of related alcohol and glucose dehydrogenases. This work has also led to conclusions about the subsequent path of electrons and protons during the reoxidation of the reduced quinol form of the prosthetic group.  相似文献   

18.
The quinone‐dependent alcohol dehydrogenase (PQQ‐ADH, E.C. 1.1.5.2) from the Gram‐negative bacterium Pseudogluconobacter saccharoketogenes IFO 14464 oxidizes primary alcohols (e.g. ethanol, butanol), secondary alcohols (monosaccharides), as well as aldehydes, polysaccharides, and cyclodextrins. The recombinant protein, expressed in Pichia pastoris, was crystallized, and three‐dimensional (3D) structures of the native form, with PQQ and a Ca2+ ion, and of the enzyme in complex with a Zn2+ ion and a bound substrate mimic were determined at 1.72 Å and 1.84 Å resolution, respectively. PQQ‐ADH displays an eight‐bladed β‐propeller fold, characteristic of Type I quinone‐dependent methanol dehydrogenases. However, three of the four ligands of the Ca2+ ion differ from those of related dehydrogenases and they come from different parts of the polypeptide chain. These differences result in a more open, easily accessible active site, which explains why PQQ‐ADH can oxidize a broad range of substrates. The bound substrate mimic suggests Asp333 as the catalytic base. Remarkably, no vicinal disulfide bridge is present near the PQQ, which in other PQQ‐dependent alcohol dehydrogenases has been proposed to be necessary for electron transfer. Instead an associated cytochrome c can approach the PQQ for direct electron transfer.  相似文献   

19.
Methanol dehydrogenase (MDH) is a water soluble quinoprotein that catalyzes the oxidation of methanol as an important carbon source in methylotrophic bacteria. A rapid method for the purification of MDH from Methylobacterium extorquens AM1 was developed using a single cation exchange chromatographic step, followed by ultrafiltration for final purification, enzyme concentration, and buffer exchange. MDH was obtained in an excellent overall yield with a final enzyme purity of greater than 97%. Storage at -80 degrees C in 20mM phosphate buffer, pH 7.0, showed only a negligible loss of enzyme activity after six months.  相似文献   

20.
Abstract Cell-free extracts of strains belonging to the 5 serotypes of A. actinomycetemcomitans were screened for several enzymes. Enzymes representative of the pentose phosphate pathway/hexose monophosphate shunt and the TCA cycle were present. Of these glucose-6-phosphate dehydrogenase (G6PDH) and malate dehydrogenase (MDH) were the most readily detected and stable. MDH and G6PDH retained more than 50% of their activities at alkaline pHs (10–11) for up to 6 h and 3 h at 25°C, respectively, while at pH 6.5, 50% of their activities were lost within 2–3 h. The K m for malate oxidation catalysed by MDH was 5.8×10−4 M while that for glucose-6-phosphate oxidation was 2.0×10−4 M. The pH optima for MDH and G6PDH oxidation activities were 10 and 9.5, respectively. Among the 5 designated serotypes of A. actinomycetemcomitans three groups were delineated by multilocus enzyme electrophoresis using MDH and G6PDH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号