首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Kinetic analysis of methyl group transfer from S-adenosyl-L-methionine (SAM) to the GATC recognition site catalyzed by the phage T4 DNA-[N6-adenine]-methyltransferase (MTase) [EC 2.1.1.72] showed that the reverse reaction is at least 500 times slower than the direct one. The overall pattern of product inhibition corresponds to an ordered steady-state mechanism following the sequence SAM decreases DNA decreases metDNA increases SAH increases (S-adenosyl-L-homocysteine). Pronounced inhibition was observed at high concentrations of the 20-meric substrate duplex, which may be attributed to formation of a dead-end complex MTase-SAH-DNA. In contrast, high SAM concentrations proportionally accelerated the reaction. Thus, the reaction may include a stage whereby the binding of SAM and the release of SAH are united into one concerted event. Computer fitting of alternative kinetic schemes to the aggregate of experimental data revealed that the most plausible mechanism involves isomerization of the enzyme.  相似文献   

2.
Kinetic analysis of methyl group transfer from S-adenosyl-L-methionine (SAM) to the 5"-GGATCC recognition site catalyzed by the DNA-[N4-cytosine]-methyltransferase from Bacillus amyloliquefaciens [EC 2.1.1.113] has shown that the dependence of the rate of methylation of the 20-meric substrate duplex on SAM and DNA concentration are normally hyperbolic, and the maximal rate is attained upon enzyme saturation with both substrates. No substrate inhibition is observed even at concentrations many times higher than the K M values (0.107 M for DNA and 1.45 M for SAM), which means that no nonreactive enzyme–substrate complexes are formed during the reaction. The overall pattern of product inhibition corresponds to an ordered steady-state mechanism following the sequence SAMDNAmetDNA SAH (S-adenosyl-L-homocysteine). However, more detailed numerical analysis of the aggregate experimental data admits an alternative order of substrate binding, DNA SAM }, though this route is an order of magnitude slower.  相似文献   

3.
Data on initial velocity and isotope exchange at equilibrium suggest a nonclassical ping-pong mechanism for the dihydropyrimidine dehydrogenase from pig liver. Initial velocity patterns in the absence of inhibitors appeared parallel at low reactant concentration, with substrate inhibition by NADPH that is competitive with uracil and with substrate inhibition by uracil that is uncompetitive with NADPH. The Km values for both uracil (1 microM) and NADPH (7 microM) are low. As a result, it was difficult to determine whether the initial velocity pattern in the absence of added inhibitors was parallel. Thus, the pattern was redetermined in the presence of the dead-end inhibitor 2,6-dihydroxypyridine, which binds to both sites. This treatment effectively eliminates the inhibition by both substrates and increases their Km values, giving a strictly parallel pattern. Product and dead-end inhibition patterns are consistent with a mechanism in which NADPH reduces the enzyme at site 1 and electrons are transferred to site 2 to reduce uracil to dihydrouracil. The predicted mechanism is corroborated by exchange between [14C] NADP and NADPH as well as [14C]thymine and dihydrothymine in the absence of the other substrate-product pair.  相似文献   

4.
The Escherichia coli UvrD protein (helicase II) is an SF1 superfamily helicase required for methyl-directed mismatch repair and nucleotide excision repair of DNA. We have characterized quantitatively the self-assembly equilibria of the UvrD protein as a function of [NaCl], [glycerol], and temperature (5-35 degrees C; pH 8.3) using analytical sedimentation velocity and equilibrium techniques, and find that UvrD self-associates into dimeric and tetrameric species over a range of solution conditions (t相似文献   

5.
NG-Hydroxy-L-arginine, [15N]-NG-hydroxy-L-arginine, and NG-hydroxy-NG- methyl-L-arginine were used as mechanistic probes of the initial step in the reaction catalyzed by nitric oxide synthase isolated from murine macrophages. NG-Hydroxy-L-arginine was found to be a substrate for nitric oxide synthase with a Km equal to 28.0 microM, yielding nitric oxide and L-citrulline. NADPH was required for the reaction and (6R)-tetrahydro-L-biopterin enhanced the initial rate of nitric oxide formation. The stoichiometry of NG-hydroxy-L-arginine loss to L-citrulline and nitric oxide (measured as nitrite and nitrate) formation was found to be 1:1:1. NG-Hydroxy-L-arginine was also observed in small amounts from L-arginine during the enzyme reaction. Studies with [15N]-NG-hydroxy-L-arginine indicated that the nitrogen in nitric oxide is derived from the oxime nitrogen of [15N]-NG-hydroxy-L- arginine. NG-Hydroxy-NG-methyl-L-arginine was found to be both a reversible and an irreversible inhibitor of nitric oxide synthase, displaying reversible competitive inhibition with K(i) equal to 33.5 microM. As an irreversible inhibitor, NG-hydroxy-NG-methyl-L-arginine gave kinact equal to 0.16 min-1 and KI equal to 26.5 microM. This inhibition was found to be both time- and concentration-dependent as well as showing substrate protection against inactivation. Gel filtration of an NG-hydroxy-NG-methyl-L-arginine-inactivated nitric oxide synthase failed to recover substantial amounts of enzyme activity.  相似文献   

6.
Captan (N-[(trichloromethyl)thio]-4-cyclohexene-1,2-dicarboximide) was shown to bind to DNA polymerase I from Escherichia coli. The ratio of [14C] captan bound to DNA pol I was 1:1 as measured by filter binding studies and sucrose gradient analysis. Preincubation of enzyme with polynucleotide prevented the binding of captan, but preincubation of enzyme with dGTP did not. Conversely, when the enzyme was preincubated with captan, neither polynucleotide nor dGTP binding was blocked. The modification of the enzyme by captan was described by an irreversible second-order rate process with a rate of 68 +/- 0.7 M-1 s-1. The interaction of captan with DNA pol I altered each of the three catalytic functions. The 3'----5' exonuclease and polymerase activities were inhibited, and the 5'----3' exonuclease activity was enhanced. In order to study the 5'----3' exonuclease activity more closely, [3H]hpBR322 (DNA-[3H]RNA hybrid) was prepared from pBR322 plasmid DNA and used as a specific substrate for 5'----3' exonuclease activity. When either DNA pol I or polynucleotide was preincubated with 100 microM captan, 5'----3' exonuclease activity exhibited a doubling of reaction rate as compared to the untreated sample. When 100 microM captan was added to the reaction in progress, 5'----3' exonuclease activity was enhanced to 150% of the control value. Collectively, these data support the hypothesis that captan acts on DNA pol I by irreversibly binding in the template-primer binding site associated with polymerase and 3'----5' exonuclease activities. It is also shown that the chemical reaction between DNA pol I and a single captan molecule proceeds through a Michaelis complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The deacylated forms of the phosphoinositides were used to determine whether the guinea pig uterus phosphoinositide-specific phospholipase C (PI-PLC I, Mr 60,000) required fatty acids at the sn-1 and sn-2 positions for the hydrolysis of the sn-3 phosphodiester bond. L-alpha-Glycerophospho-D-myo-inositol 4-phosphate (Gro-PIP), but not glycerol 3-phosphate (Gro-3-P), L-alpha-glycerophospho-D-myo-inositol (Gro-PI), or L-alpha-glycerophospho-D-myo-inositol 4,5-bisphosphate (Gro-PIP2), inhibited PI-PLC I in a concentration-dependent manner. Assays performed with 10 microM [3H]phosphatidylinositol ([3H]PI), 10 microM [3H]phosphatidylinositol 4-phosphate ([3H]PIP) or 10 microM [3H]phosphatidylinositol 4,5-bisphosphate ([3H]PIP2) as substrates, with increasing [Gro-PIP] revealed an IC50 = 380 microM. Kinetic studies with increasing [3H]PI substrate concentrations in the presence of 100 microM and 300 microM Gro-PIP demonstrated that Gro-PIP exhibited competitive inhibition; Kis = 40 microM. Ca2+ concentrations over the range 1.1 microM to 1 mM did not effect inhibition, suggesting that Gro-PIP inhibition of [3H]PI hydrolysis was calcium-independent. To determine whether Gro-PIP was a substrate, 20 microM and 500 microM [3H]Gro-PIP were incubated with PI-PLC I. Anion-exchange HPLC analysis revealed no [3H]IP2 product formation, indicating that [3H]Gro-PIP was not hydrolyzed. Assays performed with [3H]PI and [3H]PIP substrates in the presence of 500 microM [3H]Gro-PIP revealed approx. 75% less [3H]inositol 1-phosphate ([3H]IP1) and [3H]inositol 1,4-bisphosphate ([3H]IP2) product formation, respectively, indicating that [3H]Gro-PIP inhibited the hydrolysis of the substrates by PI-PLC I. These data suggest that Gro-PIP does not serve as a substrate, and that it inhibits PI-PLC I by competitive inhibition in a Ca2(+)-independent fashion.  相似文献   

8.
The Michaelis constant values for the highly purified pyruvate dehydrogenase complex (PDC) from human heart are 25, 13 and 50 microM for pyruvate, CoA and NAD, respectively. Acetyl-CoA produces a competitive inhibition of PDC (Ki = 35 microM) with respect to CoA, whereas NADH produces the same type of inhibition with respect to NAD (Ki = 36 microM). The oxoglutarate dehydrogenase complex (OGDC) from human heart has active sites with two different affinities for 2-oxoglutarate ([S]0.5 of 30 and 120 microM). ADP (1 mM) decreases the [S]0.5 values by a half. The inhibition of OGDC (Ki = 81 microM) by succinyl-CoA is of a competitive type with respect to CoA (Km = 2.5 microM), whereas that of NADH (Ki = 25 microM) is of a mixed type with respect to NAD (Km = 170 microM).  相似文献   

9.
The effect of norepinephrine on phosphatidylcholine and phosphatidylethanolamine formation was investigated in short-term incubations with freshly isolated rat hepatocytes. In the presence of dl-propranolol, norepinephrine decreases the incorporation of [methyl-14C]choline into phosphatidylcholines in a dose-dependent manner. At a concentration of 50 microM, norepinephrine (plus 20 microM propranolol) inhibits the incorporation of [methyl-14C]choline over a wide range of choline concentrations (59% inhibition at 5 microM choline; 34% inhibition at 1 mM choline). Norepinephrine also decreases the incorporation rates of [1-14C]palmitic acid and [1-14C]oleic acid into phosphatidylcholines. The effect of norepinephrine is mediated through an alpha-adrenergic receptor. Norepinephrine (plus propranolol) does not decrease the uptake or phosphorylation rate of [methyl-14C]choline. Pulse-label and pulse-chase studies indicate that the conversion rate of phosphocholine to CDP-choline, catalyzed by CTP:phosphocholine cytidylyltransferase, is diminished by norepinephrine. In contrast with the inhibitory effect of norepinephrine on phosphatidylcholine synthesis, this hormone stimulates the formation of phosphatidylethanolamines from [1,2-14C]ethanolamine. This increased incorporation rate is apparent at ethanolamine concentrations above 25 microM. A combination of norepinephrine and propranolol decreases, however, the synthesis of phosphatidylcholines from [1,2-14C]ethanolamine. The results indicate that alpha-adrenergic regulation dissociates the synthesis of phosphatidylcholines from that of phosphatidylethanolamines.  相似文献   

10.
Interaction of DNA-(N4-cytosine)-methyltransferase from the Bacillus amyloliquefaciens (BamHI MTase, 49 kDa) with a 20-mer oligonucleotide duplex containing the palindrome recognition site GGATCC was studied by methods of steady-state and presteady-state kinetics of the methyl group transfer, gel retardation, and crosslinking of the enzyme subunits with glutaric aldehyde. In steady-state conditions, BamHI MTase displays a simple kinetic behavior toward a 20-mer oligonucleotide substrate. A linear dependence was observed for the reaction rate on the enzyme concentration and a Michaelis dependence of the reaction rate on the concentration of both substrates: S-adenosyl-L-methionine (SAM), the methyl group donor, and DNA, the methyl group acceptor. In independent experiments, the concentration of the 20-mer duplex or SAM was changed, the enzyme concentration being substantially lower then the concentrations of substrates. The kcat values determined in these conditions are in good agreement with one another and approximately equal to 0.05 s-1. The Km values for the duplex and SAM are 0.35 and 1.6 microM, respectively. An analysis of single turnover kinetics (at limiting concentration of the 20-mer oligonucleotide duplex) revealed the following characteristics of the BamHI MTase-dependent methylation of DNA. The value of rate constant of the DNA methylation step at the enzyme saturating concentration is on average 0.085 s-1, which is only 1.6 times higher than the value determined in steady-state conditions. Only one of two target cytidine residues was methylated in the course of the enzyme single turnover, which coincides with the earlier data on EcoRI MTase. Regardless of the order of the enzyme preincubation with SAM and DNA, both curves for the single turnover methylation are comparable. These results are consistent with the model of the random order of the productive ternary enzyme-substrate complex formation. In contrast to the relatively simple kinetic behavior of BamHI MTase in the steady-state reaction are the data on the enzyme binding of DNA. In gel retardation experiments, there was no stoichiometrically simple complexes with the oligonucleotide duplex even at low enzyme concentrations. The molecular mass of the complexes was so high that they did not enter 12% PAG. In experiments on crosslinking of the BamHI MTase subunits, it was shown that the enzyme in a free state exists as a dimer. Introduction of substoichiometric amounts of DNA into the reaction mixture results in pronounced multimerization of the enzyme. However, addition of SAM in saturating concentration at an excess of the oligonucleotide duplex over BamHI MTase converts most of the enzyme into a monomeric state.  相似文献   

11.
The influence of substrate inhibition on xanthine oxidase-intramolecular electron transport was studied by steady-state kinetic analysis. Experiments with hypoxanthine and xanthine up to 900 microM indicated an inhibition pattern which fitted an equation of the general form nu 0 = nu max . [S]/(Km + a[S] + b[S]2/Ki). Univalent electron flux to oxygen was favored at substrate concentrations above 50 microM. This augmentation of univalent flux percentage that appeared at a high substrate concentration was greater for hypoxanthine that xanthine and at pH 8.3 than at 9.5. Our results support a mechanism of inhibition in which a substrate-reduced enzyme, non-productive Michaelis complex was formed. It is possible that this non-productive complex favored the univalent pathway of enzyme reoxidation (superoxide production) by increasing the midpoint redox potential of the molybdenum active site.  相似文献   

12.
Effects of fatty acids, prostaglandins, and phospholipids on the activity of purified cGMP-stimulated cyclic nucleotide phosphodiesterase from calf liver were investigated. Prostaglandins A2, E1, E2, F1 alpha, and F2 alpha, thromboxane B2, and most phospholipids were without effect; lysophosphatidylcholine was a potent inhibitor. Several saturated fatty acids (carbon chain length 14-24), at concentrations up to 1 mM, had little or no effect on hydrolysis of 0.5 microM [3H]cGMP or 0.5 microM [3H]cAMP with or without 1 microM cGMP. In general, unsaturated fatty acids were inhibitory, except for myristoleic and palmitoleic acids which increased hydrolysis of 0.5 microM [3H]cAMP. The extent of inhibition by cis-isomers correlated with the number of double bonds. Increasing concentrations of palmitoleic acid from 10 to 100 microM increased hydrolysis of [3H]cAMP with maximal activation (60%) at 100 microM; higher concentrations were inhibitory. Palmitoleic acid inhibited cGMP hydrolysis and cGMP-stimulated cAMP hydrolysis with IC50 values of 110 and 75 microM, respectively. Inhibitory effects of palmitoleic acid were completely or partially prevented by equimolar alpha-tocopherol. Palmitelaidic acid, the trans isomer, had only slightly inhibitory effects. The effects of palmitoleic acid (100 microM) were dependent on substrate concentration. Activation was maximal with 1 microM [3H]cAMP and was reduced with increasing substrate; with greater than 10 microM cAMP, palmitoleic had no effect. Inhibition of cGMP hydrolysis was maximal at 2.5 microM cGMP and was reduced with increasing cGMP; at greater than 100 microM cGMP palmitoleic acid increased hydrolysis slightly. Palmitoleic acid did not affect apparent Km or Vmax for cAMP hydrolysis, but increased the apparent Km (from 17 to 60 microM) and Vmax for cGMP hydrolysis with little or no effect on the Hill coefficient for either substrate. These results suggest that certain hydrophobic domains play an important role in modifying the catalytic specificity of the cGMP-stimulated phosphodiesterase for cAMP and cGMP.  相似文献   

13.
Crude microsomal preparations from hen oviduct catalyze the transfer of [32P]phosphate from [gamma-32P]CTP or [gamma-32P]dCTP to endogenous dolichol, forming dolichyl [32P]monophosphate. The oviduct kinase activity assayed with [gamma-32P]CTP is stimulated by divalent cations and exogenous dolichol. The enzymatic formation of dolichyl [32P]monophosphate is inhibited by dCDP and CDP, but not CMP, ADP, GDP, or UDP. The hen oviduct kinase is inhibited 50% by the addition of 38 microM CDP, but 101 microM dCDP is required for 50% inhibition. The amount of dolichol kinase activity in chick oviduct microsomes increases 3.7-fold within 10 days of estrogen administration. The hormone-induced increase in kinase activity is also observed when membranes from untreated and estrogen-treated chicks are assayed in the presence of saturating levels of exogenous dolichol. The microsomal preparations from oviducts of untreated chicks and fully induced birds both exhibit an apparent Km value of 7.1 microM for CTP. An apparent Km of 14 microM has been determined for dCTP. Thus, the developmental change in dolichol kinase activity does not appear to be the result of a difference in the amount of available endogenous dolichol or an alteration in the reactive site for the nucleoside triphosphate substrate, but is probably due to an increased level of the enzyme.  相似文献   

14.
The effect of phospholipid methylation on both [3H]diazepam and [3H]GABA ( [3H]gamma-aminobutyric acid) binding to crude synaptic plasma membrane from rat cerebellum has been studied. S-Adenosylmethionine (SAM) stimulates [3H]methyl group incorporation into membrane phospholipids and enhances [3H]diazepam binding by increasing the apparent Bmax. Conversely, inhibition of [3H]methyl group transfer from [3H]SAM to phospholipids by preincubation with SAM at 0 degrees C or with SAH abolishes the increase of binding. After preincubation with SAM, analysis of the GABA binding reveals the presence of binding sites with high affinity, a property absent in control membranes preincubated without SAM. Among the neurotransmitter bindings tested, only those of GABA and benzodiazepine in the cerebellum and beta-adrenergic ligands in the cerebral cortex are enhanced upon stimulation of phospholipid methyltransferase activity. [3H]Dihydromorphine, [3H]dihydro-alpha-ergokryptine and [3H]spiroperidol bindings are not affected by SAM. The present data suggest an involvement of phospholipid methylation in regulation of both [3H]GABA and [3H]-diazepam binding.  相似文献   

15.
Kinetic analysis of methyl group transfer from S-adenosyl-L-methionine (SAM) to the GATC recognition site catalyzed by the phage T4 DNA-[N6-adenine]-methyltransferase (MTase) [EC 2.1.1.72] showed that the reverse reaction is at least 500 times slower than the direct one. The overall pattern of product inhibition corresponds to an ordered steady-state mechanism following the sequence SAMDNAmetDNASAH (S-adenosyl-L-homocysteine). Pronounced inhibition was observed at high concentrations of the 20-meric substrate duplex, which may be attributed to formation of a dead-end complex MTase–SAH–DNA. In contrast, high SAM concentrations proportionally accelerated the reaction. Thus, the reaction may include a stage whereby the binding of SAM and the release of SAH are united into one concerted event. Computer fitting of alternative kinetic schemes to the aggregate of experimental data revealed that the most plausible mechanism involves isomerization of the enzyme.  相似文献   

16.
Amiloride analogs with hydrophobic substitutions on the 5-amino nitrogen atom are relatively high affinity inhibitors of the plasma membrane Na(+)-H+ exchanger. We demonstrated that a high affinity-binding site for [3H]5-(N-methyl-N-isobutyl)amiloride ([3H]MIA) (Kd = 6.3 nM, Bmax = 1.2 pmol/mg of protein) is present in microvillus membrane vesicles but not in basolateral membrane vesicles isolated from rabbit renal cortex, in accord with the known membrane localization of the Na(+)-H+ exchanger in this tissue. The rank order potency for inhibition of microvillus membrane [3H]MIA binding by amiloride analogs was: MIA (I50 approximately 10 nM) greater than amiloride (I50 approximately 200 nM) greater than benzamil (I50 approximately 1200 nM). This correlated with a qualitatively similar rank order potency for inhibition of Na(+)-H+ exchange: MIA (I50 approximately 4 microM) greater than amiloride (I50 approximately 15 microM) greater than benzamil (I50 approximately 100 microM), but did not correlate with the rank order potency for inhibition of the organic cation-H+ exchanger in microvillus membrane vesicles: MIA approximately benzamil (I50 approximately 0.5 microM) greater than amiloride (I50 approximately 10 microM). However, tetraphenylammonium, an inhibitor of organic cation-H+ exchange, inhibited the rate of [3H]MIA binding without an effect on equilibrium [3H]MIA binding; the dissociation of bound [3H]MIA was inhibited by preloading the membrane vesicles with tetraphenylammonium. These findings indicated that high affinity [3H]MIA binding to renal microvillus membrane vesicles takes place at an internal site to which access is rate-limited by the tetraphenylammonium-sensitive organic cation transporter. Equilibrium [3H]MIA binding was inhibited by H+ but was unaffected by concentrations of Na+ or Li+ that saturate the external transport site of the Na(+)-H+ exchanger. Binding of MIA to its high affinity binding site had no effect on the rate of Na(+)-H+ exchange. This study suggests that the renal Na(+)-H+ exchanger has a high affinity internal binding site for amiloride analogs that is distinct from the external amiloride inhibitory site.  相似文献   

17.
Changes in the rate of DNA synthesis in spermatogenic cells after treatment of segments of rat seminiferous tubule at defined stages of epithelial cycle with benzo[a]pyrene (BP) or 7,12-methylbenz[a]anthracene (DMBA) were studied. The incorporation of labeled thymidine into DNA was used as a measure of the rate of DNA synthesis. Very little or no inhibition of DNA synthesis at stages V and VIII of the cycle was observed at BP and DMBA concentrations lower than 100 microM. In contrast, in the presence of added mitochondria and/or microsomes from whole rat testis, 20 microM BP or DMBA inhibited DNA synthesis 5% and 80%, respectively. This inhibition of DNA synthesis was prevented by inhibitors of the cytochrome P-450 system and by free radical scavengers. These results suggest that polycyclic aromatic hydrocarbons (PAH) require metabolic activation in order to inhibit DNA replication in seminiferous tubules. The first step of this biotransformation is cytochrome P-450-dependent and occurs in Leydig cells. However, the metabolites produced in this step may be further metabolized to reactive metabolites by peroxidative pathways in the seminiferous tubules; these latter products may affect DNA replication.  相似文献   

18.
We investigated the methylation reaction catalyzed by 1500-fold purified rat liver DNA methyltransferase (DMase) on native Micrococcal luteus DNA (ML-DNA) and poly(dC-dG) templates containing covalently bound (+)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (anti-BPDE), the strongly carcinogenic, principal metabolite of benzo[a]pyrene. Since eukaryotic DNA methyltransferases recognize the dinucleotide 5'd[CG] in DNA as a substrate for methylation, the model polynucleotide poly(dC-dG) was used to study in more detail the mode of interaction and effect on incorporation. With either of these BPDE-modified templates, a progressive inhibition of methylation was correlated with increasing amount of BPDE substitution. The effect of BPDE-dG adducts did not alter the apparent km with respect to the concentration of d[CG] in either unmodified or BPDE-modified poly(dC-dG) (km = 10 microM) but lowered the relative apparent Vmax. In assays in which perturbation by salt of preformed enzyme-DNA complex is measured, no change in the relative stability to either unsubstituted or the carcinogen-modified template was noted, thus, excluding any change in the ionic component of this interaction. However, in competition-type experiments, BPDE-DNA is an inhibitor of the methylation reaction on native DNA. When BPDE-DNA is allowed to interact with the enzyme before the addition of native competitor DNA, the methylation rate is not stimulated, suggesting very tight hydrophobic binding of the enzyme to BPDE-DNA and an inhibition in the dissociation of DMase from the template following a methylation event.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
[35S]Adenosine-5'-phosphosulfate (APS) binding to Penicillium chrysogenum APS kinase was measured by centrifugal ultrafiltration. APS did not bind to the free enzyme with a measurable affinity even at low ionic strength where substrate inhibition by APS is quite marked. However, APS bound with an apparent Kd of 0.54 microM in the presence of 5 mM MgADP. In the presence of 0.1 M (NH4)2SO4, Kd,app was increased to 2.1 +/- 0.7 microM. Bound [35S]APS was displaced by low concentrations of 3'-phosphoadenosine-5'-phosphosulfate (PAPS), or iso-(2') PAPS, or (less efficiently) by adenosine-3,5'-diphosphate (PAP) or adenosine-5'-monosulfate (AMS). The results support our conclusion that substrate inhibition of the fungal enzyme by APS results from the formation of a dead end E. MgADP.APS complex. That is, APS binds to the subsite vacated by PAPS in the compulsory (or predominately) ordered product release sequence (PAPS before MgADP). Radioligand displacement was used to verify the Kd for APS dissociation from E.MgADP.APS and to determine the Kd values for the dissociation of iso-PAPS (13 +/- 5 microM), PAP (4.8 mM), or AMS (5.2 mM) from their respective ternary enzyme.MgADP.ligand complexes. Incubation of the fungal enzyme with [gamma-32P]MgATP did not yield a phosphoenzyme that survives gel filtration or gel electrophoresis.  相似文献   

20.
In purified rat Leydig cells, the methyl donor S-adenosyl-methionine (SAM), increases significantly in a dose dependent manner the [125I]hCG binding as well as the productions of cAMP and of testosterone; the competitive inhibitor of methylations S-adenosyl-homocysteine (SAH), has an opposite effect. Associated to oLH, SAM further enhances the cAMP synthesis while SAH inhibits significantly the adenylate cyclase activity. With regard to testosterone synthesis, SAM potentiates the stimulating roles of oLH and dbcAMP (27 and 38% increases, respectively) although SAH diminishes testosterone productions (48 and 35%, respectively under oLH and dbcAMP stimulations). Scatchard analysis has shown that SAM (1.4 mM) increases the number of LH/hCG binding sites on Leydig cells while SAH (1.4 mM) decreases it; LH/hCG Ka values are not modified neither by SAM nor by SAH. These data suggest that the in vitro regulation of steroidogenesis in purified rat Leydig cells may involve methylation processes (presumably phospholipids are the potential substrates of these reactions) which modulates the transmission of the hormonal signal through the membrane and affects the testosterone synthesis at a step beyond the adenylate cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号