首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transgenic locus composition and T-DNA linkage configuration were assessed in a population of rice plants transformed using the dual-binary vector system pGreen (T-DNA containing the bar and gus genes)/pSoup (T-DNA containing the aphIV and gfp genes). Transgene structure, expression and inheritance were analysed in 62 independently transformed plant lines and in around 4,000 progeny plants. The plant lines exhibited a wide variety of transgenic locus number and composition. The most frequent form of integration was where both T-DNAs integrated at the same locus (56% of loci). When single-type T-DNA integration occurred (44% of loci), pGreen T-DNA was preferentially integrated. In around half of the plant lines (52%), the T-DNAs integrated at two independent loci or more. In these plants, both mixed and single-type T-DNA integration often occurred concurrently at different loci during the transformation process. Non-intact T-DNAs were present in 70–78% of the plant lines causing 14–21% of the loci to contain only the mid to right border part of a T-DNA. In 53–66% of the loci, T-DNA integrated with vector backbone sequences. Comparison of transgene presence and expression in progeny plants showed that segregation of the transgene phenotype was not a reliable indicator of either transgene inheritance or T-DNA linkage, as only 60–80% of the transgenic loci were detected by the expression study. Co-expression (28% of lines) and backbone transfer (53–66% of loci) were generally a greater limitation to the production of marker-free T1 plants expressing the gene of interest than co-transformation (71% of lines) and unlinked integration (44% of loci).  相似文献   

2.
Bahiagrass (Paspalum notatum Flüggé) is the predominant forage grass in the southeastern US. The commercially important bahiagrass cultivar ‘Argentine’ is preferred for genetic transformation over sexual diploid cytotypes, since it produces uniform seed progeny through apomixis. Pseudogamous apomictic seed production in Argentine bahiagrass may contribute to transgene confinement. It is characterized by embryo development which is independent of fertilization of the egg cell, but requires fertilization with compatible pollen to produce the endosperm. Pollen-mediated gene transfer from transgenic, glufosinate-resistant apomictic bahiagrass as pollen donor at close proximity (0.5–3.5 m) with non-transgenic sexual or apomictic bahiagrass cultivars as pollen receptors was evaluated under field conditions. Hybridization frequency was evaluated by glufosinate herbicide resistance in >23,300 seedlings derived from open-pollinated (OP) pollen receptor plants. Average gene transfer between transgenic apomictic, tetraploid and sexual diploid bahiagrass was 0.03%. Herbicide-resistant hybrids confirmed by immuno-chromatographic detection of the PAT protein displayed a single copy bar gene identical to the pollen parent. Hybrids resulting from diploid pollen receptors were confirmed as triploids or aneu-triploids with significantly reduced vigor and seed set as compared to the parents. Transmission of transgenes to sexual bahiagrass is severely restricted by the ploidy difference between tetraploid apomicts and diploid sexual bahiagrass. Average gene transfer between transgenic apomictic tetraploid and non-transgenic, apomictic tetraploid bahiagrass was 0.17%, confirming a very low frequency of amphimixis in apomictic bahiagrass cultivars. While not providing complete transgene containment, gene transfer between transgenic apomictic and non-transgenic bahiagrass occurs at a much lower frequency than reported for other cross-pollinating or facultative apomictic grasses.  相似文献   

3.
Detailed molecular characterisation of transgene loci is a requirement for gaining regulatory approval for environmental release of genetically modified crops. In cereals, it is generally accepted that Agrobacterium-mediated transformation generates cleaner transgene loci with lower copy number and fewer rearrangements than those generated by biolistics. However, in wheat there has been little detailed analysis of T-DNA insertions at genetic and molecular level. Wheat lines transformed using Agrobacterium tumefaciens with bar and gusA (GUS) genes were subjected to genetic and molecular analysis. Unlike previous studies of transgene loci in wheat, we used functional assays for PAT and GUS proteins, combined with PCR and Southern analysis to detect the presence, copy number, linkage and transmission of two transgenes inserted in the same T-DNA. Thirty-four independent transgenic lines were categorised into three types: type I events (38% of total) where the gusA and bar genes displayed complete genetic linkage, segregating together as a single functional locus at the expected ratio of 3:1; type II events (18%), which possessed two or more transgene loci each containing gusA and bar; and type III events (44%), containing an incomplete T-DNA in which either the gusA or bar gene was lost. Most lines in this last category had lost the bar gene situated near the left T-DNA border. Southern analysis indicated that 30% of all lines possessed a single T-DNA copy containing gusA and bar. However, when data on expression and molecular analysis are combined, only 23% of all lines have single copy T-DNAs in which both gene cassettes are functioning. We also report on the presence of plasmid backbone DNA sequence in transgene loci detected using primer pairs outside the left and right T-DNA borders and within the plasmid selectable marker (NptI) gene. Approximately two thirds of the lines contained some vector backbone DNA, more frequently adjacent to the left border. Taken together, these data imply unstable left border function causing premature T-strand termination or read-through into vector backbone. As far as we are aware, this is the first report revealing near border T-DNA truncation and vector backbone integration in wheat transgenic lines produced by Agrobacterium-mediated transformation.  相似文献   

4.
5.
This paper reports on the successful Agrobacterium-mediated transformation of oat, and on some factors influencing this process. In the first step of the experiments, three cultivars, two types of explant, and three combinations of strain/vectors, which were successfully used for transformation of other cereals were tested. Transgenic plants were obtained from the immature embryos of cvs. Bajka, Slawko and Akt and from leaf base explants of cv. Bajka after transformation with A. thumefaciens strain LBA4404(pTOK233). The highest transformation rate (12.3%) was obtained for immature embryos of cv. Bajka. About 79% of the selected plants proved to be transgenic; however, only 14.3% of the T0 plants and 27.5% of the T1 showed GUS expression. Cell competence of both types of explant differed in terms of their transformation ability and transgene expression. The next step of the study was to test the suitability for oat transformation of the pGreen binary vector combined with different selection cassettes: nptII or bar under the nos or 35S promoter. Transgenic plants were selected in combinations transformed with nos::nptII, 35S::nptII and nos::bar. The highest transformation efficiency (5.3%) was obtained for cv. Akt transformed with nos::nptII. A detailed analysis of the T0 plants selected from a given callus line and their progeny revealed that they were the mixture of transgenic, chimeric-transgenic and non-transgenic individuals. Southern blot analysis of T0 and T1 showed simple integration pattern with the low copy number of the introduced transgenes.  相似文献   

6.
Sugarcane (Saccharum spp. hybrids) is an interspecific hybrid with a highly polyploid and frequently aneuploid genome. This C4 grass accounts for nearly 70% of the global sugar production and more recently has become an important biofuel feedstock. Biolistic gene transfer of plasmid DNA is the most frequently used approach for genetic transformation of sugarcane. Minimal expression cassettes lacking vector backbone sequences (MC) have been reported to support simple transgene integration in other species. In this study, we introduced a MC of nptII into embryogenic callus derived from immature leaf whorl cross-sections by biolistic gene transfer. The precipitation equivalents of 12.5, 25 or 50 ng of the nptII MC were delivered per shot to the target tissue with 1.0 μm gold particles. A total of 203 independent putative transgenic plants were regenerated following 80 bombardments and selection on geneticin or paromomycin containing media and 176 transgenic lines were confirmed with PCR. Twenty independent transgenic lines were selected for Southern blot analysis and expression analysis by NPTII ELISA from each of the three treatments. Genomic DNA from transgenic sugarcane plants displayed two to 13 nptII hybridization signals on Southern blots. There was a trend toward reduced transgene integration complexity and reduced transgene expression levels when lower (12.5 ng) MC was used per shot. These results demonstrate that backbone free MCs can be efficiently integrated and expressed in sugarcane.  相似文献   

7.
Whole plasmids are used in both Agrobacterium-mediated transformation and direct DNA transfer, generally leading to the integration of vector backbone sequences into the host genome along with the transgene(s). This is undesirable, as vector backbone sequences often have negative effects on transgene or endogenous gene expression, and can promote transgene rearrangements. We, therefore, bombarded rice tissue with two constructs: a plasmid containing the bar gene, and a linear DNA fragment isolated from the same plasmid, corresponding to the minimal bar gene expression cassette (promoter, open reading frame and terminator). We recovered phosphinothricin-resistant plants from both experiments, showing that the selectable marker was efficiently expressed. Transformation with such constructs resulted in predominantly 'simple' integration events (one or two bands on Southern blots), producing low-copy-number transgenic plants with a low frequency of transgene rearrangements. Conversely, transformation with supercoiled or linearized whole plasmids generated plants with 'complex' integration patterns, that is, higher copy numbers and frequent transgene rearrangements. We monitored transgenic lines through to the R4 generation and observed no silencing in plants carrying minimal constructs. We also carried out experiments in which rice tissue was simultaneously bombarded with minimal linear hpt and gusA cassettes. We observed robust GUS activity in hygromycin-resistant plants, confirming co-expression of the selectable and nonselectable markers. Furthermore, the efficiency of cotransformation using minimal constructs was the same as that using supercoiled plasmid cointegrate vectors.  相似文献   

8.
Pollen-mediated gene transfer from stress tolerant or herbicide-resistant transgenic plants may cause environmental or agronomic problems. Apomictic seed production found in some bahiagrass cultivars may serve as a natural transgene containment system. Under greenhouse conditions, the average gene transfer frequency from an herbicide-resistant apomictic tetraploid to a population of sexual diploid bahiagrass genotypes or apomictic tetraploid bahiagrass was 0.16% when the transgenic pollen donor was placed at 0.5–1.5 m distance from the non-transgenic pollen receptors. The herbicide-resistant hybrids were characterized for transgene integration, expression and ploidy, by Southern blot analysis, immuno-chromatography and flow cytometry, respectively. Hybrids resulting from open pollination of non-transgenic diploid female plants with transgenic tetraploid male plants were triploids or near-triploids, with 2n = 26–34. These hybrids displayed a wide range of phenotypic variability, including some non-persistent or non-flowering dwarf-type hybrids with good vigor, or hybrids with vegetative growth similar to non-transgenic plants, but with significantly reduced seed set. Non-flowering aneu-triploids with good vigor/field performance will provide the highest level of transgene containment. Embryo sac analysis of pollinated spikelets confirmed a high proportion of aborted ovules. An apospory-linked RFLP marker was detected in 13 of the 15 near-triploid hybrids. All flowering aneuploid hybrids displayed significantly reduced seed set, and none of the sexual near-triploid hybrids produced any seeds. All tetraploid gene transfer events carried the apospory-linked RFLP marker, suggesting that despite the presence of the aposporus locus, a low degree of sexuality co-exists in apomictic tetraploid cultivars. Thus, tetraploid apomictic bahiagrass does not provide complete transgene containment, although intra-specific gene transfer is drastically reduced compared to sexually reproducing perennial grasses.  相似文献   

9.
10.
Zhao  Yang  Kim  Jae Y.  Karan  Ratna  Jung  Je H.  Pathak  Bhuvan  Williamson  Bruce  Kannan  Baskaran  Wang  Duoduo  Fan  Chunyang  Yu  Wenjin  Dong  Shujie  Srivastava  Vibha  Altpeter  Fredy 《Plant molecular biology》2019,100(3):247-263
Key message

A selectable marker free, highly expressed single copy locus flanked by insulators was created as landing pad for transgene stacking in sugarcane. These events displayed superior transgene expression compared to single-copy transgenic lines lacking insulators. Excision of the selectable marker gene from transgenic sugarcane lines was supported by FLPe/FRT site-specific recombination.

Abstract

Sugarcane, a tropical C4 grass in the genus Saccharum (Poaceae), accounts for nearly 80% of sugar produced worldwide and is also an important feedstock for biofuel production. Generating transgenic sugarcane with predictable and stable transgene expression is critical for crop improvement. In this study, we generated a highly expressed single copy locus as landing pad for transgene stacking. Transgenic sugarcane lines with stable integration of a single copy nptII expression cassette flanked by insulators supported higher transgene expression along with reduced line to line variation when compared to single copy events without insulators by NPTII ELISA analysis. Subsequently, the nptII selectable marker gene was efficiently excised from the sugarcane genome by the FLPe/FRT site-specific recombination system to create selectable marker free plants. This study provides valuable resources for future gene stacking using site-specific recombination or genome editing tools.

  相似文献   

11.
The utility of transgenic plants for both experimental and practical agronomic purposes is highly dependent on stable, predictable, and heritable expression of the introduced genes. This requirement is frequently unfulfilled, and transgenes often are completely silenced. Studies of transgenic loci have shown that rearrangements of transgenes occur during the integration process, some of which are potent cues that induce silencing. Conversely, intact, single-copy transgenes produced via transposon-mediated gene delivery have shown relatively stable expression, at least in early-generation progeny. To examine the long-term expression stability of a bar expression cassette delivered via Dissociation (Ds)-mediated transposition, we examined qualitative and quantitative expression in barley (Hordeum vulgare L.) populations developed for transposon tagging. Qualitative assessments of herbicide resistance among 106 lines showed bar expression to be stable for at least five generations of advance via self-pollination. Similarly, qualitatively stable expression was observed among 31 near-isogenic lines derived from at least seven backcrosses to the cultivar Garnet. Quantitative RT-PCR measurements of bar expression were conducted for eight near-isogenic lines and their donor parents. The expression of bar was highly correlated in parent and progeny near-isogenic lines, showing high heritability of bar expression. These data demonstrate stable, predictable transgene expression following Ds-mediated delivery.  相似文献   

12.
An Agrobacterium tumefaciens-mediated transformation protocol has been developed for embryogenic cell cultures of Pinus radiata. Transgenic lines were only produced when embryogenic tissue was placed on nurse tissue during the Agrobacterium co-cultivation and recovery stages of the procedure. Plantlets were regenerated via somatic embryogenesis from ten of the 11 transgenic lines tested and at least 20 of each line were planted in a GMO glasshouse. Expression of the nptII, uidA and bar genes in up to ten plants of each individual transgenic line was evaluated by molecular, biochemical and functional analysis. As expected, expression of the nptII gene varied among the ten lines, while within ten replicates of the same line, nptII expression appeared to be consistent, with the exception of one line, K3. Likewise, the level of GUS activity varied among transgenic lines, but was relatively consistent in plants derived from the same tissue, except for two lines, G4 and G5. Moreover, similar absolute values and pattern of gene expression of uidA was observed in the transgenic plants, for two consecutive years. Plantlets from eight lines survived a spray treatment with the equivalent of 2 kg/ha and 4 kg/ha of the commercial formulation Buster, whereas non-transformed controls died. Southern hybridisation analysis of embryogenic tissue and green needle tissue from putative transgenic lines demonstrated a relatively low number of gene insertions (from one to nine) of both the bar and nptII genes in the nine transgenic lines tested.  相似文献   

13.
Transgene expression in maize cells changed from intron-independent to intron-dependent by an exact exchange of the bar coding region for that of cat. By deletion mapping an approximately 100 nucleotide sequence element at the 5′ end of the cat coding region was identified that, when inserted at the translation start site of the bar gene, impaired expression. Successive inclusion of the salT intron in the 5′ untranslated region (UTR) restored expression near to wild-type bar expression levels. A chimeric gfp gene, but not nptII gene, behaved similarly. These observations are in agreement with the view that intron-mediated enhancement of transgene expression does not enhance, but rather restores expression of an impaired gene.  相似文献   

14.
Agrobacterium tumefaciens-mediated transformation system for perilla (Perilla frutescens Britt) was developed. Agrobacterium strain EHA105 harboring binary vector pBK I containing bar and γ-tmt cassettes or pIG121Hm containing nptII, hpt, and gusA cassettes were used for transformation. Three different types of explant, hypocotyl, cotyledon and leaf, were evaluated for transformation and hypocotyl explants resulted in the highest transformation efficiency with an average of 3.1 and 2.2%, with pBK I and pIG121Hm, respectively. The Perilla spp. displayed genotype-response for transformation. The effective concentrations of selective agents were 2 mg l−1 phosphinothricin (PPT) and 150 mg l−1 kanamycin, respectively, for shoot induction and 1 mg l−1 PPT and 125 mg l−1 kanamycin, respectively, for shoot elongation. The transformation events were confirmed by herbicide Basta spray or histochemical GUS staining of T0 and T1 plants. The T-DNA integration and transgene inheritance were confirmed by PCR and Southern blot analysis of random samples of T0 and T1 transgenic plants.  相似文献   

15.
16.
This paper presents a method of Agrobacterium-mediated transformation for two diploid breeding lines of potato, and gives a detailed analysis of reporter gene expression. In our lab, these lines were also used to obtain tetraploid somatic hybrids. We tested four newly prepared constructs based on the pGreen vector system containing the selection gene nptII or bar under the 35S or nos promoter. All these vectors carried gus under 35S. We also tested the pDM805 vector, with the bar and gus genes respectively under the Ubi1 and Act1 promoters, which are strong for monocots. The selection efficiency (about 17%) was highest in the stem and leaf explants after transformation with pGreen where nptII was under 35S. About half of the selected plants were confirmed via PCR and Southern blot analysis to be transgenic and, depending on the combination, 0 to 100% showed GUS expression. GUS expression was strongest in multi-copy transgenic plants where gus was under Act1. The same potato lines carrying multi-copy bar under Ubi1 were also highly resistant to the herbicide Basta. The suggestion of using Agrobacterium-mediated transformation of diploid lines of potato as a model crop is discussed herein.  相似文献   

17.
18.
Transgenic plants of triticale cv. Wanad were obtained after transformation using three combinations of strain/vectors. Two of them were hypervirulent Agrobacterium tumefaciens strains (AGL1 and EHA101) with vectors containing bar under maize ubiquitin 1 promoter (pDM805), and both hpt under p35S and nptII under pnos (pGAH). The third one was a regular LBA4404 strain containing super-binary plasmid pTOK233 with selection genes the same as in pGAH. The efficiency of transformation was from 0 to 16% and it was dependent on the selection factor, auxin pretreatment, and the strain/vector combination. The highest number of transgenic plants was obtained after transformation with LBA4404(pTOK233) and kanamycin selection. Pretreatment of explants with picloram led to the highest number of plants obtained after transformation with both Agrobacterium/vector systems LBA4404(pTOK233) and EHA101(pGAH) and selected with kanamycin. Transgenic character of selected plants was examined by PCR using specific primers for bar, gus, nptII, and hpt and confirmed by Southern blot hybridization analysis. There was no GUS expression in T0 transgenic plants transformed with gus under p35S. However the GUS expression was detectable in the progeny of some lines. Only 30% of 46 transgenic lines showed Mendelian segregation of GUS expressing to GUS not expressing plants. In the remaining 70% the segregation was non-Mendelian and the rate was much lower than 3:1. Factors that might effect expression of transgenes in allohexaploid monocot species are discussed.  相似文献   

19.
We have optimized a procedure for genetic transformation of a major leafy vegetable crop, Amaranthus tricolor L., using epicotyl explant co-cultivation with Agrobacterium tumefaciens. Two disarmed A. tumefaciens strains EHA 105 and LBA 4404, both carrying the binary plasmid p35SGUSINT harboring the neomycin phosphotransferase II gene (nptII) and the β-glucuronidase gene (gus), were evaluated as vector systems. The former displayed a higher transforming efficiency. Several key factors influencing the transformation events were optimized. The highest percentage of transformed shoots (24.24%) was achieved using hand-pricked epicotyl explants, a 10-min infection period, with 100 μM acetosyringone-pretreated Agrobacterium culture corresponding to OD600???0.6 and diluted to 109 cells ml?1, followed by 4 d co-cultivation in the regeneration medium. Putative transformed explants capable of forming shoots were selected on medium supplemented with 75 μg?ml?1 kanamycin, and transient as well as stable glucuronidase expression was determined by histochemical analysis. From a total of 48 selected shoot lines derived from independent transformation events with epicotyl explants co-cultivated with EHA 105, 32 showed positive PCR amplification for both the nptII and gus genes. Germ line transformation and transgene stability were evident in progeny of primary transformed plants (T0). Among T1 seedlings of 12 selected transgenic plant lines, kanamycin-resistant and kanamycin-sensitive seedlings segregated in a ratio typical of the Mendelian monohybrid pattern (3:1) as verified by the chi-square (χ 2) test. Southern hybridization of genomic DNA from kanamycin-resistant T1 transgenic segregants to an nptII probe substantiated stable integration of the transgene. Neomycin phosphotransferase (NPTII) activity was detected in leaf protein extracts of selected T1 transgenic plants, thereby confirming stable expression of the nptII gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号