首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
There is recent evidence suggesting that c-erbA is the thyroid hormone nuclear receptor, and that there may be multiple c-erbA genes. We investigated the effect of T3 on two c-erbA mRNAs present in GH3 cells. A partial cDNA was isolated from rat GH3 cells which is nearly identical (99.6% nucleotide identity) to rat c-erbA alpha, except for a unique 3'-region corresponding to the carboxyl terminal region of the predicted protein sequence. This cDNA (c-erbA alpha-2), like rat c-erbA alpha, hybridizes to a 2.6 kilobase (kb) mRNA which is distinct from a 6.2 kb species that hybridizes to c-erbA beta. Since nuclear T3-binding is down-regulated by T3, we hypothesized that one or both c-erbA mRNAs might be regulated by T3. GH3 cells were treated with 10 nM T3 for up to 24 h, a manipulation known to decrease nuclear T3 binding by approximately 2-fold in GH cells. Both the 6.2 kb and 2.6 kb mRNA species decreased to nearly 50% of control values at 24 h. These data indicate that these two c-erbA mRNAs are regulated by T3 and suggest that the T3 effect on T3 binding-activity in GH cells may be mediated, in part, by down-regulation of c-erbA mRNA levels.  相似文献   

3.
Regulation of HSP70 synthesis by messenger RNA degradation.   总被引:14,自引:1,他引:13       下载免费PDF全文
When Drosophila cells are heat shocked, hsp70 messenger RNA (mRNA) is stable and is translated at high efficiencies. During recovery from heat shock, hsp70 synthesis is repressed and its messenger RNA (mRNA) is degraded in a highly regulated fashion. Dramatic differences in the timing of repression and degradation are observed after heat treatments of different severities. The 3' untranslated region (UTR) of the hsp70 mRNA was sufficient to transfer this regulated degradation to heterologous mRNAs. Altering the translational efficiency of the message or changing its natural translation-termination site did not alter its pattern of regulation, although in some cases it changed the absolute rate of degradation. We have previously shown that hsp70 mRNA is very unstable when it is expressed at normal growth temperatures (from a metallothionein promoter). We report here that the 3' untranslated region of the hsp70 mRNA is responsible for this instability as well. We postulate that a mechanism for degrading hsp70 mRNA pre-exists in Drosophila cells, that it is inactivated by heat shock and that it is the reactivation of this mechanism that is responsible for hsp70 repression during recovery. This degradation system may be the same as that used by other unstable mRNAs.  相似文献   

4.
5.
The effects of both 3,5,3'-triiodo-L-thyronine and spontaneous metamorphosis on Rana catesbeiana liver mRNA were studied using in vitro translation of isolated liver poly(A)+ RNA in a rabbit reticulocyte lysate system. Conventional phenol extraction methods yielded degraded RNA due to high levels of endogenous ribonucleases released upon homogenization of Rana catesbeiana liver. Isolation of intact total RNA was achieved using the potent ribonuclease denaturant, guanidinium thiocyanate. Adult bullfrog serum albumin was purified to homogeneity and a monospecific antibody was elicited against it. A serum protein of 23,000 daltons that migrated near serum albumin on a 6% native gel was also purified to homogeneity. A monospecific antibody was also raised against this protein. Both antibodies were used to quantitatively immunoprecipitate the in vitro translation products of poly(A)+ RNA isolated at intervals following a single injection of triiodothyronine or during various stages of spontaneous amphibian metamorphosis. Triiodothyronine caused a sevenfold increase in translatable albumin mRNA and a threefold increase in translatable mRNA for the 23,000 dalton protein. These increases are consistent with a nuclear initiated mechanism for thyroid hormone action during amphibian metamorphosis.  相似文献   

6.
7.
In this paper we report on the requirement of the epidermal tissue for thyroid hormone-induced tadpole tail regression. The epidermis was removed by two different methods, i.e., surgically or chemically. Chemical removal included EDTA and trypsin treatment. Epidermis-free tail fin blocks were cultured in vitro according to A. Derby, 1968, J. Exp. Zool.168, 147–156. and the effect of 3,3′,5-tri-iodo-l-thyronine (T3) was followed up for 4 days. No tissue breakdown was observed at the concentration of 10?8M T3, which was enough to induce tissue resorption of the epidermis-containing normal tissue blocks. Tail muscle cubes with epidermis regressed in the T3-containing culture medium. However, the epidermis-deprived tail muscle cubes did not respond to the hormone. The tail fin mesenchymal connective tissue block deprived of the epidermis was cultured with epidermal tissues which had been removed surgically from the tail. The presence of T3 in this reconstituted culture induced the regression of the mesenchymal connective tissue blocks. These experiments clearly show that epidermal tissue plays a critical role in T3-induced tissue degradation.  相似文献   

8.
To examine the influence of thyrotropin (TSH) on the thyroglobulin (Tgb) mRNA content, the latter was evaluated in the cytoplasm of hog thyroid cells cultured in the absence (control cells) or presence of TSH. The Tgb mRNA levels were determined by, (i) kinetics of hybridization to sheep Tgb cDNA, (ii) capacity of coding for peptides immunologically related to Tgb in reticulocyte lysate. In cells cultured for 4 days in the absence of TSH, the content of Tgb mRNA sequences decreased to 30% of its initial value and the messenger activity to 15%. Conversely, TSH maintained the initial Tgb mRNA level in cells cultured in its presence, and TSH concentrations 50 micronU/ml or 5 mU/ml gave identical results. At each period tested poly (A) content was the same in TSH-treated and control cells. When TSH was added to media after 4 or 8 days culture without TSH, the Tgb mRNA level was partially restored. These results suggest that TSH exerts a positive control on Tgb gene expression through modulation of Tgb mRNA content of thyroid cells.  相似文献   

9.
10.
Thyroid hormones are responsible for the specific biochemical and structural changes that occur during amphibian metamorphosis. In this study we screened a series of cDNAs from a library constructed from T4-treated premetamorphic tadpole liver poly(A)+ RNA in order to identify a clone that could be used to study the influence of T3 on liver-specific gene expression during Rana catesbeiana metamorphosis. The cDNA from one clone exhibited a greater degree of hybridization to liver RNA from thyroid hormone-treated tadpoles than untreated tadpoles and no hybridization to RNA from tail fins of tadpoles of either group. On Northern blots, the mRNA to which the cDNA hybridized was 2.3 kilobases in size. The pattern of hybridization to genomic DNA digested by various restriction enzymes was consistent with the presence of a single gene. Using slot blot analysis we found that the mRNA levels first rose above basal levels only after 5 days of immersion of tadpoles in 12.5 micrograms/liter T3. The mRNA levels increased approximately 10-fold after 7 and 9 days of treatment. Frog livers had mRNA levels that were intermediate between those in untreated tadpoles and tadpoles immersed in T3 for 7 days. Sequence analysis revealed a significant degree of homology to serum albumin and alpha-fetoprotein. While it is known that serum albumin levels rise dramatically during metamorphosis in Rana species, presumably playing a critical role in maintaining water and electrolyte balance during the animals' terrestrial phase, the molecular basis of the induction has not been fully explained.  相似文献   

11.
12.
13.
Regulation of messenger RNA stability in eukaryotic cells   总被引:23,自引:0,他引:23  
Regulation of the cytoplasmic stability of mRNAs has recetly been identified as a major control mechanism which governs mRNA levels in a variety of eukaryotic systems. In this review we discuss what is known about several experimental systems that exhibit regulated mRNA stability, describe the mechanisms that cells may use to achieve control of mRNA degradation, and suggest areas of future investigation likely to provide new insights into this process.  相似文献   

14.
Triiodothyronine (T3) is found to stimulate cytochalasin B-inhibitable glucose transport in Clone 9 cells, a 'non-transformed' rat liver cell line. After an initial lag period of more than 3 h, glucose transport rate is significantly increased at 6 h and reaches more than 3-times the control rate at 24 h. The enhancement of glucose transport by T3 is due to an increase in transport Vmax and occurs in the absence of a change in either the Km for glucose transport (approximately 3 mM) or the Ki for inhibition of transport by cytochalasin B ((1-2).10(-7) M). Consistent with the observed Ki for cytochalasin B, Northern blot analysis of RNA from control and T3-treated cells employing cDNA probes encoding GTs of the human erythrocyte/rat brain/HepG2 cell transporter (GLUT-1), rat muscle/fat cell transporter (GLUT-4), and rat liver transporter (GLUT-2) types indicates expression of only the GLUT-1 mRNA isoform in these cells. The abundance of GLUT-1 mRNA increases approx. 1.9-fold after 24 h of T3 treatment and is accompanied by an approx. 1.3-fold increase in the abundance of GLUT-1 in whole-cell extracts as demonstrated by Western blot analysis employing a polyclonal antibody directed against the 13 amino acid C-terminal peptide of GLUT-1. The more than 3-fold stimulation of glucose transport at 24 h substantially exceeds the fractional increment in transporter abundance suggesting that, in addition to increasing total GLUT-1 abundance, exposure to T3 may result in a translocation of transporters to the plasma membrane or an activation of pre-existing membrane transporter sites.  相似文献   

15.
To understand the regulation by thyroid hormone, 3,3',5-triiodo-L-thyronine (T3), of the synthesis of a cytosolic thyroid hormone binding protein (p58-M2) during liver regeneration, the synthesis of p58-M2 was evaluated. The synthesis of p58-M2 was measured by metabolic labeling of primary cultures derived from the regenerating liver of euthyroid, hypo- or hyperthyroid rats. During regeneration, the increase in the liver/body weight ratio is approximately 25% higher in hyper- than in hypothyroid rats. However, T3 has no effect on the rate of overall liver regeneration observed in four days. In mature liver, T3 increased the synthesis of p58-M2 by approximately 2.5-fold. During regeneration, however, the change in the synthesis of p58-M2 varied with the thyroid status. In euthyroid rats, the synthesis of p58-M2 continued to increase up to 2-fold during liver regeneration. In hyperthyroid rats, after an initial increase by 1.5-fold on day 1, the synthesis of p58-M2 subsequently declined during regeneration. In hypothyroid rats, the synthesis of p58-M2 remained virtually unchanged during regeneration. These results indicate that T3 regulates the synthesis of p58-M2 in mature and regenerating liver.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号