首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tropomyosin, cross-linked at cysteine 190, was found to bind more weakly to actin filaments than uncross-linked tropomyosin. Cross-linking of tropomyosin can cause actin filaments nearly completely covered with tropomyosin to be uncovered almost completely. The critical monomer concentration of actin is not significantly changed by binding of cross-linked or uncross-linked tropomyosin to actin filaments. The binding curves were analyzed quantitatively, thereby taking into account the polar end-to-end contact of tropomyosin molecules bound by actin and the overlap of the seven subunit binding sites along the actin filament. Under the conditions of the experiment (80 mM KCl, 1 mM MgCl2, pH 7.5, 38-42 degrees C), the equilibrium constant for isolated binding of tropomyosin to actin filaments is in the range 1 x 10(3)-3 x 10(3) M-1. The equilibrium constants for binding of tropomyosin to binding sites along the actin filament with one or two neighbouring tropomyosin molecules are in the range of 10(6) or 10(8) to 10(9) M-1, respectively. The equilibrium constants for binding of tropomyosin to binding sites along the actin filament with one or two neighbouring tropomyosin molecules are in the range of 10(6) or 10(8) to 10(9) M-1, respectively. The equilibrium constants for cross-linked and uncross-linked tropomyosin differ by a factor of only about two. Owing to the highly cooperative binding, these differences are sufficient so that actin filaments nearly completely covered with uncross-linked tropomyosin are uncovered almost completely by cross-linking tropomyosin at cysteine 190.  相似文献   

2.
The rate of capping of actin filaments by the gelsolin-actin complex was measured by inhibition of elongation of the barbed ends of actin filaments. Polymeric actin (0.1-1.0 microM) was added to 0.5 microM monomeric actin and various concentrations of the gelsolin-actin complex (0.08-2.4 nM) to induce nucleated polymerization. As under the experimental conditions (2 mM MgCl2, 100 mM KCl, 37 degrees C, actin monomer concentration less than or equal to 0.5 microM) actin filaments treadmilled, filaments elongated only at the barbed ends and the gelsolin-actin complex did not nucleate actin filaments to polymerize towards the pointed ends. The rate of nucleated actin polymerization in the presence of the gelsolin-actin complex was quantitatively analyzed. The rate constant for capping of the barbed ends of actin filaments by the gelsolin-actin complex was found to be about 10(7) M-1 s-1.  相似文献   

3.
C Weigt  A Wegner  M H Koch 《Biochemistry》1991,30(44):10700-10707
The rate of assembly of tropomyosin with actin filaments was measured by stopped-flow experiments. Binding of tropomyosin to actin filaments was followed by the change of the fluorescence intensity of a (dimethylamino)naphthalene label covalently linked to tropomyosin and by synchrotron radiation X-ray solution scattering. Under the experimental conditions (2 mM MgCl2, 100 mM KCl, pH 7.5, 25 degrees C) and at the protein concentrations used (2.5-24 microM actin, 0.2-3.4 microM tropomyosin) the half-life time of assembly of tropomyosin with actin filaments was found to be less than 1 s. The results were analyzed quantitatively by a model in which tropomyosin initially binds to isolated sites. Further tropomyosin molecules bind contiguously to bound tropomyosin along the actin filaments. Good agreement between the experimental and theoretical time course of assembly was obtained by assuming a fast preequilibrium between free and isolatedly bound tropomyosin.  相似文献   

4.
Equilibrium of the actin-tropomyosin interaction   总被引:8,自引:0,他引:8  
The actin-tropornyosin interaction was studied by means of light-scattering. The experimental data were analysed on the basis of the model of co-operative binding of large ligands to a one-dimensional lattice with overlapping binding sites. The affinity of tropomyosin for actin filaments was dependent on the magnesium concentration. A fivefold increase of the magnesium concentration (from 0·5 mm to 2·5 mm) enhanced the equilibrium constant twofold (from 700 to 1600 m?1) for the isolated binding of tropomyosin molecules to actin filaments. At low magnesium concentrations (0·5 mm), tropomyosin molecules were bound to isolated binding sites on an actin filament about 600 times more weakly than to contiguous binding sites. At increased magnesium concentrations (2·5 mm), the tendency of tropomyosin to bind contiguously increased twofold. Due to the co-operative nature of the actin-tropomyosin interaction, a small change in the magnesium concentration may cause a great change of the structural organisation of the complex. A small enhancement of the magnesium concentration (from 1 mm to 1·5 mm) caused bare filaments to be covered almost completely with tropomyosin. The length of tropomyosin clusters and the number of gaps on actin filaments depended strongly on the magnesium concentration. From the values of the experimentally determined equilibrium constants, it was concluded that the end-to-end interaction of tropomyosin was not strong enough to bring about all-or-none behaviour, where actin filaments of physiological length (~1000 nm) are either completely covered with or completely free of tropomyosin.  相似文献   

5.
The equilibrium constant for binding of the gelsolin-actin complex to the barbed ends of actin filaments was measured by the depolymerizing effect of the gelsolin-actin complex on actin filaments. When the gelsolin-actin complex blocks monomer consumption at the lengthening barbed ends of treadmilling actin filaments, monomers continue to be produced at the shortening pointed ends until a new steady state is reached in which monomer production at the pointed ends is balanced by monomer consumption at the uncapped barbed ends. By using this effect the equilibrium constant for binding was determined to be about 1.5 X 10(10) M-1 in excess EGTA over total calcium (experimental conditions: 1 mM MgCl2, 100 mM KCl, pH 7.5, 37 degrees C). In the presence of Ca2+ the equilibrium constant was found to be in the range of or above 10(11) M-1. The rate constant of binding of the gelsolin-actin complex to the barbed ends was measured by inhibition of elongation of actin filaments. Nucleation of new filaments by the gelsolin-actin complex towards the pointed ends was prevented by keeping the monomer concentration below the critical monomer concentration of the pointed ends where the barbed ends of treadmilling actin filaments elongate and the pointed ends shorten. The gelsolin-actin complex was found to bind fourfold faster to the barbed ends in the presence of Ca2+ (10 X 10(6) M-1 s-1) than in excess EGTA (2.5 X 10(6) M-1 s-1). Dissociation of the gelsolin-actin complex from the barbed ends can be calculated to be rather slow. In excess EGTA the rate constant of dissociation is about 1.7 X 10(-4) s-1. In the presence of Ca2+ this dissociation rate constant is in the range of or below 10(-4) s-1.  相似文献   

6.
Tropomodulin caps the pointed ends of actin filaments   总被引:10,自引:3,他引:7       下载免费PDF全文
《The Journal of cell biology》1994,127(6):1627-1635
Many proteins have been shown to cap the fast growing (barbed) ends of actin filaments, but none have been shown to block elongation and depolymerization at the slow growing (pointed) filament ends. Tropomodulin is a tropomyosin-binding protein originally isolated from red blood cells that has been localized by immunofluorescence staining to a site at or near the pointed ends of skeletal muscle thin filaments (Fowler, V. M., M. A., Sussman, P. G. Miller, B. E. Flucher, and M. P. Daniels. 1993. J. Cell Biol. 120: 411-420). Our experiments demonstrate that tropomodulin in conjunction with tropomyosin is a pointed end capping protein: it completely blocks both elongation and depolymerization at the pointed ends of tropomyosin-containing actin filaments in concentrations stoichiometric to the concentration of filament ends (Kd < or = 1 nM). In the absence of tropomyosin, tropomodulin acts as a "leaky" cap, partially inhibiting elongation and depolymerization at the pointed filament ends (Kd for inhibition of elongation = 0.1-0.4 microM). Thus, tropomodulin can bind directly to actin at the pointed filament end. Tropomodulin also doubles the critical concentration at the pointed ends of pure actin filaments without affecting either the rate of extent of polymerization at the barbed filament ends, indicating that tropomodulin does not sequester actin monomers. Our experiments provide direct biochemical evidence that tropomodulin binds to both the terminal tropomyosin and actin molecules at the pointed filament end, and is the long sought-after pointed end capping protein. We propose that tropomodulin plays a role in maintaining the narrow length distributions of the stable, tropomyosin-containing actin filaments in striated muscle and in red blood cells.  相似文献   

7.
M Wanger  A Wegner 《Biochemistry》1985,24(4):1035-1040
Depolymerization of treadmilling actin filaments by a capping protein isolated from bovine brain was used for determination of the equilibrium constant for binding of the capping protein to the barbed ends of actin filaments. When the capping protein blocks monomer consumption at the lengthening barbed ends, monomers continue to be produced at the shortening pointed ends until a new steady state is reached in which monomer production at the pointed ends is balanced by monomer consumption at the uncapped barbed ends. In this way the ratio of capped to uncapped filaments could be determined as a function of the capping protein concentration. Under the experimental conditions (100 mM KCl and 2 mM MgCl2, pH 7.5, 37 degrees C) the binding constant was found to be about 2 X 10(9) M-1. Capping proteins effect the actin monomer concentration only at capping protein concentrations far above the reciprocal of their binding constant. Half-maximal increase of the monomer concentration requires capping of about 99% of the actin filaments. A low proportion of uncapped filaments has a great weight in determining the monomer concentration because association and dissociation reactions occur at the dynamic barbed ends with higher frequencies than at the pointed ends.  相似文献   

8.
Tropomodulins (Tmod) bind to the N terminus of tropomyosin and cap the pointed end of actin filaments. Tropomyosin alone also inhibits the rate of actin depolymerization at the pointed end of filaments. Here we have defined 1) the structural requirements of the N terminus of tropomyosin important for regulating the pointed end alone and with erythrocyte Tmod (Tmod1), and 2) the Tmod1 subdomains required for binding to tropomyosin and for regulating the pointed end. Changes in pyrene-actin fluorescence during polymerization and depolymerization were measured with actin filaments blocked at the barbed end with gelsolin. Three tropomyosin isoforms differently influence pointed end dynamics. Recombinant TM5a, a short non-muscle alpha-tropomyosin, inhibited depolymerization. Recombinant (unacetylated) TM2 and N-acetylated striated muscle TM (stTM), long alpha-tropomyosin isoforms with the same N-terminal sequence, different from TM5a, also inhibited depolymerization but were less effective than TM5a. All blocked the pointed end with Tmod1 in the order of effectiveness TM5a >stTM >TM2, showing the importance of the N-terminal sequence and modification. Tmod1-(1-344), lacking the C-terminal 15 residues, did not nucleate polymerization but blocked the pointed end with all three tropomyosin isoforms as does a shorter fragment, Tmod1-(1-92), lacking the C-terminal "capping" domain though higher concentrations were required. An even shorter fragment, Tmod1-(1-48), bound tropomyosin but did not influence actin filament elongation. Tropomyosin-Tmod may function to locally regulate cytoskeletal dynamics in cells by stabilizing actin filaments.  相似文献   

9.
A A Lal  E D Korn 《Biochemistry》1986,25(5):1154-1158
At saturating concentrations, tropomyosin inhibited the rate of spontaneous polymerization of ATP-actin and also inhibited by 40% the rates of association and dissociation of actin monomers to and from filaments. However, tropomyosin had no effect on the critical concentrations of ATP-actin or ADP-actin. The tropomyosin-troponin complex, with or without Ca2+, had a similar effect as tropomyosin alone on the rate of polymerization of ATP-actin. Although tropomyosin binds to F-actin and not to G-actin, the absence of an effect on the actin critical concentration is probably explicable in terms of the highly cooperative nature of the binding of tropomyosin to F-actin and its very low affinity for a single F-actin subunit relative to the affinity of one actin subunit for another in F-actin.  相似文献   

10.
The time-course of actin assembly was measured in the absence and in the presence of tropomyosin. The polymerization was followed by the fluorescence enhancement of a 7-chloro-4-nitrobenzeno-2-oxa-1,3-diazole label attached to actin molecules or by light-scattering. The kinetic curves measured in the absence and in the presence of tropomyosin revealed characteristic differences. Tropomyosin was found to retard actin polymerization and to cause the final constant actin monomer concentration to be reached slowly. In the absence of tropomyosin, the final constant actin monomer concentration was approached considerably faster. The time-course of polymerization was interpreted quantitatively in terms of inhibition of actin filament fragmentation by tropomyosin molecules bound along the filaments. Within the limits of this model, actin monomers are consumed slowly in the presence of tropomyosin because the creation of new filament ends by spontaneous fragmentation is inhibited by tropomyosin.  相似文献   

11.
Nonmuscle caldesmon purified from cultured rat cells shows a molecular weight of 83,000 on SDS gels, Stokes radius of 60.5 A, and sedimentation coefficient (S20,w) of 3.5 in the presence of reducing agents. These values give a native molecular weight of 87,000 and a frictional ratio of 2.04, suggesting that the molecule is a monomeric, asymmetric protein. In the absence of reducing agents, the protein is self-associated, through disulfide bonds, into oligomers with a molecular weight of 230,000 on SDS gels. These S-S oligomers appear to be responsible for the actin-bundling activity of nonmuscle caldesmon in the absence of reducing agents. Actin binding is saturated at a molar ratio of one 83-kD protein to six actins with an apparent binding constant of 5 X 10(6) M-1. Because of 83-kD nonmuscle caldesmon and tropomyosin are colocalized in stress fibers of cultured cells, we have examined effects of 83-kD protein on the actin binding of cultured cell tropomyosin. Of five isoforms of cultured rat cell tropomyosin, tropomyosin isoforms with high molecular weight values (40,000 and 36,500) show higher affinity to actin than do tropomyosin isoforms with low molecular weight values (32,400 and 32,000) (Matsumura, F., and S. Yamashiro-Matsumura. 1986. J. Biol. Chem. 260:13851-13859). At physiological concentration of KCl (100 mM), 83-kD nonmuscle caldesmon stimulates binding of low molecular weight tropomyosins to actin and increases the apparent binding constant (Ka from 4.4 X 10(5) to 1.5 X 10(6) M-1. In contrast, 83-kD protein has slight stimulation of actin binding of high molecular weight tropomyosins because high molecular weight tropomyosins bind to actin strongly in this condition. As the binding of 83-kD protein to actin is regulated by calcium/calmodulin, 83-kD protein regulates the binding of low molecular weight tropomyosins to actin in a calcium/calmodulin-dependent way. Using monoclonal antibodies to visualize nonmuscle caldesmon along microfilaments or actin filaments reconstituted with purified 83-kD protein, we demonstrate that 83-kD nonmuscle caldesmon is localized periodically along microfilaments or actin filaments with similar periodicity (36 +/- 4 nm) as tropomyosin. These results suggest that 83-kD protein plays an important role in the organization of microfilaments, as well as the control of the motility, through the regulation of the binding of tropomyosin to actin.  相似文献   

12.
《Biophysical journal》2019,116(12):2275-2284
The initial binding of tropomyosin onto actin filaments and then its polymerization into continuous cables on the filament surface must be precisely tuned to overall thin-filament structure, function, and performance. Low-affinity interaction of tropomyosin with actin has to be sufficiently strong to localize the tropomyosin on actin, yet not so tight that regulatory movement on filaments is curtailed. Likewise, head-to-tail association of tropomyosin molecules must be favorable enough to promote tropomyosin cable formation but not so tenacious that polymerization precedes filament binding. Arguably, little molecular detail on early tropomyosin binding steps has been revealed since Wegner’s seminal studies on filament assembly almost 40 years ago. Thus, interpretation of mutation-based actin-tropomyosin binding anomalies leading to cardiomyopathies cannot be described fully. In vitro, tropomyosin binding is masked by explosive tropomyosin polymerization once cable formation is initiated on actin filaments. In contrast, in silico analysis, characterizing molecular dynamics simulations of single wild-type and mutant tropomyosin molecules on F-actin, is not complicated by tropomyosin polymerization at all. In fact, molecular dynamics performed here demonstrates that a midpiece tropomyosin domain is essential for normal actin-tropomyosin interaction and that this interaction is strictly conserved in a number of tropomyosin mutant species. Elsewhere along these mutant molecules, twisting and bending corrupts the tropomyosin superhelices as they “lose their grip” on F-actin. We propose that residual interactions displayed by these mutant tropomyosin structures with actin mimic ones that occur in early stages of thin-filament generation, as if the mutants are recapitulating the assembly process but in reverse. We conclude therefore that an initial binding step in tropomyosin assembly onto actin involves interaction of the essential centrally located domain.  相似文献   

13.
The role of the overlap region at the ends of tropomyosin molecules in the properties of regulated thin filaments has been investigated by substituting nonpolymerizable tropomyosin for tropomyosin in a reconstituted troponin-tropomyosin-actomyosin subfragment 1 ATPase assay system. A previous study [Heeley, Golosinka & Smillie (1987) J. Biol. Chem. 262, 9971-9978] has shown that at an ionic strength of 70 mM, troponin will induce full binding of nonpolymerizable tropomyosin to F-actin both in the presence and absence of calcium. At a myosin subfragment 1-to-actin ratio of 2:1 ([actin] = 4 microM) and an ionic strength of 50 mM, comparable levels of ATPase inhibition were observed with increasing levels of tropomyosin or the truncated derivative in the presence of troponin (-Ca2+). Large differences were noted, however, in the activation by Ca2+. Significantly lower ATPase activities were observed with nonpolymerizable tropomyosin and troponin (+Ca2+) over a range of subfragment 1-to-actin ratios from 0.25 to 2.5. The concentration of subfragment 1 required to generate ATPase activities exceeding those seen with actomyosin subfragment 1 alone under these conditions was 3-4-fold greater when nonpolymerizable tropomyosin was used. Similar effects were seen at the much lower ionic strength of 13 mM and are consistent with the reduced ATPase activity with nonpolymerizable tropomyosin observed previously [Walsh, Trueblood, Evans & Weber (1985) J. Mol. Biol. 182, 265-269] at low ionic strength and a subfragment 1-to-actin ratio of 1:100. Little cooperativity in activity as a function of subfragment 1 concentration with either intact tropomyosin or its truncated derivative was observed under the present conditions. Further studies are directed towards an understanding of these effects in terms of the two-state binding model for the attachment of myosin heads to regulated thin filaments.  相似文献   

14.
Tropomyosin has been shown to cause annealing of gelsolin-capped actin filaments. Here we show that tropomyosin is highly efficient in transforming even the smallest gelsolin-actin complexes into long actin filaments. At low concentrations of tropomyosin, the effect of tropomyosin depends on the length of the actin oligomer, and the cooperative nature of the process is a direct indication that tropomyosin induces a conformational change in the gelsolin-actin complexes, altering the structure at the actin (+) end such that capping by gelsolin is abolished. At increased concentrations of tropomyosin, heterodimers, trimers, and tetramers are converted to actin filaments. In addition, evidence is presented demonstrating that gelsolin, once removed from the (+) end of the actin, can reassociate with the newly formed tropomyosin-decorated actin filaments. Interestingly, the binding of gelsolin to the tropomyosin-actin filament complexes saturates at 2 gelsolin molecules per 14 actin and 2 tropomyosins, i.e. two gelsolins per tropomyosin-regulatory unit along the filament. These observations support the view that both tropomyosin and gelsolin are likely to have important functions in addition to those proposed earlier.  相似文献   

15.
Various concentrations of gelsolin (25-100 nM) were added to 2 microM polymerized actin. The concentrations of free calcium were adjusted to 0.05-1.5 microM by EGTA/Ca2+ buffer. Following addition of gelsolin actin depolymerization was observed that was caused by dissociation of actin subunits from the pointed ends of treadmilling actin filaments and inhibition by gelsolin of polymerization at barbed ends. The time course of depolymerization revealed an initial lag phase that was followed by slow decrease of the concentration of polymeric actin to reach the final steady state polymer and monomer concentration. The initial lag phase was pronounced at low free calcium and low gelsolin concentrations. On the basis of quantitative analysis the kinetics of depolymerization could be interpreted as capping, i.e. binding of gelsolin to the barbed ends of actin filaments and subsequent inhibition of polymerization, rather than severing. The main argument for this conclusion was that even gelsolin concentrations (100 nM) that exceed the concentration of filament ends ( approximately 2 nM), cause the filaments to depolymerize at a rate that is similar to the rate of depolymerization of the concentration of pointed ends existing before addition of gelsolin. The rate of capping is directly proportional to the free calcium concentration. These experiments demonstrate that at micromolar and submicromolar free calcium concentrations gelsolin acts as a calcium-regulated capping protein but not as an actin filament severing protein, and that the calcium binding sites of gelsolin which regulate the various functions of gelsolin (capping, severing and monomer binding), differ in their calcium affinity.  相似文献   

16.
The ATPase activity of acto-myosin subfragment 1 (S1) at low ratios of S1 to actin in the presence of tropomyosin is dependent on the tropomyosin source and ionic conditions. Whereas skeletal muscle tropomyosin causes a 60% inhibitory effect at all ionic strengths, the effect of smooth muscle tropomyosin was found to be dependent on the ionic strength. At low ionic strength (20 mM) smooth muscle tropomyosin inhibits the ATPase activity by 60%, while at high ionic strength (120 mM) it potentiates the ATPase activity three- to five-fold. Therefore, the difference in the effect of smooth muscle and skeletal muscle tropomyosin on the acto-S1 ATPase activity was due to a greater fraction of the tropomyosin-actin complex being turned on in the absence of S1 with smooth muscle tropomyosin than with skeletal muscle tropomyosin. Using well-oriented gels of actin and of reconstituted specimens from vertebrate smooth muscle thin filament proteins suitable for X-ray diffraction, we localized the position of tropomyosin on actin under different levels of acto-S1 ATPase activity. By analysing the equatorial X-ray pattern of the oriented specimens in combination with solution scattering experiments, we conclude that tropomyosin is located at a binding radius of about 3.5 nm on the f-actin helix under all conditions studied. Furthermore, we find no evidence that the azimuthal position of tropomyosin is different for smooth muscle tropomyosin at various ionic strengths, or vertebrate tropomyosin, since the second actin layer-line intensity (at 17.9 nm axial and 4.3 nm radial spacing), which was shown in skeletal muscle to be a sensitive measure of this parameter, remains strong and unchanged. Differences in the ATPase activity are not necessarily correlated with different positions of tropomyosin on f-actin. The same conclusion is drawn from our observations that, although the regulatory protein caldesmon inhibits the ATPase activity in native and reconstituted vertebrate smooth muscle thin filaments at a molar ratio of actin/tropomyosin/caldesmon of 28:7:1, the second actin layer-line remains strong. Only adding caldesmon in excess reduces the intensity of the second actin layer-line, from which the binding radius of caldesmon can be estimated to be about 4 nm. The lack of predominant meridional reflections in oriented specimens, with caldesmon present, suggests that caldesmon does not project away from the thin filament as troponin molecules in vertebrate striated muscle in agreement with electron micrographs of smooth muscle thin filaments. In freshly prepared native smooth muscle thin filaments we observed a Ca(2+)-sensitive reversible bundling effect.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
An actin polymerization-retarding protein was isolated from chicken gizzard smooth muscle. This protein copurified with vinculin on DEAE-cellulose and gel filtration columns. The polymerization-retarding protein could be separated from vinculin by hydroxylapatite chromatography. The isolated polymerization-retarding protein lost its activity within a few days, but was stable for weeks when it was not separated from vinculin. We termed the polymerization-retarding protein "insertin". Because of the instability of the isolated insertin, we investigated the effect of insertin-vinculin on actin polymerization. Insertin-vinculin retarded nucleated actin polymerization maximally fivefold. Polymerization at the pointed ends of gelsolin-capped actin filaments was not affected by insertin-vinculin, suggesting that insertin-vinculin binds to the barbed ends, but not to the pointed ends, of actin filaments. Retarded polymerization was observed even if the actin monomer concentration was between the critical concentrations of the ends of treadmilling actin filaments. As at this low monomer concentration the pointed ends depolymerize, monomers appeared to be inserted at the barbed ends between the terminal subunit and barbed end-bound insertin molecules. Insertin-vinculin was found not to increase the actin monomer concentration to the value of the pointed ends. These observations support the conclusion that insertin is not a barbed end-capping protein but an actin monomer-inserting protein. According to a quantitative analysis of the kinetic data, all observations could be explained by a model in which two insertin molecules were assumed to bind co-operatively to the barbed ends of actin filaments. Actin monomers were found to be inserted between the barbed ends and barbed end-bound insertin molecules at a rate of about 1 x 10(6) M-1 s-1. Insertin may be an essential part of the machinery of molecules that permit treadmilling of actin filaments in living cells by insertion of actin molecules between membranes and actin filaments.  相似文献   

18.
Acanthamoeba profilin strongly inhibits in a concentration-dependent fashion the rate and extent of Acanthamoeba actin polymerization in 50 mM KCl. The lag phase is prolonged indicating reduction in the rate of nucleus formation. The elongation rates at both the barbed and pointed ends of growing filaments are inhibited. At steady state, profilin increases the critical concentration for polymerization but has no effect on the reduced viscosity above the critical concentration. Addition of profilin to polymerized actin causes it to depolymerize until a new steady-state, dependent on profilin concentration, is achieved. These effects of profilin can be explained by the formation of a 1:1 complex with actin with a dissociation constant of 1 to 4 microM. MgCl2 strongly inhibits these effects of profilin, most likely by binding to the high-affinity divalent cation site on the actin. Acanthamoeba profilin has similar but weaker effects on muscle actin, requiring 5 to 10 times more profilin than with amoeba actin.  相似文献   

19.
Phalloidin enhances actin assembly by preventing monomer dissociation   总被引:20,自引:11,他引:9       下载免费PDF全文
Incubation of the isolated acrosomal bundles of Limulus sperm with skeletal muscle actin results in assembly of actin onto both ends of the bundles. These cross-linked bundles of actin filaments taper, thus allowing one to distinguish directly the preferred end for actin assembly from the nonpreferred end; the preferred end is thinner. Incubation with actin in the presence of equimolar phalloidin in 100 mM KCl, 1 mM MgCl2 and 0.5 mM ATP at pH 7.5 resulted in a slightly smaller association rate constant at the preferred end than in the absence of the drug (3.36 +/- 0.14 X 10(6) M-1 s-1 vs. 2.63 +/- 0.22 X 10(6) M-1 s- 1, control vs. experimental). In the presence of phalloidin, the dissociation rate constant at the preferred end was reduced from 0.317 +/- 0.097 s-1 to essentially zero. Consequently, the critical concentration at the preferred end dropped from 0.10 microM to zero in the presence of the drug. There was no detectable change in the rate constant of association at the nonpreferred end in the presence of phalloidin (0.256 +/- 0.015 X 10(6) M-1 s-1 vs. 0.256 +/- 0.043 X 10(6) M-1 s-1, control vs. experimental); however, the dissociation rate constant was reduced from 0.269 +/- 0.043 s-1 to essentially zero. Thus, the critical concentration at the nonpreferred end changed from 1.02 microM to zero in the presence of phalloidin. Dilution-induced depolymerization at both the preferred and nonpreferred ends was prevented in the presence of phalloidin. Thus, phalloidin enhances actin assembly by lowering the critical concentration at both ends of actin filaments, a consequence of reducing the dissociation rate constants at each end.  相似文献   

20.
Profilin interacts with the barbed ends of actin filaments and is thought to facilitate in vivo actin polymerization. This conclusion is based primarily on in vitro kinetic experiments using relatively low concentrations of profilin (1-5 microm). However, the cell contains actin regulatory proteins with multiple profilin binding sites that potentially can attract millimolar concentrations of profilin to areas requiring rapid actin filament turnover. We have studied the effects of higher concentrations of profilin (10-100 microm) on actin monomer kinetics at the barbed end. Prior work indicated that profilin might augment actin filament depolymerization in this range of profilin concentration. At barbed-end saturating concentrations (final concentration, approximately 40 microm), profilin accelerated the off-rate of actin monomers by a factor of four to six. Comparable concentrations of latrunculin had no detectable effect on the depolymerization rate, indicating that profilin-mediated acceleration was independent of monomer sequestration. Furthermore, we have found that high concentrations of profilin can successfully compete with CapG for the barbed end and uncap actin filaments, and a simple equilibrium model of competitive binding could explain these effects. In contrast, neither gelsolin nor CapZ could be dissociated from actin filaments under the same conditions. These differences in the ability of profilin to dissociate capping proteins may explain earlier in vivo data showing selective depolymerization of actin filaments after microinjection of profilin. The finding that profilin can uncap actin filaments was not previously appreciated, and this newly discovered function may have important implications for filament elongation as well as depolymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号