首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Catecholaminergic fibers in the suprachiasmatic nucleus of adult rats were investigated by use of light- and electron-microscopic immunocytochemistry. The suprachiasmatic nucleus receives a modest density of tyrosine hydroxylase-containing axons, homogeneously distributed in the nucleus and forming varicosities throughout its entire rostro-caudal extension. Immunolabeling with antibodies against dopamine showed that this catecholamine input comprises a dopaminergic component. Many tyrosine hydroxylase-positive cells were localized at the immediate periphery of the suprachiasmatic nucleus. With electron-microscopic examination, dendrites of these neurons were found within the limits of the nucleus as well as at a border zone between the suprachiasmatic nucleus proper and the optic tract where they received unlabeled synapses, providing a morphological support for a possible role of dopaminergic neurons in the integration and/or transfer of light-related signals. More than 91% of catecholaminergic axonal varicosities were found to establish morphologically defined synapses with dendrites. To investigate whether these synapses might be shared with neurons of one or both of the two main peptidergic populations of the nucleus, namely vasoactive intestinal peptide- and vasopressin-containing neurons, we carried out doublelabeling experments combining immunoperoxidase and immunogold-silver labeling. Results showed only a few cases of direct association of the catecholaminergic terminals with these peptidergic categories. In both types of dually stained sections, catecholaminergic synapses were preferentially made with unlabeled dendrites. The homogeneous distribution of tyrosine hydroxylase-immunoreactive fibers in the suprachiasmatic nucleus could therefore reflect a lack of significant catecholaminergic innervation of both vasoactive intestinal peptide- and vasopressin-synthesizing neurons.  相似文献   

2.

Background

Dopamine is a catecholamine that is used as a neurotransmitter both in the periphery and in the central nervous system. Dysfunction in various dopaminergic systems is known to be associated with various disorders, including schizophrenia, Parkinson's disease, and Tourette's syndrome. Furthermore, microdialysis studies have shown that addictive drugs increase extracellular dopamine and brain imaging has shown a correlation between euphoria and psycho-stimulant-induced increases in extracellular dopamine [1]. These consequences of dopamine dysfunction indicate the importance of maintaining dopamine functionality through homeostatic mechanisms that have been attributed to the delicate balance between synthesis, storage, release, metabolism, and reuptake.

Methods

We construct a mathematical model of dopamine synthesis, release, and reuptake and use it to study homeostasis in single dopaminergic neuron terminals. We investigate the substrate inhibition of tyrosine hydroxylase by tyrosine, the consequences of the rapid uptake of extracellular dopamine by the dopamine transporters, and the effects of the autoreceoptors on dopaminergic function. The main focus is to understand the regulation and control of synthesis and release and to explicate and interpret experimental findings.

Results

We show that the substrate inhibition of tyrosine hydroxylase by tyrosine stabilizes cytosolic and vesicular dopamine against changes in tyrosine availability due to meals. We find that the autoreceptors dampen the fluctuations in extracellular dopamine caused by changes in tyrosine hydroxylase expression and changes in the rate of firing. We show that short bursts of action potentials create significant dopamine signals against the background of tonic firing. We explain the observed time courses of extracellular dopamine responses to stimulation in wild type mice and mice that have genetically altered dopamine transporter densities and the observed half-lives of extracellular dopamine under various treatment protocols.

Conclusion

Dopaminergic systems must respond robustly to important biological signals such as bursts, while at the same time maintaining homeostasis in the face of normal biological fluctuations in inputs, expression levels, and firing rates. This is accomplished through the cooperative effect of many different homeostatic mechanisms including special properties of tyrosine hydroxylase, the dopamine transporters, and the dopamine autoreceptors.  相似文献   

3.
The innervation of the myometrium in virgin, pregnant and post-partum ewes was examined using the SPG histofluorescence method and a high-performance liquid chromatographic catecholamine assay. In non-pregnant ewes, fluorescent axons were visible in all regions of the uterus. At 50 days of pregnancy the innervation was unchanged, but at 100 days axons were scarce over the whole uterus with the exception of the tubal extremities of the uterine horns. Noradrenaline concentrations were also significantly lower in late pregnancy, and significant variations occurred in different regions of the uterus, with the greatest concentrations present in the tubal extremities. At 13-16 weeks post partum, the density of innervation was variable, although the noradrenaline concentration was only slightly less than in virgin animals. Dopamine was also present in substantial quantities, but the mean concentrations remained unchanged during pregnancy.  相似文献   

4.
D-2 dopamine autoreceptor selective drugs: do they really exist?   总被引:3,自引:0,他引:3  
The catecholamine dopamine plays an important role as a neurotransmitter or neurohormone in the brain and pituitary gland. Dopamine exerts its effects through activation of two types of receptors called D-1 and D-2. These receptors are distinguished by their different pharmacological characteristics and signal transduction mechanism(s). Release of dopamine inhibits the activity of dopaminergic neurons through activation of so-called dopamine autoreceptors which are of the D-2 type. In general, these receptors occur both in the soma-dendritic region of the dopaminergic neuron, where they are involved in the inhibition of the firing rate and on the dopaminergic terminals where they mediate the inhibition of dopamine synthesis and release. D-2 receptors occur also on the target cells of dopaminergic neurons both in the brain (postsynaptic D-2 receptors) and pituitary gland. On the basis of data gathered from in vivo (behavioral- as well as electrophysiological) studies it has been concluded that D-2 agonists are much more potent at dopamine autoreceptors as compared to postsynaptic D-2 receptors, indicating the possibility of a pharmacological distinction between these differentially located D-2 receptors. This concept led to the introduction of a whole group of drugs allegedly displaying a selective agonist profile at the dopamine autoreceptor. In contrast, biochemical (in vitro) studies with brain tissue as well as the pituitary gland, did not reveal any significant difference between the pharmacological profiles of autoreceptors and postsynaptic D-2 receptors. In the present minireview a balanced discussion is presented of these in vivo and in vitro findings and it is concluded that both autoreceptors as well as postsynaptic D-2 receptors are similar if not identical entities.  相似文献   

5.
Immunodetection of catecholamine biosynthetic enzymes is frequently used for the visualization of central nervous catecholaminergic systems. Because of the method's limited specificity for the different catecholamines, interpretation of the results often presents difficulties. To determine criteria for the identification of dopaminergic, noradrenergic, and adrenergic afferents to the rat amygdaloid complex, comparative immunolabelling for tyrosine hydroxylase (TH), dopamine--hydroxylase (DBH), and phenylethanolamine-n-methyltransferase (PNMT) was carried out using single- and double-labelling for fluorescence, light- and electron microscopy. The observations were complemented by findings in brainstem and hypothalamic areas. The results indicated that. TH-labelling detected preferentially dopaminergic afferents in the lateral central and intercalated amygdaloid nuclei. DBH-labelling detected noradrenergic axons in nuclei lacking PNMT-immunoreactive fibres, and PNMT was a marker for adrenergic axons in the entire complex. For nuclei with combined dense dopaminergic, noradrenergic and/or adrenergic innervation, morphological and immunolabelling characteristics were described which, to a certain extent, enabled identification of the different afferents in anti-TH or anti-DBH-preparations. Using a monoclonal TH-antiserum, noradrenergic and adrenergic axons displayed weaker immunoreactivity than dopaminergic ones, and possessed characteristic morphological features. TH-immunoreactivity in noradrenergic axons differed depending on their origin, and showed intra-axonal compartmentalization. The present study provides a basis for the use of the detection of biosynthetic enzymes in future investigations into the ultrastructure and connectivity of the catecholaminergic amygdala innervation.  相似文献   

6.
The time course of changes in the dopamine concentration in dopaminergic neurons of the nigro-neostriatal and mesolimbic systems of the rat brain during 1 h after intraperitoneal injection of -phenylethylamine (100 mg/kg) was studied by quantitative fluorescence-histochemical analysis. The results showed that -phenylethylamine causes a marked fall in the dopamine level in neurons of dopaminergic systems of the brain. The dopamine level in the bodies of dopaminergic neurons changes more than in their axon terminals. The fall in the dopamine concentration in the dopaminergic systems of the brain during the first hour is irregular in character: in the terminals between 10 and 30 min and in the bodies between 30 and 45 min there is actually a temporary increase in the dopamine concentration. The rise in the dopamine concentration in the terminals coincides with a sharp fall in the dopamine level in the neuron bodies, and conversely, the fall in the dopamine concentration in the terminals after 30 min is accompanied by some increase in the dopamine concentration in the neuron bodies. The results suggest that the increase in motor activity described in the literature in animals after injection of -phenylethylamine is connected with its action on catecholaminergic, especially dopaminergic, brain systems.Institute of Biophysics, Academy of Sciences of the USSR, Pushchino-on-Oka. Translated from Neirofiziologiya, Vol. 11, No. 6, pp. 578–584, November–December, 1979.  相似文献   

7.
Summary The central catecholamine innervation of the pituitary neural lobe and pars intermedia of the rat have been identified ultrastructurally and their organization has been investigated in a combined fluorescence histochemical and electron microscopical study. The dopamine analogues, 5-hydroxydopamine and 6-hydroxydopamine, were used to label the catecholamine terminals, and to enable the direct correlation between the fluorescence microscopical and the electron microscopical pictures.The fibre type that was identified as catecholamine-containing was ultrastructurally chiefly characterized by dense-cored vesicles, 500–1200 Å in diameter, intermingled with varying numbers of small empty vesicles. 5-hydroxydopamine was selectively accumulated in these fibres and caused an increased electron density of the granular vesicles as well as of some small normally agranular vesicles, and systemically administered 6-hydroxydopamine caused a selective degeneration of these fibres, most prominently within the neural lobe. The dopaminergic terminals of the neural lobe showed frequent close contacts (80–120 Å), without real membrane thickenings, to neurosecretory axons and to pituicyte processes. It is suggested that these close contacts might signify a direct dopaminergic influence on the neurosecretory axons and/or on the pituicyte processes. The identified central catecholamine fibres were also found to make common synapse-like contacts on the pars intermedia cells, whereas the innervation by neurosecretory fibres was very rare. This suggests that the direct central nervous control of the rat pars intermedia is exerted by the catecholamine neurons. A very special feature of the catecholamine fibres in the pituitary is the occurrence of peculiar, large dopamine-filled droplet-like swellings. Electron microscopically, such large axonal swellings (more than 2 in diameter) were found to contain, in addition to the characteristic vesicles and organelles, strongly osmiophilic lamellated membrane complexes resembling myelin bodies and multivesicular bodies encircling disintegrated vesicles, suggesting that these droplet fibres represent dilated stumps of spontaneously degenerating dopaminergic axons. It is suggested that the dopaminergic neural lobe fibres are undergoing continuous reorganization through degeneration—regeneration cycles, a phenomenon previously suggested for the neurosecretory axons of the neural lobe.Supported by the Deutsche Forschungsgemeinschaft.Supported by Svenska Livförsäkringsbolags Nämnd för Medicinsk Forskning, by The Medical Faculty, University of Lund and by the Ford Foundation.  相似文献   

8.
Summary Catecholamines are known to exert a central influence on the hypothalamo-hypophyseal-adrenal neuroendocrine system. The selective dopaminergic innervation of the hypothalamic paraventricular nucleus (PVN) and putative relationships between dopaminergic fibers and corticotropin releasing hormone (CRH)-synthesizing neurons were studied in the male rat by means of immunocytochemistry following the elimination of noradrenergic and adrenergic inputs to the hypothalamus. A 3.0-mm-wide coronal cut was placed unilaterally in the brain at the rostral level of the mesencephalon. All neuronal structures from the cortex to the ventral surface of the brainstem, including the ascending catecholaminergic fiber bundles were transected. This surgical intervention resulted in the accumulation of dopamine--hydroxylase (DBH)-immunoreactivity in axons proximal to the cut, and an almost complete disappearance of DBH activity in those located distal to the lesion. Two weeks following the operation, DBH immunoreactivity was significantly diminished in the PVN located on the side of lesion, while tyrosine hydroxylase (TH)-immunoreactivity was present in a substantial number of fibers in the same nucleus. Both DBH- and TH-immunoreactive axons were preserved in the contralateral PVN. Simultaneous immunocytochemical localization of either DBH- or TH-IR fibers and corticotropin releasing hormone-synthesizing neurons in the hypothalami from brainstem-lesioned, colchicine treated animals revealed that the distribution of catecholaminergic fibers and CRH neurons is homologous within the PVN of the intact side. Only a few scattered DBH-immunoreactive axons were detected among CRH-producing neurons in the PVN on the side of the lesion. In contrast, many tyrosine hydroxylase containing neurons and neuronal processes were observed on the lesioned side and the TH-IR fibers established juxtapositions with CRH-synthesizing neurons.These morphological data demonstrate that following the surgical ablation of noradrenergic and adrenergic afferents to the PVN, a substantial number of tyrosine hydroxylase-IR fibers remained in the nucleus and they were associated with corticotropin releasing hormone synthesizing neurons. Therefore, it is hypothesized that the paraventricular nucleus receives a selective dopaminergic innervation and these dopaminergic axons might influence the function of the pituitary and adrenal glands via the hypothalamic CRH system.Supported by grants from the National Science Foundation (NSF INT 8703030), the Hungarian Academy of Sciences (OTKA 104), the National Institutes of Health (NS 19266) and the National Foundation of Technical Development (OKKFT Tt 286/1986)  相似文献   

9.
Abstract— Electrical stimulation of the nigrostriatal dopaminergic pathway in rat brain elicited a frequency and current intensity-dependent increased in the formation of homovanillic acid in the basal ganglia. The accumulation of the acid in probenecid-treated animals was constant over 1 h, when maximally stimulated at 25 Hz and 300 μA. Dopamine levels remained unchanged during stimulation. When prior to stimulation the inhibitor of catecholamine synthesis α-methyl- p -tyrosine methyl ester was administered, dopamine levels declined biphasically. Tyrosine and nomifensine, a dopamine uptake inhibitor, and apomorphine had no major effect on the formation of homovanillic acid, whilst α-methyl- p -tyrosine prevented its formation. Our data suggest that dopamine in the striatum is compartmentalized and that the newly-synthesized amine is released and converted to homovanillic acid. Apomorphine decreases dopamine flux only when dopaminergic neurons are at rest. When depolarized neither access of the precursor nor reuptake seem to influence the conversion of dopamine to homovanillic acid.  相似文献   

10.

Background  

The cockroach salivary gland consists of secretory acini with peripheral ion-transporting cells and central protein-producing cells, an extensive duct system, and a pair of reservoirs. Salivation is controled by serotonergic and dopaminergic innervation. Serotonin stimulates the secretion of a protein-rich saliva, dopamine causes the production of a saliva without proteins. These findings suggest a model in which serotonin acts on the central cells and possibly other cell types, and dopamine acts selectively on the ion-transporting cells. To examine this model, we have analyzed the spatial relationship of dopaminergic and serotonergic nerve fibers to the various cell types.  相似文献   

11.
The enhancement of electrical activity of the neurosecretory cells in the brain and corpus cardiacum of Rhodnius prolixus induced by 20-hydroxyecdysone has been used as a means of examining the role of aminergic neurons in this reflex. The response of the brain and corpus cardiacum from mated ovariectomized females to 20-hydroxyecdysone was blocked by phentolamine and phenoxybenzamine (α-aminergic receptor antagonists) but not by propranolol (a β-aminergic receptor antagonist). Preparations taken from ‘reserpinzed’ females failed to respond to 20-hydroxyecdysone. Dopamine at 10?7 M was capable of mimicking 20-hydroxyecdysone in activating the neurosecretory system from mated ovariectomised females as well as from ‘reserpinized’ mated ovariectomised females. The response to dopamine was blocked by phentolamine. The neurosecretory system from virgin ovariectomized females failed to respond to 10?7 or 10?6 M dopamine, but was activated by 10?5 M dopamine.It is concluded that the action of 20-hydroxyecdysone onto the neurosecretory cells is indirect and involves aminergic interneurons. The results also suggest that the mating stimuli may function by enhancing the response of neurons to amines.  相似文献   

12.
The effects of caffeine on the activity of central and peripheral catecholaminergic structures have been studied in rats ingesting high doses of caffeine. The activities of the enzymes tyrosine hydroxylase and dopamine-beta-hydroxylase were measured as well as 3,4-dihydroxyphenylethylamine (dopamine), adrenaline, and noradrenaline concentrations, in brain (striatum and hypothalamus), heart, and adrenal gland. At the peripheral level, we observed a significant increase in the dopamine and adrenaline plus noradrenaline content in the heart, but an increase in dopamine content only was found in the adrenal gland. Dopamine-beta-hydroxylase activity in serum was increased, but the only significant enzymic change in brain was an increase in the dopamine-beta-hydroxylase activity of the hypothalamus. However, an increase in catecholamine content was observed in both structures of the brain. These data suggest that the mechanisms involved in caffeine-induced self-biting in rats are not limited to the dopaminergic system, because we have also observed an increase in noradrenaline turnover.  相似文献   

13.
Metabolism of the major monoamines and their functions were studied in the freshwater snail Biomphalaria glabrata. In both juvenile and adult snails, the plasma (cell-free hemolymph) appears to act as a reservoir for most of these monoamines and their metabolites including among others, L-dopa and dopamine as major constituents. Significant quantities of L-tryptophan, precursor of indoleamines, also was found in the plasma. L-dopa, serotonin, homovanillic acid and dopamine were prominently represented in the central nervous system of the snail, while serotonin and its metabolites, 5-hydroxyindole acetic acid and 5-hydroxytryptophol were found in the ovotestis. Catecholamines such as L-dopa, dopamine and homovanillic acid were identified in the albumen gland. Functional aspects of both dopamine and serotonin were studied using in vitro cultures of albumen glands, the site of perivitelline fluid and galactogen synthesis in B. glabrata. Dopamine was found to stimulate the release of secretory proteins when exogenously added to gland cultures and this process was inhibited by chlorpromazine, a dopamine receptor antagonist. Similarly, exogenous serotonin stimulated in vitro protein secretion by albumen glands. Thus, these results suggest that monoamines may play important roles in regulating reproductive activity of this snail and provides an excellent model for studying neurotransmitter function and metabolism in molluscs.  相似文献   

14.

Background

The ability of catecholamines to stimulate bacterial growth was first demonstrated just over a decade ago. Little is still known however, concerning the nature of the putative bacterial adrenergic and/or dopaminergic receptor(s) to which catecholamines (norepinephrine, epinephrine and dopamine) may bind and exert their effects, or even whether the binding properties of such a receptor are similar between different species.

Results

Use of specific catecholamine receptor antagonists revealed that only α, and not β, adrenergic antagonists were capable of blocking norepinephrine and epinephrine-induced growth, while antagonism of dopamine-mediated growth was achieved with the use of a dopaminergic antagonist. Both adrenergic and dopaminergic antagonists were highly specific in their mechanism of action, which did not involve blockade of catecholamine-facilitated iron-acquisition. Use of radiolabeled norepinephrine suggested that the adrenergic antagonists could be acting by inhibiting catecholamine uptake.

Conclusion

The present data demonstrates that the ability of a specific pathogen to respond to a particular hormone is dependent upon the host anatomical region in which the pathogen causes disease as well as the neuroanatomical specificity to which production of the particular hormone is restricted; and that both are anatomically coincidental to each other. As such, the present report suggests that pathogens with a high degree of exclusivity to the gastrointestinal tract have evolved response systems to neuroendocrine hormones such as norepinephrine and dopamine, but not epinephrine, which are found with the enteric nervous system.  相似文献   

15.
The striatum receives massive dopaminergic projections from neurons in the ventral tegmental area, the substantia nigra and the retro-rubral cell group. Dopaminergic neurons in the arcuate nucleus and periventricular hypothalamic nuclei project to the median eminence and the neuro-intermediate lobe of the pituitary gland. The anterior lobe of the pituitary gland is not innervated by dopaminergic neurons, but receives dopamine via a vascular route from the median eminence. Two categories of dopamine receptors (D-1 and D-2) can be identified on the basis of the ability of various drugs to discriminate between these two entities. Dopamine stimulates both D-1 and D-2 receptors. The affinity of dopamine for the D-2 receptor is approximately 1000 times higher than for the D-1 receptor. Dopamine is involved in synaptic as well as non-synaptic communication. Examples of non-synaptic communication via D-2 receptors are the dopamine induced inhibition of prolactin release from the anterior pituitary gland and most likely the D-2 receptor mediated inhibition of the release of acetylcholine in the striatum. Examples of synaptic communication have been found in the striatum where (with ultrastructural techniques) synaptic contacts between dopaminergic nerve terminals and elements from cells containing GABA, substance P or enkephalin have been demonstrated. It is tempting to speculate that synaptic and non-synaptic communication occurs via D-1 and D-2 receptors respectively.  相似文献   

16.
Previous studies of the cholinergic sympathetic innervation of rat sweat glands provide evidence for a change in neurotransmitter phenotype from noradrenergic to cholinergic during development. To define further the developmental history of cholinergic sympathetic neurons, we have used immunocytochemical techniques to examine developing and mature sweat gland innervation for the presence of the catecholamine synthetic enzymes tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH) and for two neuropeptides present in the mature cholinergic innervation, vasoactive intestinal peptide (VIP) and calcitonin gene-related peptide (CGRP). In 7-day old animals, intensely TH- and DBH-immunoreactive axons were closely associated with the forming glands. The intensity of both the TH and DBH immunofluorescence decreased as the glands and their innervation developed. Neither TH-IR nor DBH-IR disappeared entirely; faint immunoreactivity for both enzymes was reproducibly detected in mature animals. In contrast to noradrenergic properties, the expression of peptide immunoreactivities appeared relatively late. No VIP-IR or CGRP-IR was detectable in the sweat gland innervation at 4 or 7 days. In some glands VIP-IR first appeared in axons at 10 days, and was evident in all glands by 14 days. CGRP-IR was detectable only after 14 days. In addition to VIP-IR and CGRP-IR, we examined the sweat gland innervation for several neuropeptides which have been described in noradrenergic sympathetic neurons including neuropeptide Y, somatostatin, substance P, and leu- and met-enkephalin; these peptides were not evident in either developing or mature sweat gland axons. Our observations provide further evidence for the early expression and subsequent modulation of noradrenergic properties in a population of cholinergic sympathetic neurons in vivo. In addition, the asynchronous appearance during development of the two neuropeptide immunoreactivities raises the possibility that the expression of peptide phenotypes may be controlled independently.  相似文献   

17.
18.
This study was undertaken to determine whether immuno-histochemical staining for DOPA decarboxylase (DDC) is present in axons of rat noradrenergic sympathetic neurons. A sparse plexus of varicose axons exhibiting DDC-like immunoreactivity (DDC-IR) was associated with blood vessels and acini in the submandibular gland, but this was much less extensive than the population that exhibited tyrosine hydroxylase-like immunoreactivity (TH-IR). The varicose terminal TH-IR axons in atrium, spleen, and vas deferens were devoid of DDC-IR both in grown rats and during the post-natal period of axon growth, although weak DDC-IR was seen in large pre-terminal nerve bundles. Similar patterns of staining were seen with paraffin-embedded and with frozen, formaldehyde-fixed material. No enhancement of DDC-IR was seen in any tissue after chronic alteration of catecholamine turnover with reserpine or alpha-methyl-para-tyrosine, and the numbers of submandibular DDC-IR axons were not increased by disruption of axonal transport with colchicine or by decentralization of the superior cervical ganglion. We conclude that terminal noradrenergic axons contain insufficient DDC-IR for microscopic visualization, regardless of their metabolic state, reinforcing previous evidence that DDC-IR can be used as a histochemical marker for dopaminergic axons. By this criterion, the rat submandibular gland may receive a sparse dopaminergic innervation.  相似文献   

19.
A great variety of alterations have been described in the nervous system of diabetic animals. They are named as diabetic neuropathy and affect the brain, spinal cord and peripheral nerves. In diabetic animals, plasma and tissue catecholamine levels have been reported to be increased, decreased or unchanged, and these disparities have been explained by differences in the tissues selected, severity or duration of diabetes. Dopamine, norepinephrine and epinephrine from different tissues were extracted by absorption onto alumina, and measured by high performance liquid chromatography with electrochemical detection. We found that diabetes alters catecholaminergic systems in a highly specific manner. The dopamine content is reduced in the dopaminergic nigrostriatal system only. Norepinephrine is differently altered in several areas of the sympathetic nervous system. It is increased in cardiac ventricles, and decreased in stellate ganglia and the blood serum. However, it is not altered in the central nervous system. Finally, epinephrine is only altered in the adrenal gland where it is increased, and in the serum where it is reduced. Our results suggest that diabetes reduces the activity of the nigrostriatal dopaminergic system. Changes found at the sympathoadrenal level could be explained by reduced norepinephrine and epinephrine synthesis, with increased storage due to a reduced release from synaptic vesicles.  相似文献   

20.
In weaver mice, besides a postnatal cerebellar developmental anomaly probably caused by alterations of an inwardly rectifying K+ channel, there is a progressive loss of mesencephalic dopaminergic neurons. To further evaluate this deficit, endogenous dopamine and its metabolites were measured in 22 brain regions from heterozygous (wv/+) and homozygous (wv/wv) mutants, and compared to wild type (+/+) mice. In both wv/+ and wv/wv mutants there were profound dopamine depletions in all regions; these changes were accompanied by decreases in metabolites but with an increase of turnover indexes. Dopamine D1 and D2 receptors were examined by autoradiography, and their distribution was conserved. The results show that the dopaminergic deficit is widespread to all areas of innervation, and is probably compensated for by an increased turnover. Abnormal developmental growth signals, or aberrant cellular responses, may result in defective neurite formation of the midbrain dopaminergic neurons, leading to their postnatal death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号