共查询到20条相似文献,搜索用时 62 毫秒
1.
Calmodulin-dependent protein kinases such as myosin light chain kinase (MLCK), calmodulin kinase II, and phosphorylase kinase contain specific sequences responsible for binding calmodulin. These regions are known as calmodulin-binding domains and in many cases are contained within sequences that are short enough to be synthesized by solidphase techniques. The ability to chemically-synthesize target enzyme calmodulin-binding domains has permitted the use of a variety of biophysical techniques to study the interactions between calmodulin and calmodulin-binding domain peptides. The work reviewed here describes the development and characterization of peptides based on the sequence, of the calmodulin-binding domain of skeletal muscle myosin light chain kinase which were labeled with the fluorescent reagent, acrylodan. Data are presented demonstrating the use of fluorescently-labeled peptides to study various aspects of calmodulin-peptide interactions including binding affinity, stoichiometry, specificity, changes in peptide conformation, and thermal stability of the peptide-calmodulin complex. These data indicate the peptides exhibit many of the salient features seen with calmodulin-target enzyme interactions. The fluorescently-labeled peptides should thus serve as useful models for studying calmodulin-target enzyme interactions at the molecular level. 相似文献
2.
Active Ca2+/calmodulin (CaM)-dependent myosin light chain kinase (MLCK) plays an important role in the process of MLC phosphorylation and consecutive smooth muscle contraction. Here, we propose a mathematical model of a detailed kinetic scheme describing interactions among Ca2+, CaM and MLCK and taking into account eight different aggregates. The main model result is the prediction of the Ca2+ dependent active form of MLCK, which is in the model taken as proportional to the concentration of Ca4CaM · MLCK complex. Wegscheider’s condition is additionally applied as a constraint enabling the prediction of some parameter values that have not yet been obtained by experiments. 相似文献
3.
The function of the uterine smooth muscle in gestation and parturition is affected by a variety of hormones and biomolecules, some of which alter the intracellular levels of cAMP and Ca2+. Since the activity of smooth muscle MLCK has been shown to be modulated by phosphorylation, the effect of this modification of pregnant sheep myometrium (psm) MLCK by the catalytic subunit of cAMP-dependent protein kinase (PKA) and protein kinase C (PKC) was studied. In contrast to other smooth muscle MLCK reported, PKA incorporates 2.0–2.2 moles phosphate into a mole of psm MLCK both in the presence and absence of Ca2+-calmodulin. Modification of serine residues inhibited the activity of the enzyme. PKC also incorporated 2.0–2.1 moles of phosphate per mole psmMLCK under both conditions but had no effect on the MLCK activity. Sequential phosphorylation by PKC and PKA incorporated 3.8–4.1 moles phosphate suggesting that the amino acid residues modified by the two kinases are different. Phosphoamino acid analysis of the MLCK revealed that PKC phosphorylated serine and threonine residues. The double reciprocal plots of the enzyme activity and calmodulin concentrations showed that the Vmax of the reaction is not altered by phosphorylation by PKA but the calmodulin concentration require for half-maximal activation is increased about 4-fold. Only 10 out of 17 monoclonal antibodies to various regions of the turkey gizzard MLCK cross-reacted with psmMLCK suggesting structural differences between these enzymes. Comparison of the deduced amino acid sequence of the cDNA encoding the C-terminal half of the psmMLCK molecule showed that while cgMLCK and psmMLCK are highly homologous, a number of nonconservative substitutions are present, particularly near the PKA phosphrylation site B (S828). 相似文献
4.
5.
Decreased phosphatase activity, increased Ca2+ sensitivity, and myosin light chain phosphorylation in urinary bladder smooth muscle of newborn mice
下载免费PDF全文

Developmental changes in the regulation of smooth muscle contraction were examined in urinary bladder smooth muscle from mice. Maximal active stress was lower in newborn tissue compared with adult, and it was correlated with a lower content of actin and myosin. Sensitivity to extracellular Ca2+ during high-K+ contraction, was higher in newborn compared with 3-wk-old and adult bladder strips. Concentrations at half maximal tension (EC50) were 0.57 +/- 0.01, 1.14 +/- 0.12, and 1.31 +/- 0.08 mM. Force of the newborn tissue was inhibited by approximately 45% by the nonmuscle myosin inhibitor Blebbistatin, whereas adult tissue was not affected. The calcium sensitivity in newborn tissue was not affected by Blebbistatin, suggesting that nonmuscle myosin is not a primary cause for increased calcium sensitivity. The relation between intracellular [Ca2+] and force was shifted toward lower [Ca2+] in the newborn bladders. This increased Ca2+ sensitivity was also found in permeabilized muscles (EC50: 6.10 +/- 0.07, 5.77 +/- 0.08, and 5.55 +/- 0.02 pCa units, in newborn, 3-wk-old, and adult tissues). It was associated with an increased myosin light chain phosphorylation and a decreased rate of dephosphorylation. No difference was observed in the myosin light chain phosphorylation rate, whereas the rate of myosin light chain phosphatase-induced relaxation was about twofold slower in the newborn tissue. The decreased rate was associated with a lower expression of the phosphatase regulatory subunit MYPT-1 in newborn tissue. The results show that myosin light chain phosphatase activity can be developmentally regulated in mammalian urinary bladders. The resultant alterations in Ca2+ sensitivity may be of importance for the nervous and myogenic control of the newborn bladders. 相似文献
6.
A peptide analog of the calmodulin-binding domain of myosin light chain kinase adopts an alpha-helical structure in aqueous trifluoroethanol.
下载免费PDF全文

M. Zhang T. Yuan H. J. Vogel 《Protein science : a publication of the Protein Society》1993,2(11):1931-1937
A 22-residue synthetic peptide encompassing the calmodulin (CaM)-binding domain of skeletal muscle myosin light chain kinase was studied by two-dimensional NMR and CD spectroscopy. In water the peptide does not form any regular structure; however, addition of the helix-inducing solvent trifluoroethanol (TFE) causes it to form an alpha-helical structure. The proton NMR spectra of this peptide in 25% and 40% TFE were assigned by double quantum-filtered J-correlated spectroscopy, total correlation spectroscopy, and nuclear Overhauser effect correlated spectroscopy spectra. In addition, the alpha-carbon chemical shifts were obtained from (1H,13C)-heteronuclear multiple quantum coherence spectra. The presence of numerous dNN(i, i + 1), d alpha N(i, i + 3), and d alpha beta(i, i + 3) NOE crosspeaks indicates that an alpha-helix can be formed from residues 3 to 20; this is further supported by the CD data. Upfield alpha-proton and downfield alpha-carbon shifts in this region of the peptide provide further support for the formation of an alpha-helix. The helix induced by TFE appears to be similar to that formed upon binding of the peptide to CaM. 相似文献
7.
A. Persechini U. Mrwa D.J. Hartshorne 《Biochemical and biophysical research communications》1981,98(3):800-805
The purpose of this study was to test the hypothesis that the phosphorylation of myosin is solely responsible for the activation of the Mg2+-ATPase activity of gizzard actomyosin. Using a washed natural actomyosin and a reconstituted actomyosin it was shown that phosphorylation alone caused only a slight activation of ATPase activity. Full activity was obtained only when proteins in addition to the myosin light chain kinase were added. It is evident from these results that: 1) there is no simple relationship between the extent of myosin phosphorylation and the specific Mg2+-ATPase activity of actomyosin and 2) in order for full activation by actin of the Mg2+-ATPase activity of phosphorylated myosin additional factors are required. 相似文献
8.
Faux Maree C. Mitchelhill Kenneth I. Katsis Frosa Wettenhall Richard E. H. Kemp Bruce E. 《Molecular and cellular biochemistry》1993,127(1):81-91
The reported cDNA structrre, of chicken smooth muscle myosin light chain kinase (smMLCK) encodes a protein of 972 residues (Olsonet al. Proc. Natl. Acad. Sci USA, 87: 2284–2288, 1990). The calculated Mr is 107, 534 whereas the estimate by SDS-PAGE is approximately 130, 000. Gibson and Higgins (DNA Sequence (in press)) have recently reported the possibility of errors, in the cDNA sequence for non-muscle MLCK and that the NH2-terminus of both it and smMLCK may extend beyond the reported coding region. The native smMLCK is NH2-terminally blocked. A CNBr peptide derived from smMLCK contains the NH2-terminal sequence Asp-Phe-Arg-Ala corresponding to residues 2 to 4 in the smMLCK sequence indicating, that Met-1 is present. Using a limited thermolysin digest we isolated an NH2-terminally blocked peptide by reversed-phase HPLC. This thermolytic peptide had a mass of approximately 797 by time of flight mass spectrometry. Amino acid analysis and Edman sequencing of a CNBr-subfragment of the thermolytic peptide indicated that it had the composition and sequence, (Met)-Asp-Phe-Arg-Ala-Asn, with a calculated mass of 753. The difference in mass corresponds to the NH2-terminal Met being blocked by actylation. The results demonstrate that the NH2-terminal sequence of smMLCK inferred from the reported cDNA sequence is correct and that the proposed initiating, Met is not removed, but modified by -NH2 acetylation of the translation product. 相似文献
9.
Nina Barkhudaryan Walter Oberthuer Friedrich Lottspeich Armen Galoyan 《Neurochemical research》1992,17(12):1217-1221
The following peptide structure in 3 of 5 coronaro-constrictory peptide factors isolated from bovine hypothalamus was determined by amino acid analysis and Edman degradation: 1) (P1)-Val-Val-Tyr-Pro-Trp; 2) (P2)-Val-Val-Tyr-Pro-Trp-Thr; 3) (P3)-Leu-Val-Val-Tyr-Pro-Trp-Thr. A computer search for these amino acid sequences revealed that these peptides represent fragments 33-37; 33-38; 32-38 of the -chain of bovine hemoglobin. Solid phase peptide synthesis of 2 peptides (P2 and P3) was carried out. It was established that synthetic peptides had the properties of coronaro-constrictory peptides. The possibility of the formation of hypothalamic coronaro-constrictory peptides in vivo is discussed. 相似文献
10.
Peter C. Newell 《Journal of biosciences》1995,20(3):289-310
Evidence is presented for Ca2+ and cyclic GMP being involved in signal transduction between the cell surface cyclic AMP receptors and cytoskeletal myosin
II involved in chemotactic cell movement. Ca2+ is shown to be required for chemotactic aggregation of amoebae. The evidence for uptake and/or eflux of this ion being regulated
by the nucleotide cyclic GMP is discussed. The connection between Ca2+, cyclic GMP and chemotactic cell movement has been explored using “streamer F” mutants. The primary defect in these mutants
is in the structural gene for the cyclic GMP-specific phosphodiesterase which results in the mutants producing an abnormally
prolonged peak of accumulation of cyclic GMP in response to stimulation with the chernoattractant cyclic AMP. While events
associated with production and relay of cyclic AMP signals are normal, certain events associated with movement are (like the
cyclic GMP response) abnormally prolonged in the mutants. These events include Ca2+ uptake, myosin II association with the cytoskeleton and inhibition of myosin heavy and light chain phosphorylation. These
changes can be correlated with the amoebae becoming elongated and transiently decreasing their locomotive speed after chemotactic
stimulation. Other mutants studied in which the accumulation of cyclic GMP in response to cyclic AMP stimulation was absent
produced no myosin II responses.
Models are described in which cyclic GMP (directly or indirectly via Ca2+) regulates accumulation of myosin II on the cytoskeleton by inhibiting phosphorylation of the myosin heavy and light chain
kinases. 相似文献
11.
Studies on primary astrocytes cultured in vitro have shown that process formation involves changes in cytoskeletal proteins and release of tension on the substratum. Actin filament reorganization has previously been found to be the major cytoskeletal change occurring during process formation. These changes are relatively rapid with breakdown of the actin web and release of contacts occur within 15 min. of cyclic AMP treatment. The former is regulated by myosin light chain (MLC) and actin depolymerizing factor (ADF), with MLC involved in the initial release of contractile tension and ADF in both initial and longer term actin breakdown. Our results show that the dephosphorylation of MLC is due to the phosphorylation and inactivation of myosin light chain kinase (MLCK) in response to cyclic AMP. To further study the mechanisms underlying the process formation in astrocytes we used endothelin-1 (ET-1), a vasopeptide which has been shown to inhibit process formation in astrocytes and sodium fluoride which is a general phosphatase inhibitor. We observe an increase in phosphorylation of MLC on inhibition of process formation. To study the role of adhesion in process formation we used suspension cultures of astrocytes. Our results with the astrocytes in suspension suggest that the process formation in astrocytes is adhesion dependent and the changes in ADF and MLC occur only when there is process formation. 相似文献
12.
Chew TL Wolf WA Gallagher PJ Matsumura F Chisholm RL 《The Journal of cell biology》2002,156(3):543-553
Approaches with high spatial and temporal resolution are required to understand the regulation of nonmuscle myosin II in vivo. Using fluorescence resonance energy transfer we have produced a novel biosensor allowing simultaneous determination of myosin light chain kinase (MLCK) localization and its [Ca2+]4/calmodulin-binding state in living cells. We observe transient recruitment of diffuse MLCK to stress fibers and its in situ activation before contraction. MLCK is highly active in the lamella of migrating cells, but not at the retracting tail. This unexpected result highlights a potential role for MLCK-mediated myosin contractility in the lamella as a driving force for migration. During cytokinesis, MLCK was enriched at the spindle equator during late metaphase, and was maximally activated just before cleavage furrow constriction. As furrow contraction was completed, active MLCK was redistributed to the poles of the daughter cells. These results show MLCK is a myosin regulator in the lamella and contractile ring, and pinpoints sites where myosin function may be mediated by other kinases. 相似文献
13.
平滑肌细胞迁移的肌球蛋白轻链非磷酸化途径 总被引:2,自引:0,他引:2
为了阐明平滑肌细胞迁移存在肌球蛋白轻链非磷酸化调节途径,研究花生四烯酸(arachidonicacid,AA)对肌球蛋白轻链非磷酸化状态下平滑肌细胞迁移的影响及其相关的信号传导途径.经Boyden小室跨膜迁移实验发现,AA对培养的兔血管平滑肌SM3细胞具有明显的诱导迁移作用.然而,当预先用10μmolL肌球蛋白轻链激酶(myosinlightchainkinase,MLCK)特异性抑制剂ML7作用SM3细胞后,发现AA对SM3细胞仍然具有明显的诱导迁移作用,并呈剂量依赖性,这种诱导作用可被细胞外信号调节激酶12(ERK12)的特异性抑制剂PD98059或磷脂酶C(PLC)的特异性抑制剂U73122所拮抗.此外,Ⅱ型肌球蛋白抑制剂blebbistatin(BLB)可部分抑制“非磷酸化”状态下AA的诱导迁移作用.经Western印迹检测显示,10μmolLML7可完全抑制SM3细胞中20kD肌球蛋白轻链(MLC20)磷酸化,并且加入AA后MLC20仍为非磷酸化状态.应用免疫荧光染色法观察肌动蛋白在SM3细胞中分布的变化,发现在AA作用下肌动蛋白呈细胞边缘聚集现象,有伪足形成,细胞形态表现为迁移状态.预先用ML7作用后再加入AA,肌动蛋白的分布与上述结果相同.研究结果初步表明,在平滑肌细胞迁移的作用途径中,在MLC磷酸化调节途径受到抑制时,AA可诱导MLC非磷酸化的平滑肌细胞发生迁移,其分子机理可能与ERK12和PLC信号传导途径有关,非磷酸化的肌球蛋白直接参与了该迁移过程. 相似文献
14.
Ca2+-calmodulin-dependent phosphorylation of myosin regulatory light chains by the catalytic COOH-terminal half of myosin light chain kinase (MLCK) activates myosin II in smooth and nonmuscle cells. In addition, MLCK binds to thin filaments in situ and F-actin in vitro via a specific repeat motif in its NH2 terminus at a stoichiometry of one MLCK per three actin monomers. We have investigated the structural basis of MLCK-actin interactions by negative staining and helical reconstruction. F-actin was decorated with a peptide containing the NH2-terminal 147 residues of MLCK (MLCK-147) that binds to F-actin with high affinity. MLCK-147 caused formation of F-actin rafts, and single filaments within rafts were used for structural analysis. Three-dimensional reconstructions showed MLCK density on the extreme periphery of subdomain-1 of each actin monomer forming a bridge to the periphery of subdomain-4 of the azimuthally adjacent actin. Fitting the reconstruction to the atomic model of F-actin revealed interaction of MLCK-147 close to the COOH terminus of the first actin and near residues 228-232 of the second. This unique location enables MLCK to bind to actin without interfering with the binding of any other key actin-binding proteins, including myosin, tropomyosin, caldesmon, and calponin. 相似文献
15.
Poperechnaya A Varlamova O Lin PJ Stull JT Bresnick AR 《The Journal of cell biology》2000,151(3):697-708
Phosphorylation on Ser 19 of the myosin II regulatory light chain by myosin light chain kinase (MLCK) regulates actomyosin contractility in smooth muscle and vertebrate nonmuscle cells. The smooth/nonmuscle MLCK gene locus produces two kinases, a high molecular weight isoform (long MLCK) and a low molecular weight isoform (short MLCK), that are differentially expressed in smooth and nonmuscle tissues. To study the relative localization of the MLCK isoforms in cultured nonmuscle cells and to determine the spatial and temporal dynamics of MLCK localization during mitosis, we constructed green fluorescent protein fusions of the long and short MLCKs. In interphase cells, localization of the long MLCK to stress fibers is mediated by five DXRXXL motifs, which span the junction of the NH(2)-terminal extension and the short MLCK. In contrast, localization of the long MLCK to the cleavage furrow in dividing cells requires the five DXRXXL motifs as well as additional amino acid sequences present in the NH(2)-terminal extension. Thus, it appears that nonmuscle cells utilize different mechanisms for targeting the long MLCK to actomyosin structures during interphase and mitosis. Further studies have shown that the long MLCK has twofold lower kinase activity in early mitosis than in interphase or in the early stages of postmitotic spreading. These findings suggest a model in which MLCK and the myosin II phosphatase (Totsukawa, G., Y. Yamakita, S. Yamashiro, H. Hosoya, D.J. Hartshorne, and F. Matsumura. 1999. J. Cell Biol. 144:735-744) act cooperatively to regulate the level of Ser 19-phosphorylated myosin II during mitosis and initiate cytokinesis through the activation of myosin II motor activity. 相似文献
16.
17.
Phosphorylation of the regulatory light chain of myosin II by myosinlight chain kinase is important for regulating many contractile processes.Smooth muscle myosin light chain kinase has been shown to be associated withboth actin and myosin filaments in vitro and in vivo. In this report wedefine an actin binding region by using molecular deletions to generaterecombinant mutant proteins that were analyzed by co-sedimentation withF-actin. An actin binding region restricted to residues 2-42 in the animoterminus of the rabbit smooth muscle myosin light chain kinase wasidentified. 相似文献
18.
A method is described for rapidly surveying the effects of modifying individual amino acid residues of a protein on its ability to interact specifically with another macromolecule. The procedure has been used to examine the individual roles of the seven lysyl residues of calmodulin in its ability to bind to smooth muscle myosin light chain kinase; previous studies by Jackson et al. (J. Biol. Chem. 261:1226-12232, 1986) have suggested that certain lysines may be located close to the interaction site. Trace [3H]-acetylated calmodulin, consisting predominantly of molecules acetylated at single sites together with unmodified protein, was incubated in excess (five- to 20-fold) with smooth muscle MLC kinase to allow the modified and unmodified molecules to compete for binding to the enzyme. Subsequently, the calmodulin-enzyme complex was separated from unbound calmodulin, and the level of acetylation of each of the seven lysines of the bound fraction of calmodulin was determined and compared to that of each corresponding group of the starting preparation. Significant changes were found at only two of the lysines, 21 and 75, where the extent of acetylation in the bound fraction was three- and fivefold lower, respectively, than that in the original preparation. These results were reproducible in three separate selection experiments employing both chicken and turkey gizzard MLC kinase. It is concluded that acetylation of calmodulin at either lysine 21 or 75 markedly reduces its affinity for MLC kinase, but acetylation at any of the other lysines (13, 30, 77, 94, or 148) has only minor effects.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
19.
Soo Ok Lee Hyun Sub Cheong Byung Lae Park Joon Seol Bae Won Chul Sim Ji-Yong Chun Mohammad Isbat Soo-Taek Uh Yong Hooun Kim An-Soo Jang Choon-Sik Park Hyoung Doo Shin 《Molecules and cells》2009,27(2):175-181
The myosin light chain kinase (MYLK) gene encodes both smooth muscle and nonmuscle cell isoforms. Recently, polymorphisms in MYLK have been reported to be associated with several diseases. To examine the genetic effects of polymorphisms on the risk of
asthma and related phenotypes, we scrutinized MYLK by re-sequencing/genotyping and statistical analysis in Korean population (n = 1,015). Seventeen common polymorphisms located
in or near exons, having pairwise r
2
values less than 0.25, were genotyped. Our statistical analysis did not replicate the associations with the risk of asthma
and log-transformed total IgE levels observed among African descendant populations. However, two SNPs in intron 16 (+89872C > G and +92263T >C), which were in tight LD (|D′| = 0.99), revealed significant association with log-transformed blood eosinophil level even
after correction multiple testing (P = 0.002/P
corr
= 0.01 and P = 0.002/P
corr
= 0.01, respectively). The log-transformed blood eosinophil levels were higher in individuals bearing the minor alleles for
+89872C > G and +92263T > C, than in those bearing other allele. In additional subgroup analysis, the genetic effects of both SNPs were much more apparent
among asthmatic patients and atopic asthma patients. Among atopic asthma patients, the log-transformed blood eosinophil levels
were proportionally increased by gene-dose dependent manner of in both +89872C > G and +92263T > C (P = 0.0002 and P = 0.00007, respectively). These findings suggest that MYLK polymorphisms might be among the genetic factors underlying differential increases of blood eosinophil levels among asthmatic
patients. Further biological and/or functional studies are needed to confirm our results. 相似文献
20.
W. Vallen Graham Andrew T. Magis Kate M. Bailey Jerrold R. Turner David A. Ostrov 《Acta Crystallographica. Section F, Structural Biology Communications》2011,67(2):221-223
Myosin light‐chain kinase‐dependent tight junction regulation is a critical event in inflammatory cytokine‐induced increases in epithelial paracellular permeability. MLCK is expressed in human intestinal epithelium as two isoforms, long MLCK1 and long MLCK2, and MLCK1 is specifically localized to the tight junction, where it regulates paracellular permeability. The sole difference between these long MLCK splice variants is the presence of an immunoglobulin‐like cell‐adhesion molecule domain, IgCAM3, in MLCK1. To gain insight into the structure of the IgCAM3 domain, the IgCAM3 domain of MLCK1 has been expressed, purified and crystallized. Preliminary X‐ray diffraction data were collected to 2.0 Å resolution and were consistent with the primitive trigonal space group P212121. 相似文献