共查询到20条相似文献,搜索用时 15 毫秒
1.
Sun W Singh S Zhang R Turnbull JL Christendat D 《The Journal of biological chemistry》2006,281(18):12919-12928
The enzyme prephenate dehydrogenase catalyzes the oxidative decarboxylation of prephenate to 4-hydroxyphenylpyruvate for the biosynthesis of tyrosine. Prephenate dehydrogenases exist as either monofunctional or bifunctional enzymes. The bifunctional enzymes are diverse, since the prephenate dehydrogenase domain is associated with other enzymes, such as chorismate mutase and 3-phosphoskimate 1-carboxyvinyltransferase. We report the first crystal structure of a monofunctional prephenate dehydrogenase enzyme from the hyper-thermophile Aquifex aeolicus in complex with NAD+. This protein consists of two structural domains, a modified nucleotide-binding domain and a novel helical prephenate binding domain. The active site of prephenate dehydrogenase is formed at the domain interface and is shared between the subunits of the dimer. We infer from the structure that access to the active site is regulated via a gated mechanism, which is modulated by an ionic network involving a conserved arginine, Arg250. In addition, the crystal structure reveals for the first time the positions of a number of key catalytic residues and the identity of other active site residues that may participate in the reaction mechanism; these residues include Ser126 and Lys246 and the catalytic histidine, His147. Analysis of the structure further reveals that two secondary structure elements, beta3 and beta7, are missing in the prephenate dehydrogenase domain of the bifunctional chorismate mutase-prephenate dehydrogenase enzymes. This observation suggests that the two functional domains of chorismate mutase-prephenate dehydrogenase are interdependent and explains why these domains cannot be separated. 相似文献
2.
Jian Jin Xuehui Chen Yan Zhou Mark Bartlam Qing Guo Yiwei Liu Yixin Sun Yu Gao Sheng Ye Guangtao Li Zihe Rao Boqin Qiang Jiangang Yuan 《European journal of biochemistry》2002,269(8):2060-2068
Thioredoxin is a ubiquitous dithiol oxidoreductase found in many organisms and involved in numerous biochemical processes. Human thioredoxin-like protein (hTRXL) is differentially expressed at different development stages of human fetal cerebrum and belongs to an expanding family of thioredoxins. We have solved the crystal structure of the recombinant N-terminal catalytic domain (hTRXL-N) of hTRXL in its oxidized form at 2.2-A resolution. Although this domain shares a similar three-dimensional structure with human thioredoxin (hTRX), a unique feature of hTRXL-N is the large number of positively charged residues distributed around the active site, which has been implicated in substrate specificity. Furthermore, the hTRXL-N crystal structure is monomeric while hTRX is dimeric in its four crystal structures (reduced, oxidized, C73S and C32S/C35S mutants) reported to date. As dimerization is the key regulatory factor in hTRX, the positive charge and lack of dimer formation of hTRXL-N suggest that it could interact with the acidic amino-acid rich C-terminal region, thereby suggesting a novel regulation mechanism. 相似文献
3.
Corrêa LC Marchi-Salvador DP Cintra AC Sampaio SV Soares AM Fontes MR 《Biochimica et biophysica acta》2008,1784(4):591-599
A myotoxic Asp49-phospholipase A2 (Asp49-PLA2) with low catalytic activity (BthTX-II from Bothrops jararacussu venom) was crystallized and the molecular-replacement solution has been obtained with a dimer in the asymmetric unit. The quaternary structure of BthTX-II resembles the myotoxic Asp49-PLA2 PrTX-III (piratoxin III from B. pirajai venom) and all non-catalytic and myotoxic dimeric Lys49-PLA2S. Despite of this, BthTX-II is different from the highly catalytic and non-myotoxic BthA-I (acidic PLA2 from B. jararacussu) and other Asp49-PLA2S. BthTX-II structure showed a severe distortion of calcium-binding loop leading to displacement of the C-terminal region. Tyr28 side chain, present in this region, is in an opposite position in relation to the same residue in the catalytic activity Asp49-PLA2S, making a hydrogen bond with the atom O delta 2 of the catalytically active Asp49, which should coordinate the calcium. This high distortion may also be confirmed by the inability of BthTX-II to bind Na+ ions at the Ca2+-binding loop, despite of the crystallization to have occurred in the presence of this ion. In contrast, other Asp49-PLA2S which are able to bind Ca2+ ions are also able to bind Na+ ions at this loop. The comparison with other catalytic, non-catalytic and inhibited PLA2S indicates that the BthTX-II is not able to bind calcium ions; consequently, we suggest that its low catalytic function is based on an alternative way compared with other PLA2S. 相似文献
4.
Sulzenbacher G Bignon C Nishimura T Tarling CA Withers SG Henrissat B Bourne Y 《The Journal of biological chemistry》2004,279(13):13119-13128
Fucosylated glycoconjugates are involved in numerous biological events, and alpha-l-fucosidases, the enzymes responsible for their processing, are therefore of crucial importance. Deficiency in alpha-l-fucosidase activity is associated with fucosidosis, a lysosomal storage disorder characterized by rapid neurodegeneration, resulting in severe mental and motor deterioration. To gain insight into alpha-l-fucosidase function at the molecular level, we have determined the crystal structure of Thermotoga maritima alpha-l-fucosidase. This enzyme assembles as a hexamer and displays a two-domain fold, composed of a catalytic (beta/alpha)(8)-like domain and a C-terminal beta-sandwich domain. The structures of an enzyme-product complex and of a covalent glycosyl-enzyme intermediate, coupled with kinetic and mutagenesis studies, allowed us to identify the catalytic nucleophile, Asp(244), and the Br?nsted acid/base, Glu(266). Because T. maritima alpha-l-fucosidase occupies a unique evolutionary position, being far more closely related to the mammalian enzymes than to any other prokaryotic homolog, a structural model of the human enzyme was built to document the structural consequences of the genetic mutations associated with fucosidosis. 相似文献
5.
Liew CW Nilsson M Chen MW Sun H Cornvik T Liang ZX Lescar J 《The Journal of biological chemistry》2012,287(27):23203-23215
Biosynthesis of the enediyne natural product dynemicin in Micromonospora chersina is initiated by DynE8, a highly reducing iterative type I polyketide synthase that assembles polyketide intermediates from the acetate units derived solely from malonyl-CoA. To understand the substrate specificity and the evolutionary relationship between the acyltransferase (AT) domains of DynE8, fatty acid synthase, and modular polyketide synthases, we overexpressed a 44-kDa fragment of DynE8 (hereafter named ATDYN10) encompassing its entire AT domain and the adjacent linker domain. The crystal structure at 1.4 Å resolution unveils a α/β hydrolase and a ferredoxin-like subdomain with the Ser-His catalytic dyad located in the cleft between the two subdomains. The linker domain also adopts a α/β fold abutting the AT catalytic domain. Co-crystallization with malonyl-CoA yielded a malonyl-enzyme covalent complex that most likely represents the acyl-enzyme intermediate. The structure explains the preference for malonyl-CoA with a conserved arginine orienting the carboxylate group of malonate and several nonpolar residues that preclude α-alkyl malonyl-CoA binding. Co-crystallization with acetyl-CoA revealed two noncovalently bound acetates generated by the enzymatic hydrolysis of acetyl-CoA that acts as an inhibitor for DynE8. This suggests that the AT domain can upload the acyl groups from either malonyl-CoA or acetyl-CoA onto the catalytic Ser651 residue. However, although the malonyl group can be transferred to the acyl carrier protein domain, transfer of the acetyl group to the acyl carrier protein domain is suppressed. Local structural differences may account for the different stability of the acyl-enzyme intermediates. 相似文献
6.
Solution structure of the MAPK phosphatase PAC-1 catalytic domain. Insights into substrate-induced enzymatic activation of MKP 总被引:1,自引:0,他引:1
Farooq A Plotnikova O Chaturvedi G Yan S Zeng L Zhang Q Zhou MM 《Structure (London, England : 1993)》2003,11(2):155-164
Inactivation of mitogen-activated protein kinases (MAPKs) by MAPK phosphatases (MKPs) is accomplished via substrate-induced activation of the latter enzymes; however, the structural basis for the underlying mechanism remains elusive. Here, we report the three-dimensional solution structure of the C-terminal phosphatase domain of the prototypical MKP PAC-1, determined when bound to phosphate. Structural and biochemical analyses reveal unique active site geometry of the enzyme important for binding to phosphorylated threonine and tyrosine of MAPK ERK2. Our study further demonstrates that the dynamic interaction between the N-terminal kinase binding domain and the C-terminal phosphatase domain of an MKP is directly coupled to MAPK-induced conformational change of the phosphatase active site, which is essential for eliciting its full enzymatic activity. 相似文献
7.
Alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD) is a widespread enzyme found in many bacterial species and all currently sequenced eukaryotic organisms. It occupies a key position at the branching point of two metabolic pathways: the tryptophan to quinolinate pathway and the bacterial 2-nitrobenzoic acid degradation pathway. The activity of ACMSD determines whether the metabolites in both pathways are converted to quinolinic acid for NAD biosynthesis or to acetyl-CoA for the citric acid cycle. Here we report the first high-resolution crystal structure of ACMSD from Pseudomonas fluorescens which validates our previous predictions that this enzyme is a member of the metal-dependent amidohydrolase superfamily of the (beta/alpha)(8) TIM barrel fold. The structure of the enzyme in its native form, determined at 1.65 A resolution, reveals the precise spatial arrangement of the active site metal center and identifies a potential substrate-binding pocket. The identity of the native active site metal was determined to be Zn. Also determined was the structure of the enzyme complexed with cobalt at 2.50 A resolution. The hydrogen bonding network around the metal center suggests that Arg51 and His228 may play important roles in catalysis. The metal center configuration of PfACMSD is very similar to that of Zn-dependent adenosine deaminase and Fe-dependent cytosine deaminase, suggesting that ACMSD may share certain similarities in its catalytic mechanism with these enzymes. These data enable us to propose possible catalytic mechanisms for ACMSD which appear to be unprecedented among all currently characterized decarboxylases. 相似文献
8.
Most of the cancer-associated mutations in the tumor suppressor p53 map to its DNA-binding core domain. Many of them inactivate p53 by decreasing its thermodynamic stability. We have previously designed the superstable quadruple mutant M133L/V203A/N239Y/N268D containing the second-site suppressor mutations N239Y and N268D, which specifically restore activity and stability in several oncogenic mutants. Here we present the x-ray structure of this quadruple mutant at 1.9 A resolution, which was solved in a new crystal form in the absence of DNA. This structure reveals that the four point mutations cause only small local structural changes, whereas the overall structure of the central beta-sandwich and the DNA-binding surface is conserved. The suppressor mutation N268D results in an altered hydrogen bond pattern connecting strands S1 and S10, thus bridging the two sheets of the beta-sandwich scaffold in an energetically more favorable way. The second suppressor mutation N239Y, which is located in close proximity to the DNA-binding surface in loop L3, seems to reduce the plasticity of the structure in large parts of loop L3 as indicated by decreased crystallographic temperature factors. The same is observed for residues in the vicinity of the N268D substitution. This increase in rigidity provides the structural basis for the increase in thermostability and an understanding how N268D and N239Y rescue some of the common cancer mutants. 相似文献
9.
Ding Y Xu MQ Ghosh I Chen X Ferrandon S Lesage G Rao Z 《The Journal of biological chemistry》2003,278(40):39133-39142
We have determined the crystal structure of a 154-residue intein derived from the dnaB gene of Synechocystis sp. strain PCC6803 and refined it to a 2.0-A resolution. The x-ray structure suggests that this intein possesses two catalytic sites that appear to be separately responsible for splicing and cleavage of the N- and C-terminal scissile bonds. The conserved intein block F residues are the important components of a catalytic site for side chain cyclization of the last intein residue, Asn-154. The data suggest that the imidazole ring of His-143 is involved in the activation of the side chain Ndelta atom of Asn-154, leading to a nucleophilic attack on the carbonyl carbon of Asn-154. Substitution of His-143 with Ala or Gln resulted in the inhibition of C-terminal cleavage. His-153, Asp-136, and a water molecule appear to constitute an oxyanion binding site by contacting the carbonyl oxygen of Asn-154 to stabilize the transition state. The structure and mutagenesis data also support that the close contact between the hydroxyl groups of Thr-138 and Ser-155, whose side chain participates in an S --> O acyl shift, plays an important role in the nucleophile orientation. Our structural modeling suggests that this catalytic module is conserved in the C-terminal subdomains of inteins from diverse organisms. 相似文献
10.
Orth P Reichert P Wang W Prosise WW Yarosh-Tomaine T Hammond G Ingram RN Xiao L Mirza UA Zou J Strickland C Taremi SS Le HV Madison V 《Journal of molecular biology》2004,335(1):129-137
Adam33 is a putative asthma susceptibility gene encoding for a membrane-anchored metalloprotease belonging to the ADAM family. The ADAMs (a disintegrin and metalloprotease) are a family of glycoproteins implicated in cell-cell interactions, cell fusion, and cell signaling. We have determined the crystal structure of the Adam33 catalytic domain in complex with the inhibitor marimastat and the inhibitor-free form. The structures reveal the polypeptide fold and active site environment resembling that of other metalloproteases. The substrate-binding site contains unique features that allow the structure-based design of specific inhibitors of this enzyme. 相似文献
11.
F van den Ent A Lockhart J Kendrick-Jones J L?we 《Structure (London, England : 1993)》1999,7(10):1181-1187
BACKGROUND: The 170 kDa protein MukB has been implicated in ATP-dependent chromosome partitioning during cell division in Escherichia coli. MukB shares its dimeric structure and domain architecture with the ubiquitous family of SMC (structural maintenance of chromosomes) proteins that facilitate similar functions. The N-terminal domain of MukB carries a putative Walker A nucleotide-binding region and the C-terminal domain has been shown to bind to DNA. Mutant phenotypes and a domain arrangement similar to motor proteins that move on microtubules led to the suggestion that MukB might be a motor protein acting on DNA. RESULTS: We have cloned, overexpressed and crystallized a 26 kDa protein consisting of 227 N-terminal residues of MukB from E. coli. The structure has been solved using multiple anomalous dispersion and has been refined to 2.2 A resolution. The N-terminal domain of MukB has a mixed alpha/beta fold with a central six-stranded antiparallel beta sheet. The putative nucleotide-binding loop, which is part of an unexpected helix-loop-helix motif, is exposed on the surface and no nucleotide-binding pocket could be detected. CONCLUSIONS: The N-terminal domain of MukB has no similarity to the kinesin family of motor proteins or to any other nucleotide-binding protein. Together with the finding of the exposed Walker A motif this observation supports a model in which the N- and C-terminal domains come together in the dimer of MukB to form the active site. Conserved residues on one side of the molecule delineate a region of the N-terminal domain that is likely to interact with the C-terminal domain. 相似文献
12.
The UmuC/DinB family of bypass polymerases is responsible for translesion DNA synthesis and includes the human polymerases eta, iota, and kappa. We determined the 2.3 A resolution crystal structure of a catalytic fragment of the DinB homolog (Dbh) polymerase from Sulfolobus solfataricus and show that it is nonprocessive and can bypass an abasic site. The structure of the catalytic domain is nearly identical to those of most other polymerase families. Homology modeling suggests that there is minimal contact between protein and DNA, that the nascent base pair binding pocket is quite accessible, and that the enzyme is already in a closed conformation characteristic of ternary polymerase complexes. These observations afford insights into the sources of low fidelity and low processivity of the UmuC/DinB polymerases. 相似文献
13.
Follistatin associates with transforming growth factor-beta-like growth factors such as activin or bone morphogenetic proteins to form an inactive complex, thereby regulating processes as diverse as embryonic development and cell secretion. Although an interaction between heparan sulfate chains present at the cell surface and follistatin has been recorded, the impact of this binding reaction on the follistatin-mediated inhibition of transforming growth factor-beta-like signaling remains unclear. To gain a structural insight into this interaction, we have solved the crystal structure of the presumed heparan sulfate-binding domain of follistatin, both alone and in complex with the small heparin analogs sucrose octasulfate and D-myo-inositol hexasulfate. In addition, we have confirmed the binding of the sucrose octasulfate and D-myo-inositol hexasulfate molecules to this follistatin domain and determined the association constants and stoichiometries of both interactions in solution using isothermal titration calorimetry. Overall, our results shed light upon the structure of this follistatin domain and reveal a novel conformation for a hinge region connecting epidermal growth factor-like and Kazal-like subdomains compared with the follistatin-like domain found in the extracellular matrix protein BM-40. Moreover, the crystallographic analysis of the two protein-ligand complexes mentioned above leads us to propose a potential location for the heparan sulfate-binding site on the surface of follistatin and to suggest the involvement of residues Asn80 and Arg86 in such a follistatin-heparin interaction. 相似文献
14.
Martins BM Grimm B Mock HP Huber R Messerschmidt A 《The Journal of biological chemistry》2001,276(47):44108-44116
The enzymatic catalysis of many biological processes of life is supported by the presence of cofactors and prosthetic groups originating from the common tetrapyrrole precursor uroporphyrinogen-III. Uroporphyrinogen-III decarboxylase catalyzes its conversion into coproporphyrinogen-III, leading in plants to chlorophyll and heme biosynthesis. Here we report the first crystal structure of a plant (Nicotiana tabacum) uroporphyrinogen-III decarboxylase, together with the molecular modeling of substrate binding in tobacco and human enzymes. Its structural comparison with the homologous human protein reveals a similar catalytic cleft with six invariant polar residues, Arg(32), Arg(36), Asp(82), Ser(214) (Thr in Escherichia coli), Tyr(159), and His(329) (tobacco numbering). The functional relationships obtained from the structural and modeling analyses of both enzymes allowed the proposal for a refined catalytic mechanism. Asp(82) and Tyr(159) seem to be the catalytic functional groups, whereas the other residues may serve in substrate recognition and binding, with Arg(32) steering its insertion. The crystallographic dimer appears to represent the protein dimer under physiological conditions. The dimeric arrangement offers a plausible mechanism at least for the first two (out of four) decarboxylation steps. 相似文献
15.
Studer R Dahinden P Wang WW Auchli Y Li XD Dimroth P 《Journal of molecular biology》2007,367(2):547-557
Oxaloacetate decarboxylase is a membrane-bound multiprotein complex that couples oxaloacetate decarboxylation to sodium ion transport across the membrane. The initial reaction catalyzed by this enzyme machinery is the carboxyl transfer from oxaloacetate to the prosthetic biotin group. The crystal structure of the carboxyltransferase at 1.7 A resolution shows a dimer of alpha(8)beta(8) barrels with an active site metal ion, identified spectroscopically as Zn(2+), at the bottom of a deep cleft. The enzyme is completely inactivated by specific mutagenesis of Asp17, His207 and His209, which serve as ligands for the Zn(2+) metal ion, or by Lys178 near the active site, suggesting that Zn(2+) as well as Lys178 are essential for the catalysis. In the present structure this lysine residue is hydrogen-bonded to Cys148. A potential role of Lys178 as initial acceptor of the carboxyl group from oxaloacetate is discussed. 相似文献
16.
Bertini I Calderone V Fragai M Luchinat C Mangani S Terni B 《Journal of molecular biology》2004,336(3):707-716
The catalytic domain of matrix metalloproteinase-10 (MMP-10) has been expressed in Escherichia coli and its crystal structure solved at 2.1 A resolution. The availability of this structure allowed us to critically examine the small differences existing between the catalytic domains of MMP-3 and MMP-10, which show the highest sequence identity among all MMPs. Furthermore, the binding mode of N-isobutyl-N-[4-methoxyphenylsulfonyl]glycyl hydroxamic acid (NNGH), which is one of the most known commercial inhibitors of MMPs, is described for the first time. 相似文献
17.
The aromatic H NMR spectrum of the kringle 1 domain from human plasminogen has been investigated by proton Overhauser experiments, acid-base titration, and two-dimensional chemical shift correlated spectroscopy. Spin-echo and pH response experiments lead to the identification of the N-terminal Tyr-3 phenol ring signals. The connectivities among the tryptophanyl aromatic protons have been established and sets of singlet-doublet-triplet resonances stemming from each of the two indole groups sorted according to their common side chain origin. Similarly, the four histidyl singlets have been identified and paired per imidazole group. From their pH responses, it is indicated that a histidyl (His31) and a tryptophanyl (Trp-II) residue are placed in the neighborhood of carboxyl groups. The high-field chemical shifts observed for proton resonances of the ligand epsilon-aminocaproic acid upon binding to kringle 1 indicate that the ligand-binding site is rich in aromatic components. Overhauser experiments reveal that Leu46 is surrounded by a cluster of interacting aromatic side chains, which includes Trp25, Phe36, His41, Trp62, and Tyr64, and define a hydrophobic region contiguous to the kringle lysine-binding site. Relative internuclear distances have been estimated for aromatic H-atoms in the vicinity of Leu46 by reference to one of the latter's CH3 sigma, sigma' groups. Some of the connectives have previously been found for Leu46 in kringle 4 which further supports the idea of a common structure for the homologous domains. 相似文献
18.
Total structure and biological properties of laxaphycins A and B, cyclic lipopeptides from the marine cyanobacterium Lyngbya majuscula 总被引:1,自引:0,他引:1
Isabelle Bonnard Marc Rolland Christian Francisco Bernard Banaigs 《Letters in Peptide Science》1997,4(4-6):289-292
The tropical marine cyanobacterium Lyngbyamajuscula produces a series of cytotoxic andantimicrobial cyclic peptides. The totalstructure of the two major components,laxaphycins A and B, was determined byinterpretation of physical data, principallyhigh field NMR, FAB MS and MS/MS, in combinationwith chemical derivatization and degradationschemes. Absolute stereochemistries of thenatural and exotic amino acids weredetermined. The two cyclic peptides exhibited anunusual biological synergism when tested forantifungal or cytotoxic effects. 相似文献
19.
Bonnard Isabelle Rolland Marc Francisco Christian Banaigs Bernard 《International journal of peptide research and therapeutics》1997,4(4-6):289-292
Summary The tropical marine cyanobacteriumLyngbya majuscula produces a series of cytotoxic and antimicrobial cyclic peptides. The total structure of the two major components, laxaphycins
A and B, was determined by interpretation of physical data, principally high field NMR, FAB MS and MS/MS, in combination with
chemical derivatization and degradation schemes. Absolute stereochemistries of the natural and ‘exotic’ amino acids were determined.
The two cyclic peptides exhibited an unusual biological synergism when tested for antifungal or cytotoxic effects. 相似文献
20.
Rajesh Gumpena George T. Lountos Sreejith Raran‐Kurussi Joseph E. Tropea Scott Cherry David S. Waugh 《Protein science : a publication of the Protein Society》2018,27(2):561-567
The dual specificity phosphatase DUSP1 was the first mitogen activated protein kinase phosphatase (MKP) to be identified. It dephosphorylates conserved tyrosine and threonine residues in the activation loops of mitogen activated protein kinases ERK2, JNK1 and p38‐alpha. Here, we report the crystal structure of the human DUSP1 catalytic domain at 2.49 Å resolution. Uniquely, the protein was crystallized as an MBP fusion protein in complex with a monobody that binds to MBP. Sulfate ions occupy the phosphotyrosine and putative phosphothreonine binding sites in the DUSP1 catalytic domain. 相似文献