首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using an alkaline calcareous soil, pot experiments were conducted to elucidate the effects of NH 4 + vs. NO 3 nutrition (50 or 100 mg kg−1 soil) of wheat and maize on microbial activity in the rhizosphere and bulk soils. Dicyandiamide was used as nitrification inhibitor to maintain NH 4 + as the predominant N source for plants grown in NH 4 + -treated soil. While maize grew equally well on both N sources, root and shoot growth of wheat was higher under NH 4 + than under NO 3 nutrition. Bacterial population density on roots, but not in the rhizosphere soil, was higher under NH 4 + than under NO 3 supplied at 150 mg N kg−1 soil; whereas at both N levels applied, NH 4 + compared to NO 3 nutrition of wheat and maize significantly increased microbial biomass in the rhizosphere soil. Under both plant species, NH 4 + vs. NO 3 nutrition also increased aerobic and anaerobic respiration, and dehydrogenase activity in the rhizosphere. As microbial activity in the planted bulk and unplanted soils was hardly affected by the N-source, we hypothesize that the stimulation by NH 4 + of the rhizosphere microbial activity was probably due to higher availability of root exudates under NH 4 + than under NO 3 nutrition.  相似文献   

2.
Nitrogen excreted by cattle during grazing is a significant source of atmospheric nitrous oxide (N2O). The regulation of N2O emissions is not well understood, but may vary with urine composition and soil conditions. This laboratory study was undertaken to describe short-term effects on N2O emissions and soil conditions, including microbial dynamics, of urea amendment at two different rates (22 and 43 g N m−2). The lower urea concentration was also combined with an elevated soil NO 3 concentration. Urea solutions labelled with 25 atom%15N were added to the surface of repacked pasture soil cores and incubated for 1, 3, 6 or 9 days under constant conditions (60% WFPS, 14 °C). Soil inorganic N (NH 4 + , NO 2 and NO 3 ), pH, electrical conductivity and dissolved organic C were quantified. Microbial dynamics were followed by measurements of CO2 evolution, by analyses of membrane lipid (PLFA) composition, and by measurement of potential ammonium oxidation and denitrifying enzyme activity. The total recovery of15N averaged 84%. Conversion of urea-N to NO 3 was evident, but nitrification was delayed at the highest urea concentration and was accompanied by an accumulation of NO 2 . Nitrous oxide emissions were also delayed at the highest urea amendment level, but accelerated towards the end of the study. The pH interacted with NH 4 + to produce inhibitory concentrations of NH3(aq) at the highest urea concentration, and there was evidence for transient negative effects of urea amendment on both nitrifying and denitrifying bacteria in this treatment. However, PLFA dynamics indicated that initial inhibitory effects were replaced by increased microbial activity and net growth. It is concluded that urea-N level has qualitative, as well as quantitative effects on soil N transformations in urine patches.  相似文献   

3.
Human activities are altering biodiversity and the nitrogen (N) cycle, affecting terrestrial carbon (C) cycling globally. Only a few specialized bacteria carry out nitrification—the transformation of ammonium (NH 4 + ) to nitrate (NO 3 ), in terrestrial ecosystems, which determines the form and mobility of inorganic N in soils. However, the control of nitrification on C cycling in natural ecosystems is poorly understood. In an ecosystem experiment in the Patagonian steppe, we inhibited autotrophic nitrification and measured its effects on C and N cycling. Decreased net nitrification increased total mineral N and NH 4 + and reduced NO 3 in the soil. Plant cover (P < 0.05) and decomposition (P < 0.0001) decreased with inhibition of nitrification, in spite of increases in NH 4 + availability. There were significant changes in the natural abundance of δ15N in the dominant vegetation when nitrification was inhibited suggesting that a switch occurred in the form of N (from NO 3 to NH 4 + ) taken up by plants. Results from a controlled-condition experiment supported the field results by showing that the dominant plant species of the Patagonian steppe have a marked preference for nitrate. Our results indicate that nitrifying bacteria exert a major control on ecosystem functioning, and that the inhibition of nitrification results in significant alteration of the C cycle. The interactions between the C and N cycles suggest that rates of C cycling are affected not just by the amount of available N, but also by the relative availability for plant uptake of NH 4 + and NO 3 .  相似文献   

4.
M. Burger  L. E. Jackson 《Plant and Soil》2005,266(1-2):289-301
Immobilization of ammonium (NH 4 + ) by plants and microbes, a controlling factor of ecosystem nitrogen (N) retention, has usually been measured based on uptake of15NH 4 + solutions injected into soil. To study the influence of roots on N dynamics without stimulating consumption of NH 4 + , we estimated gross nitrification in the presence or absence of live roots in an agricultural soil. Tomato (Lycopersicon esculentum var. Peto76) plants were grown in microcosms containing root exclosures. When the plants were 7 weeks old,15N enriched nitrate (NO 3 ) was applied in the 0–150 mm soil layer. After 24 h, > 30 times more15NH 4 + was found in the soil with roots than in the soil of the root exclosures. At least 18% of the NH 4 + -N present at this time in the soil with roots had been converted from NO 3 . We estimated rates of conversion of NO 3 to NH 4 + , and rates ofNH 4 + immobilization by plants and microbes, by simulating N-flow of14+15N and15N in three models representing mechanisms that may be underlying the experimental data: Dissimilatory NO 3 reduction to NH 4 + (DNRA), plant N efflux, and microbial biomass nitrogen (MBN) turnover. Compared to NO 3 uptake, plant NH 4 + uptake was modest. Ammonium immobilization by plants and microbes was equal to at least 35% of nitrification rates. The rapid recycling of NO 3 to NH 4 + via plants and/or microbes contributes to ecosystem N retention and may enable plants growing in agricultural soils to capture more NH 4 + than generally assumed.  相似文献   

5.
In a greenhouse study, with and without rice plants, of five flooded Philippine rice soils whose organic C (OC) content varied from 0.5 to 3.6%, incorporation ofSesbania rostrata, Azolla microphylla and rice straw affected the kinetics of soil solution NH 4 + −N, K+, Fe2+, Mn2+, Zn2+, and P. Sesbania and Azolla increased NH 4 + −N concentration above the control treatment, whereas rice straw depressed it. In all soils Azolla released less NH 4 + −N than Sesbania. The apparent net N release depended on the soil and ranged from 44–81% for Sesbania and 27–52% for Azolla. These effects persisted throughout the growth of IR36. Soil solution and exchangeable NH 4 + −N increased initially but levelled off between 30 to 80 days and between 20 to 40 days after flooding (DF), respectively. With rice, soil solution NH 4 + −N concentration, reached a peak at 15–40 DF and declined to very low levels (<4mg L−1). In the 3 soils of low OC content nitrogen derived from green manure ranged from 34–53% and the apparent revovery of added green manure N varied from 29–67%. Almost all N released from both Azolla and Sesbania were recovered in the rice plant in all soils except Concepcion with only 77%. The concentration of K+, Fe2+, Mn2+ and P in the soil solution were higher with rice straw than Sesbania and Azolla in all soils except Hanggan which showed no change in Fe2+ and Mn2+ but increased K+ and P. In general, rice straw, Sesbania and Azolla decreased Zn2+ concentration in all soils.  相似文献   

6.
A field study was conducted on a clay soil (Andaqueptic Haplaquoll) in the Philippines to directly measure the evolution of (N2+N2O)−15N from 98 atom %15N-labeled urea broadcast at 29 kg N ha−1 into 0.05-m-deep floodwater at 15 days after transplanting (DT) rice. The flux of (N2+N2O)−15N during the 19 days following urea application never exceeded 28 g N ha−1 day−1. The total recovery of (N2+N2O)−15N evolved from the field was only 0.51% of the applied N, whereas total gaseous15N loss estimated from unrecovered15N in the15N balance was 41% of the applied N. Floodwater (nitrate+nitrite)−N in the 5 days following urea application never exceeded 0.14 g N m−3 or 0.3% of the applied N. Prior cropping of cowpea [Vigna unguiculata (L.) Walp.] to flowering with subsequent incorporation of the green manure (dry matter=2.5 Mg ha−1, C/N=15) at 15 days before rice transplanting had no effect on fate of urea applied to rice at 15 DT. The recovery of (N2+N2O)−15N and total15N loss during the 19 days following urea application were 0.46 and 40%, respectively. Direct recovery of evolved (N2+N2O)−15N and total15N loss from 27 kg applied nitrate-N ha−1 were 20% and 53% during the same 19-day period. The failure of directly-recovered (N2+N2O)−15N to match total15N loss from added nitrate-15N might be due to entrapment of denitrification end products in soil or transport of gaseous end products to the atmosphere through rice plants. The rapid conversion of added nitrate-N to (N2+N2O)−N, the apparently sufficient water soluble soil organic C for denitrification (101 μg C g−1 in the top 0.15-m soil layer), and the low floodwater nitrate following urea application suggested that denitrification loss from urea was controlled by supply of nitrate rather than by availability of organic C.  相似文献   

7.
The leaching of subterranean clover-derived N (15N) was investigated in a laboratory and a field experiment. In both experiments 30 cm i.d. ×50cm soil columns were used. In the laboratory experiment the clover material was buried in the soil in mesh bags, and leaching of clover-derived N was compared to leaching of added NH 4 + −N and NO 3 −N over a period of 75 days at 20°C. During that time 75% of the clover-N was released from the mesh bags and 17% of the clover-N, 50% of the NH 4 + −N and 70% of the NO 3 −N was leached through the soil column. In the field experiment 6 lysimeters and 7 control microplots were constructed. The clover material was buried in soil (to the soil of two control microplots within mesh bags) in October. During one year 2% of the added clover-N was leached. This was despite a release of 65% of the N from the mesh bag contents and despite a 26% loss of the clover-derived N in total from the controls.  相似文献   

8.
A sand-culture experiment was conducted to study the influence of a deficiency of and an excess of micronutrients on the uptake and assimilation of NH 4 + and NO 3 ions by maize. By studying the fate of15N supplied as15NH4NO3 or NH4 15NO3, it was demonstrated that in maize plants NH4−N was absorbed in preference to NO 3 −N. The uptake and distribution of N originating from both NH 4 + and NO 3 was considerably modified by deficiency of, or an excess of, micronutrients in the growth medium. The translocation of NH 4 + −N from roots to shoots was relatively less than that of NO 3 −N. Deficiency as well as excessive amounts of micronutrients, in the growth medium, substantially reduced the translocation of absorbed N into protein. This effect was more pronounced in the case of N supplied as NO 3 . Amino-N was the predominant non-protein fraction in which N from both NH 4 + and NO 3 tended to accumulate. The next important non-protein fractions were NO 3 −N when N was supplied as NO 3 and amide-N when NH 4 + was the source. The relative accumulation of15N into different protein fractions was also a function of imposed micronutrient levels.  相似文献   

9.
Induction of assimilatory NO 3 reduction through the application of an easily decomposable substrate in alkaline–saline soils of the former lake Texcoco (Mexico) resulted in a fast immobilization of NO 3 in excess of N required for metabolic activity and the release of large concentrations of NO 2 and smaller amounts of NH 4 + . We postulated that this was regulated by the amounts of NO 3 and glucose added, and affected by the specific characteristics of soil from the former lake Texcoco. This was investigated by spiking soils of different electrolytic conductivity (EC) 56.0 dS m−1 (soil A of Texcoco) and 11.6 dS m−1 (soil B of Texcoco) with different concentrations of NO 3 and glucose while dynamics of CO2, NH 4 + , NO 2 and NO 3 were monitored in an aerobic incubation for 7 days. For comparison reasons (control) an agricultural soil with low EC (0.3 dS m−1) was included as well. In the agricultural soil, 67% of the added glucose mineralized within 7 days, but only 15% in soil A of Texcoco and 20% in soil B of Texcoco. The application of NO 3 to the agricultural soil added with glucose increased cumulative production of CO2 1.2 times, 1.5 times in soil A of Texcoco and 1.8 times in soil B of Texcoco. Concentration of NO 2 increased to > 100 mg NO 2 -N kg−1 when 1000 mg glucose-C kg−1 and 500 mg NO 3 -N kg−1 were added to soil A and B of Texcoco, but remained < 3 mg NO 2 -N kg−1 in the agricultural soil. The ratio between the cumulative production of CO2 and the decrease in concentration of NO 3 was approximately one in soil A and B of Texcoco, but 10 in the agricultural soil after 3 days. It was found that micro-organisms in the alkaline–saline soil of the former lake Texcoco were capable of immobilizing large quantities of NO 3 when an easy decomposable substrate was available in excess of what might be required for metabolic activity while producing large concentrations of NO 2 , but these phenomena were absent in an agricultural soil. In soil of Texcoco, concentrations of NO 2 and NH 4 + increased with increased salinity and availability of NO 3 . This ability to remove large quantities of NO 3 under these conditions and then utilize it at a later time might benefit micro-organisms of the N limited alkaline–saline soils of Texcoco.  相似文献   

10.
Laboratory incubations were used to investigate the influence of soil mixing intensity and waterlogged conditions on nutrient mobilisation from models of cultivated heathland soil. Fragmentation of the peaty surface horizon after different soil cultivation intensities was simulated using four different surface areas of peat organic matter. In well aerated conditions, increased mobilisation of C, NH 4 + −N, PO 4 3− , K+, Ca2+ and Mg2+ was observed with increased mixing intensity and increased surface area of peat. For all nutrients apart from calcium, intensively mixed treatments showed higher mobilisation rates under waterlogging than under well aerated conditions. This was particularly clear for NH 4 −N and PO 4 3− mobilisation. Simple linear regression analysis showed that, under aerated conditions, for four mixing intensities, rates of mobilisation of NH 4 + −N, PO 4 3− , K+, Ca2+ and Mg2+ were approximately constant per unit of peat surface area exposed during soil mixing. Waterlogging was more important than soil mixing intensity in determining nitrogen mobilisation rates in saturated soil.  相似文献   

11.
The effects of slow (apatite, biotite) and fast-release nutrients (P, K, Mg) on C and N mineralization in acid forest soil were studied. These nutrients were applied alone or together with urea or urea and limestone. The production of CO2 in the soil samples taken one and three growing seasons after the application was lower in the soils treated with the fast-release nutrients than in the untreated soils. Similar reduction of microbial activity was not seen after the apatite and apatite+biotite treatments. In the first growing season, urea and urea+limestone enhanced CO2 production, but after three growing seasons, the opposite was true. Apatite and apatite+biotite added together with urea did not compensate for the decreasing effect of urea on the CO2 production. The addition of fast-release salts increased somewhat the concentration of NH inf4 sup+ in the soil and more NH4 + accumulated during laboratory incubation in the soil samples taken one growing season after the application. The urea addition immediately increased the concentrations of NH4 + and of NO3 in the soil, but, three growing seasons after application, urea had only a slight increasing effect on mineral N content of the soil. Slow-release nutrients seem to have a more favourable effect than fast-release salts on nutrient turnover in acid forest soil.  相似文献   

12.
S. C. Jarvis 《Plant and Soil》1987,100(1-3):99-112
Summary Perennial ryegrass was grown in flowing solution culture with nitrogen supplied in amounts that increased exponentially,i.e. in parallel with the rate of increase in growth. Nitrogen was supplied as either NO 3 or NH 4 + , and the amounts to be added were calculated on the basis of extrapolated values for dry weights obtained from fitted curves. There were two rates of addition for each form of N aimed at providing adequate (5.0 per cent) and less than adequate (2.75 per cent) contents in the plants in each case. Measured plant weights and N concentrations were in close agreement with predicted values over a four week experimental period. There was no effect of N-form at high N, and these plants produced 46 per cent more dry matter than the plants at low N. Only minor differences in overall growth occurred with NO 3 or NH 4 + plants at low N, but the NH 4 + plants had a greater shoot:root ratio. The absorption rate (m mol Ng root d−1) for NH 4 + -N was therefore greater than for NO 3 -N. The cation/anion composition of the plants was affected in a predicable way, and to a greater or lesser extent at high or low N, respectively, in NO 3 or NH 4 + plants. The major changes in cation composition came through effects on potassium absorption. Plants with low NO 3 appeared to be under greater N stress than those with low NH 4 + because of the lower shoot:root ratio and the greater C∶N ratio in the shoots.  相似文献   

13.
Spatial variability of soil total nitrogen (N), available N (KCl extractable NH4+ and NO3), and spatial patterns of N mineralization and nitrification at a stand scale were characterized with geostatistical and univariate analysis. Two extensive soil spatial samplings were conducted in an evergreen broadleaf forest in Sichuan province, southwestern China in June and August 2000. In a study area of 90 × 105 m2, three soil samples were collected from each 5 × 5 m2 plot (n = 378) in June and August, and were analyzed for total N and available N contents. Net N mineralization and nitrification were measured by in situ core incubation and the rates were estimated based on the difference of NH4+ and NO3 contents between the two sampling dates. Total N, NH4+, and NO3 were all spatially structured with different semivariogram ranges (from high to low: NH4+, NO3, and total N). The semivariograms of mineralization and nitrification were not as spatially structured as available N. NH4+ was the dominant soil inorganic N form in the system. Both NH4+ and NO3 affected spatial patterns of soil available N, but their relative importance switched in August, probably due to high nitrification as indicated by greatly increased soil NO3 content. High spatial auto-correlations (>0.7) were found between available N and NH4+, available N and NO3 on both sampling dates, as well as total N measurements between both sampling dates. Although significant, the spatial auto-correlation between NH4+ and NO3 were generally low. Topography had significant but low correlations with mineralization (r = −0.16) and nitrification (r = −0.14), while soil moisture did not. The large nugget values of the calculated semivariograms and high-semivariance values, particularly for mineralization and nitrification, indicate that some fine scale (<5 m) variability may lie below the threshold for detection in this study.  相似文献   

14.
A field experiment conducted at Central Rice Research Institute, Cuttack, during three successive seasons showed that with the 120-day-duration variety Ratna two dual crops ofAzolla pinnata R. Brown (Bangkok isolate) could be achieved 25 and 50 days after transplanting (DAT) by inoculating 2.0 t ha−1 of fresh Azolla 10 and 30 DAT respectively. One basal crop of Azolla could also be grown using the same inoculum 20 days before transplanting (DBT) in fallow rice fields. The three crops of Azolla grown—once before transplanting and twice after transplanting—gave an average total biomass of 38–63 and 43–64 t ha−1 fresh Azolla containing 64–90 and 76–94 kg N ha−1 respectively in the square and rectangular spacings. Two crops of Azolla grown only as a dual crop, on the other hand, gave 26–39 and 29–41 t ha−1 fresh Azolla which contained 44–61 and 43–59 kg N ha−1 respectively. Growth and yield of rice were significantly higher in Azolla basal plus Azolla dual twice incorporated treatments than in the Azolla dual twice incorporation, Azolla basal plus 30 kg N ha−1 urea and 60 kg N ha−1 urea treatments. Azolla basal plus 30 kg N ha−1 urea and 60 kg N ha−1 urea showed similar yields but Azolla dual twice incorporation was significantly lower than those. The different spacing with same plant populations did not affect growth and yield significantly, whereas Azolla growth during dual cropping was 8.3 and 64% more in the rectangular spacing than in the square spacing in Azolla basal plus Azolla dual twice incorporation and Azolla dual twice incorporation treatments.  相似文献   

15.
Tomato plants were cultivated (from 2 to 23 days after germination) in media with NO 3 , NH 4 + , or a mixture of both forms in different proportions used as the N source given with or without 5 mol dm−3 HCO 3 . The accumulation of soluble sugars (reducing sugars and sucrose) and free amino acids was higher in the roots and leaves of NH 4 + -fed plants than in NO 3 -fed plants. Starch accumulation in NH 4 + -fed plants was higher in leaves (about 28%) and lower in roots (about 37%) in comparison with that of NO 3 -fed plants. Plants cultivated in media containing a mixture of NO 3 /NH 4 + were characterized by a lower content of sugars and amino acids accumulation in comparison with that in plants fed with NO 3 or NH 4 + . An elevated HCO 3 concentration in the rhizosphere stimulated the accumulation of soluble sugars and free amino acids in all the experimental variants. There were only small differences in the starch content.  相似文献   

16.
There is ample experimental evidence that, Na, if supplied in separate fertiliser granules or crystals to N, i.e., in blended fertiliser form, can improve both the yield and the recovery of fertiliser N by grassland swards in situations of limited K supply, but not in situations of K abundance. There is some evidence, though, that in K-replete situations, Na, if supplied in the same fertiliser granule as N, i.e. in concentrated complex fertiliser (CCF) form, also improves dry matter production and N recovery by swards whilst lowering the risk of grass tetany in grazing animals. However, the mechanism for the latter effect of Na on N uptake has never been elucidated, nor has it been clarified whether Na stimulates NH 4 + and NO 3 uptake by plants or simply NO 3 uptake alone. The aim of the present study was to see if supplying Na in the same fertiliser pellets (NNa-CCF) as NH4NO3 (differentially labelled with15N), or in separate pellets (NNa-blend), had any effect on the recovery of15N-labelled NH 4 + and NO 3 -N by perennial ryegrass plants growing in a glasshouse under K-replete conditions. The results of the experiment confirmed that using an NNa-CCF was more beneficial to shoot production than using an NNa-blend. However, the differential in shoot production occurred without any corresponding difference in total N (i.e. NH 4 + plus NO 3 -N) recovery in shoot tissue. Instead, Na, in the CCF appears to have stimulated NO 3 uptake at the expense of NH 4 + absorption, thereby altering the balance between NH 4 + and NO 3 -nutrition in favour of NO 3 -nutrition, and stimulating shoot production as a consequence. It was concluded that if grassland is already well supplied with K it would be more beneficial in terms of sward production to apply a Na and N-containing CCF than a blend of separate Na and N-containing granules or crystals.  相似文献   

17.
Summary Soil pH, NH 4 + and NO 3 concentrations in soil, and take-all root rot of winter wheat grown in the field were measured concurrently from sowing to anthesis in order to relate disease development to liming and N fertilization practices. Experimental variables included soil pH (5.5 and 6.0) and three N sources (NH4NO3, (NH4)2SO4, NH4Cl) banded with the seed at sowing in factorial combination with the same three N sources topdressed in the spring. Take-all severity was increased by increasing soil pH and by fertilization with NO 3 . Disease severity on crown roots increased exponentially following spring N fertilization and was affected more by soil pH and N-form than was severity on seminal roots. Grain yield ranged from 4.70 Mgha−1 with spring NH4NO3 at soil pH 6.0 to 7.65 Mgha−1 with spring NH4Cl at soil pH 5.5. Sixty-six percent of the variability in grain yield was explained by the number of take-all infected crown roots per tiller at anthesis. Oregon Agric. Exp. Stn. technical paper no. 7707.  相似文献   

18.
Summary The importance of initial exchangeable soil NH 4 + in nitrogen nutrition and grain yield of rice was studied in a number of representative lowland rice soils in the Philippines. The initial exchangeable soil NH 4 + +fertilizer N plotted against nitrogen uptake by the crop resulted in a highly significant linear relationship (R2=0.91), suggesting that the presence of exchangeable NH 4 + in the soil at transplanting behaved like fertilizer nitrogen. The correlation between N fertilizer rate and N uptake by the rice crop was relatively poor (R2=0.73). On the other hand, relative grain yield was more closely correlated with the initial exchangeable soil NH 4 + +fertilizer N than with fertilizer nitrogen applied alone. These results indicate that the initial exchangeable NH 4 + in the soil contributed substantially to the nitrogen uptake of the crop.Critical nitrogen levels in the soil defined as the initial exchangeable soil NH 4 + +fertilizer N at which the optimum grain yield (95% of the maximum yield) is obtained, varied from 60 to 100 kg N/ha in the wet season and from 100 to 120 kg N/ha in the dry season for the different fertilizer treatments. The results further suggest that the initial exchangeable soil NH 4 + should serve as a guide in selecting an optimum nitrogen fertilizer rate for high grain yields.  相似文献   

19.
Diurnal variation in ion content of the solution bathing roots of two plants growing together in sand culture was analysed for three pairs of grass-legume species (Lolium multiflorum andTrifolium pratense; Zea mays andGlycine hispida; Avena sativa andVicia sativa) and their monospecific controls. Biomass and nitrogen content of plants were determined. Ion concentration (NO 3 , NO 2 , NH 4 + , and K+) and pH of root solutions were measured for Lolium-Trifolium plant pairs and controls at 6 hours intervals over 36 h, starting at 8 am within a circadian cycle. Root solutions were regularly depleted in NO 3 by the grasses (Lolium-Lolium control) throughout the cycle. For associations involving the legume (Lolium-Trifolium and Trifolium-Trifolium), NO 3 depletion was followed by NO 3 enrichment at night, from late afternoon to early morning; the enrichment was more marked for the Lolium-Trifolium association. Solutions which did not contain NO 2 ions, were enriched by trace amounts of NH 4 + ions, largely depleted in K+ and alkalanized for all associations throughout the cycle. Repeating the experiment with the three pairs of species at the vegetative phase of development confirmed the previous results: NO 3 enrichment during the night for associations with legumes. When the experiment was repeated with older plants which had almost completed their flowering stage, depletion only was observed and no NO 3 enrichment. These data suggest that NO 3 enrichment results from N excretion from active nodulated roots of the legume, accounting for the increase in both biomass and nitrogen content of the companion grass in grass-legume association. The quantitative importance and periodicity of nitrogen excretion as well as the origin of nitrate enrichment are discussed.  相似文献   

20.
Summary The release of nitrogen from a slow release fertilizer (sulfur-coated urea, SCU) in an orange orchard was studied during three annual cycles and at three soil depths. The release of N from SCU was compared with that from a standard fertilizer (ammonium nitrate sulfate, ANS). The amounts of available soil nitrogen were compared at different periods of the year and for the whole year. The SCU granules maintained higher levels of available nitrogen in the soil during critical periods. Soil N levels were similar between treatments consisting of 1500 g of N from ANS and 750 g of N from SCU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号