首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Muscle contraction is driven by a cycle of conformational changes in the myosin II head. After myosin binds ATP and releases from the actin fibril, myosin prepares for the next power stroke by rotating back the converter domain that carries the lever arm by 60 degrees . This recovery stroke is coupled to the activation of myosin ATPase by a mechanism that is essential for an efficient motor cycle. The mechanics of this coupling have been proposed to occur via two distinct and successive motions of the two helices that hold the converter domain: in a first phase a seesaw motion of the relay helix, followed by a piston-like motion of the SH1 helix in a second phase. To test this model, we have determined the principal motions of these structural elements during equilibrium molecular dynamics simulations of the crystallographic end states of the recovery-stroke by using principal component analysis. This reveals that the only principal motions of these two helices that make a large-amplitude contribution towards the conformational change of the recovery stroke are indeed the predicted seesaw and piston motions. Moreover, the results demonstrate that the seesaw motion of the relay helix dominates in the dynamics of the pre-recovery stroke structure, but not in the dynamics of the post-recovery stroke structure, and vice versa for the piston motion of the SH1 helix. This is consistent with the order of the proposed two-phase model for the coupling mechanism of the recovery stroke. Molecular movies of these principal motions are available at http://www.iwr.uni-heidelberg.de/groups/biocomp/fischer.  相似文献   

2.
During the recovery stroke, the myosin motor is primed for the next power stroke by a 60° rotation of its lever arm. This reversible motion is coupled to the activation of the ATPase function of myosin through conformational changes along the relay helix, which runs from the Switch-2 loop near the ATP to the converter domain carrying the lever arm. Via a hydrogen bond between the side-chain of Asn475 on the relay helix and the Gly457/Ser456 peptide group on the Switch-2, the rotation of the converter domain is coupled to the formation of a hydrogen bond between Gly457 and γ-phosphate that is essential for ATP hydrolysis. Here, molecular dynamics simulations of Dictyostelium discoideum myosin II in the two end conformations of the recovery stroke with different nucleotide states (ATP, ADP·Pi, ADP) reveal that the side-chain of Asn475 breaks away from Switch-2 upon ATP hydrolysis to make a hydrogen bond with Tyr573. This sensing of the nucleotide state is achieved by a small displacement of the cleaved γ-phosphate towards Gly457 which in turn pushes Asn475 away. The sensing plays a dual role by (i) preventing the wasteful reversal of the recovery stroke while the nucleotide is in the ADP·Pi state, and (ii) decoupling the relay helix from Switch-2, thus allowing the power stroke to start upon initial binding to actin while Gly457 of Switch-2 keeps interacting with the Pi (known to be released only later after tight actin binding). A catalytically important salt bridge between Arg238 (on Switch-1) and Glu459 (on Switch-2), which covers the hydrolysis site, is seen to form rapidly when ATP is added to the pre-recovery stroke conformer and remains stable after the recovery stroke, indicating that it has a role in shaping the ATP binding site by induced fit.  相似文献   

3.
Yun M  Zhang X  Park CG  Park HW  Endow SA 《The EMBO journal》2001,20(11):2611-2618
Molecular motors move along actin or microtubules by rapidly hydrolyzing ATP and undergoing changes in filament-binding affinity with steps of the nucleotide hydrolysis cycle. It is generally accepted that motor binding to its filament greatly increases the rate of ATP hydrolysis, but the structural changes in the motor associated with ATPase activation are not known. To identify the conformational changes underlying motor movement on its filament, we solved the crystal structures of three kinesin mutants that decouple nucleotide and microtubule binding by the motor, and block microtubule-activated, but not basal, ATPase activity. Conformational changes in the structures include a disordered loop and helices in the switch I region and a visible switch II loop, which is disordered in wild-type structures. Switch I moved closer to the bound nucleotide in two mutant structures, perturbing water-mediated interactions with the Mg2+. This could weaken Mg2+ binding and accelerate ADP release to activate the motor ATPASE: The structural changes we observe define a signaling pathway within the motor for ATPase activation that is likely to be essential for motor movement on microtubules.  相似文献   

4.
Nonmuscle myosin IIA and IIB distribute preferentially toward opposite ends of migrating endothelial cells. To understand the mechanism and function of this behavior, myosin II was examined in cells treated with the motor inhibitor, blebbistatin. Blebbistatin at > or = 30 microM inhibited anterior redistribution of myosin IIA, with 100 microM blebbistatin causing posterior accumulation. Posterior accumulation of myosin IIB was unaffected. Time-lapse cinemicrography showed myosin IIA entering lamellipodia shortly after their formation, but failing to move into lamellipodia in blebbistatin. Thus, myosin II requires motor activity to move forward onto F-actin in protrusions. However, this movement is inhibited by myosin filament assembly, because whole myosin was delayed relative to a tailless fragment. Inhibiting myosin's forward movement reduced coupling between protrusive activity and translocation of the cell body: In untreated cells, body movement followed advancing lamellipodia, whereas blebbistatin-treated cells extended protrusions without displacement of the body or with a longer delay before movement. Anterior cytoplasm of blebbistatin-treated cells contained disorganized bundles of parallel microfilaments, but anterior F-actin bundles in untreated cells were mostly oriented perpendicular to movement. Myosin II may ordinarily move anteriorly on actin filaments and pull crossed filaments into antiparallel bundles, with the resulting realignment pulling the cell body forward.  相似文献   

5.
A combination of experimental structural data, homology modelling and elastic network normal mode analysis is used to explore how coupled motions between the two myosin heads and the dimerization domain (S2) in smooth muscle myosin II determine the domain movements required to achieve the inhibited state of this ATP-dependent molecular motor. These physical models rationalize the empirical requirement for at least two heptads of non-coiled alpha-helix at the junction between the myosin heads and S2, and the dependence of regulation on S2 length. The results correlate well with biochemical data regarding altered conformational-dependent solubility and stability. Structural models of the conformational transition between putative active states and the inhibited state show that torsional flexibility of the S2 alpha-helices is a key mechanical requirement for myosin II regulation. These torsional motions of the myosin heads about their coiled coil alpha-helices affect the S2 domain structure, which reciprocally affects the motions of the myosin heads. This inter-relationship may explain a large body of data on function of molecular motors that form dimers through a coiled-coil domain.  相似文献   

6.
An important challenge in the analysis of mechanochemical coupling in molecular motors is to identify residues that dictate the tight coupling between the chemical site and distant structural rearrangements. In this work, a systematic attempt is made to tackle this issue for the conventional myosin. By judiciously combining a range of computational techniques with different approximations and strength, which include targeted molecular dynamics, normal mode analysis, and statistical coupling analysis, we are able to identify a set of important residues and propose their relevant function during the recovery stroke of myosin. These analyses also allowed us to make connections with previous experimental and computational studies in a critical manner. The behavior of the widely used reporter residue, Trp501, in the simulations confirms the concern that its fluorescence does not simply reflect the relay loop conformation or active-site open/close but depends subtly on its microenvironment. The findings in the targeted molecular dynamics and a previous minimum energy path analysis of the recovery stroke have been compared and analyzed, which emphasized the difference and complementarity of the two approaches. In conjunction with our previous studies, the current set of investigations suggest that the modulation of structural flexibility at both the local (e.g., active-site) and domain scales with strategically placed “hotspot” residues and phosphate chemistry is likely the general feature for mechanochemical coupling in many molecular motors. The fundamental strategies of examining both collective and local changes and combining physically motivated methods and informatics-driven techniques are expected to be valuable to the study of other molecular motors and allosteric systems in general.  相似文献   

7.
8.
To study the relationship between conventional kinesin's structure and function, we identified 13 lethal mutations in the Drosophila kinesin heavy chain motor domain and tested a subset for effects on mechanochemistry. S246F is a moderate mutation that occurs in loop 11 between the ATP- and microtubule-binding sites. While ATP and microtubule binding appear normal, there is a 3-fold decrease in the rate of ATP turnover. This is consistent with the hypothesis that loop 11 provides a structural link that is important for the activation of ATP turnover by microtubule binding. T291M is a severe mutation that occurs in alpha-helix 5 near the center of the microtubule-binding surface. It impairs the microtubule-kinesin interaction and directly effects the ATP-binding pocket, allowing an increase in ATP turnover in the absence of microtubules. The T291M mutation may mimic the structure of a microtubule-bound, partially activated state. E164K is a moderate mutation that occurs at the beta-sheet 5a/loop 8b junction, remote from the ATP pocket. Surprisingly, it causes both tighter ATP-binding and a 2-fold decrease in ATP turnover. We propose that E164 forms an ionic bridge with alpha-helix 5 and speculate that it helps coordinate the alternating site catalysis of dimerized kinesin heavy chain motor domains.  相似文献   

9.
10.
Conserved active-site elements in myosins and other P-loop NTPases play critical roles in nucleotide binding and hydrolysis; however, the mechanisms of allosteric communication among these mechanoenzymes remain unresolved. In this work we introduced the E442A mutation, which abrogates a salt-bridge between switch I and switch II, and the G440A mutation, which abolishes a main-chain hydrogen bond associated with the interaction of switch II with the γ phosphate of ATP, into myosin V. We used fluorescence resonance energy transfer between mant-labeled nucleotides or IAEDANS-labeled actin and FlAsH-labeled myosin V to examine the conformation of the nucleotide- and actin-binding regions, respectively. We demonstrate that in the absence of actin, both the G440A and E442A mutants bind ATP with similar affinity and result in only minor alterations in the conformation of the nucleotide-binding pocket (NBP). In the presence of ADP and actin, both switch II mutants disrupt the formation of a closed NBP actomyosin.ADP state. The G440A mutant also prevents ATP-induced opening of the actin-binding cleft. Our results indicate that the switch II region is critical for stabilizing the closed NBP conformation in the presence of actin, and is essential for communication between the active site and actin-binding region.  相似文献   

11.
12.
The rate-limiting step of the myosin basal ATPase (i.e. in absence of actin) is assumed to be a post-hydrolysis swinging of the lever arm (reverse recovery step), that limits the subsequent rapid product release steps. However, direct experimental evidence for this assignment is lacking. To investigate the binding and the release of ADP and phosphate independently from the lever arm motion, two single tryptophan-containing motor domains of Dictyostelium myosin II were used. The single tryptophans of the W129+ and W501+ constructs are located at the entrance of the nucleotide binding pocket and near the lever arm, respectively. Kinetic experiments show that the rate-limiting step in the basal ATPase cycle is indeed the reverse recovery step, which is a slow equilibrium step (k(forward) = 0.05 s(-1), k(reverse) = 0.15 s(-1)) that precedes the phosphate release step. Actin directly activates the reverse recovery step, which becomes practically irreversible in the actin-bound form, triggering the power stroke. Even at low actin concentrations the power stroke occurs in the actin-attached states despite the low actin affinity of myosin in the pre-power stroke conformation.  相似文献   

13.
Actin activation of the myosin ATPase: a kinetic analysis   总被引:1,自引:0,他引:1  
  相似文献   

14.
15.
Myosin V is a double-headed processive molecular motor that moves along an actin filament by taking 36-nm steps. Using optical trapping nanometry with high spatiotemporal resolution, we discovered that there are two possible pathways for the 36-nm steps, one with 12- and 24-nm substeps, in this order, and the other without substeps. Based on the analyses of effects of ATP, ADP and 2,3-butanedione 2-monoxime (a reagent shown here to slow ADP release from actomyosin V) on the dwell time and the occurrence frequency of the main and the intermediate states, we propose that the 12-nm substep occurs after ATP binding to the bound trailing head and the 24-nm substep results from a mechanical step following the isomerization of an actomyosin-ADP state on the bound leading head. When the isomerization precedes the 12-nm substep, the 36-nm step occurs without substeps.  相似文献   

16.
Molecular motors play a central role in cytoskeletal-mediated cellular processes and thus present an excellent target for cellular control by pharmacological agents. Yet very few such compounds have been found. We report here the structure of blebbistatin, which inhibits specific myosin isoforms, bound to the motor domain of Dictyostelium discoideum myosin II. This reveals the structural basis for its specificity and provides insight into the development of new agents.  相似文献   

17.
18.
Antigen (Ag) capture and presentation onto major histocompatibility complex (MHC) class II molecules by B lymphocytes is mediated by their surface Ag receptor (B cell receptor [BCR]). Therefore, the transport of vesicles that carry MHC class II and BCR-Ag complexes must be coordinated for them to converge for processing. In this study, we identify the actin-associated motor protein myosin II as being essential for this process. Myosin II is activated upon BCR engagement and associates with MHC class II-invariant chain complexes. Myosin II inhibition or depletion compromises the convergence and concentration of MHC class II and BCR-Ag complexes into lysosomes devoted to Ag processing. Accordingly, the formation of MHC class II-peptides and subsequent CD4 T cell activation are impaired in cells lacking myosin II activity. Therefore, myosin II emerges as a key motor protein in BCR-driven Ag processing and presentation.  相似文献   

19.
With large amounts of gizzard Mr 135,000 calmodulin-binding protein (myosin light chain kinase), the phosphate incorporation into myosin light chains was determined to be 2 mol/mol of myosin light chain. The actin-activated ATPase activity was dramatically enhanced when myosin light chains were phosphorylated by more than 1 mol of phosphate incorporated/mol of myosin light chain.  相似文献   

20.
A. Mü  hlrad  K. Ajtai  F. F  bi  n 《BBA》1970,205(3):355-360
The effect of salicylalation on the biological properties of myosin was studied.

1. 1. The ATPase activity of myosin is affected by salicylalation if the treatment is carried out at higher pH than 6.5. The Mg2+-activated ATPase shows a maximal curve with 250–380% maximal activation when 25–70 moles of salicylaldehyde are bound per mole of myosin. The EDTA-activated ATPase decreases with increasing salicylalation. Ca2+-activated ATPase shows a small increase with increasing salicylalation.

2. 2. Less salicylaldehyde is bound if the treatment is carried out in the presence of ATP, while that of PPi does not affect the degree of salicylalation. The enzymic properties of myosins salicylalated in the presence of ATP or PPi are not different from those of the samples treated in their absence.

3. 3. Salicylalation decreases ATP sensitivity of ATPase and superprecipitation of actomyosins reconstituted from salicylalated myosins only if more than 50 moles of salicylaldehyde are bound per mole myosin.

Abbreviations: TBS, 2,4,6-trinitrobenzene sulphonate  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号